4 research outputs found

    Resolving Marker Pose Ambiguity by Robust Rotation Averaging with Clique Constraints

    Full text link
    Planar markers are useful in robotics and computer vision for mapping and localisation. Given a detected marker in an image, a frequent task is to estimate the 6DOF pose of the marker relative to the camera, which is an instance of planar pose estimation (PPE). Although there are mature techniques, PPE suffers from a fundamental ambiguity problem, in that there can be more than one plausible pose solutions for a PPE instance. Especially when localisation of the marker corners is noisy, it is often difficult to disambiguate the pose solutions based on reprojection error alone. Previous methods choose between the possible solutions using a heuristic criteria, or simply ignore ambiguous markers. We propose to resolve the ambiguities by examining the consistencies of a set of markers across multiple views. Our specific contributions include a novel rotation averaging formulation that incorporates long-range dependencies between possible marker orientation solutions that arise from PPE ambiguities. We analyse the combinatorial complexity of the problem, and develop a novel lifted algorithm to effectively resolve marker pose ambiguities, without discarding any marker observations. Results on real and synthetic data show that our method is able to handle highly ambiguous inputs, and provides more accurate and/or complete marker-based mapping and localisation.Comment: 7 pages, 4 figures, 4 table

    Lisätyn todellisuuden käyttöliittymä puoliautonomisiin työkoneisiin

    Get PDF
    Forest machines are being automated today. However, the challenging environment and complexity of the work makes the task difficult. A forest machine operator needs easily interpretable input from the machine in order to supervise and control it. Hence, a device that would show the digital information as a part of the real environment is desired. The goal of the thesis is to implement a real time augmented reality display for forest machines. The main task is to estimate the pose of the user’s head because the virtual data should be aligned with real objects. Also, the digital content and how it is visualized has to be considered. A machine vision camera and inertial measurements are used in the pose estimation. Visual markers are utilized to get pose estimate of the camera. And, orientation from inertial measurements is estimated using an extended Kalman filter. To get the final estimate, the orientations of the two devices are sensor fused. Furthermore, the virtual data comes mainly from an on-board lidar. A 3D point cloud and a wire frame model of a forestry crane are augmented to a live video on a PC. The implemented system proved to work outdoors with actual hardware in real time. Although there are some identifiable errors in the pose estimate, the initial results are encouraging. Further improvements should be targeted to the accuracy of marker detection and to the development of a comprehensive sensor fusion algorithm.Haastava ympäristö ja monimutkaiset työtehtävät tekevät metsäkoneiden toimintojen automatisoimisesta vaikeaa. Olisikin toivottavaa, että metsäkoneenkuljettaja pystyisi tulkitsemaan koneelta tulevaa tietoa helposti ja nopeasti. Ratkaisuksi ehdotetaan järjestelmää, joka sulauttaa digitaalisen tiedon osaksi käyttöympäristöä. Tämä mahdollistaisi puoliautonomisen työkoneen sujuvamman valvomisen ja ohjaamisen. Tämän työn tavoitteena on toteuttaa lisätyn todellisuuden näyttö metsäkoneisiin. Tärkeimpänä tehtävänä on estimoida käyttäjän pään sijainti ja asento, sillä digitaalisen datan pitäisi limittyä todellisuuden kanssa. Lisäksi on pohdittava virtuaalisen tiedon sisältö, ja kuinka se esitetään käyttäjälle. Asennon ja paikan mittaamiseen käytetään päähän kiinnitettyä konenäkökameraa ja inertiamittausyksikköä. Kameralla tunnistetaan työkoneen hyttiin sijoitettuja tunnistemerkkejä, joilla sekä kameran paikkaa että asentoa voidaan estimoida. Asentoestimaattia korjataan vielä inertiamittauksilla anturifuusiota hyödyntäen. Virtuaalinen tieto näytölle tulee pääasiassa laserkeilaimelta ja se lisätään tietokoneen ruudulla näkyvään videoon kolmiulotteisena pistepilvenä. Myös metsäkoneen puomi ja työkalu esitetään virtuaalisena mallina. Toteutettu järjestelmä osoittautui toimimaan oikealla laitteistolla ulkoilmassa tehdyssä kokeessa. Alustavat tulokset ovat rohkaisevia, mutta myös paikan ja asennon virheitä havaittiin ja identifioitiin. Tulevaisuuden kehityskohteita ovat tunnisteiden paikan tarkempi mittaaminen ja kokonaisvaltaisemman anturifuusion kehittäminen

    Visual Perception for Manipulation and Imitation in Humanoid Robots

    Get PDF
    This thesis deals with visual perception for manipulation and imitation in humanoid robots. In particular, real-time applicable methods for object recognition and pose estimation as well as for markerless human motion capture have been developed. As only sensor a small baseline stereo camera system (approx. human eye distance) was used. An extensive experimental evaluation has been performed on simulated as well as real image data from real-world scenarios using the humanoid robot ARMAR-III

    Visual Tracking of Instruments in Minimally Invasive Surgery

    Get PDF
    Reducing access trauma has been a focal point for modern surgery and tackling the challenges that arise from new operating techniques and instruments is an exciting and open area of research. Lack of awareness and control from indirect manipulation and visualization has created a need to augment the surgeon's understanding and perception of how their instruments interact with the patient's anatomy but current methods of achieving this are inaccurate and difficult to integrate into the surgical workflow. Visual methods have the potential to recover the position and orientation of the instruments directly in the reference frame of the observing camera without the need to introduce additional hardware to the operating room and perform complex calibration steps. This thesis explores how this problem can be solved with the fusion of coarse region and fine scale point features to enable the recovery of both the rigid and articulated degrees of freedom of laparoscopic and robotic instruments using only images provided by the surgical camera. Extensive experiments on different image features are used to determine suitable representations for reliable and robust pose estimation. Using this information a novel framework is presented which estimates 3D pose with a region matching scheme while using frame-to-frame optical flow to account for challenges due to symmetry in the instrument design. The kinematic structure of articulated robotic instruments is also used to track the movement of the head and claspers. The robustness of this method was evaluated on calibrated ex-vivo images and in-vivo sequences and comparative studies are performed with state-of-the-art kinematic assisted tracking methods
    corecore