
Visual Perception for Manipulation

and Imitation in Humanoid Robots

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

der Universität Karlsruhe (TH)

genehmigte

Dissertation

von

Pedram Azad

aus Karlsruhe

Tag der mündlichen Prüfung: 17. Dezember 2008
Erster Gutachter: Prof. Dr.-Ing. Rüdiger Dillmann
Zweiter Gutachter: Prof. Jan-Olof Eklundh

to my parents

Acknowledgements

First of all I want to thank my doctoral supervisor Prof. Dr. Rüdiger Dillmann
for his support and faith throughout my thesis. He led me to the fascinating
research field of visual perception for humanoid robots and he provided the
environment and opportunity to pursue a doctoral thesis in this area, while
giving me valuable advice and the freedom to investigate those aspects that
are interesting to me. I also want to thank Prof. Jan-Olof Eklundh for being
on my committee as second reviewer, for his interest in my work, and for his
very helpful comments and suggestions.

I owe my first experiences in the field of 3D computer vision to Dr. Tilo Gockel.
He gave me the chance to gain experience in image-based 3D scanning and
to contribute to interesting research projects. I want to thank him for his
commitment to the supervision of my study thesis and diploma thesis and his
ongoing support, advice, and help. It has always been fun to work with him
on various projects and thereby learn new things.

Before I started my work at the University of Karlsruhe I had the chance
to work in the group Humanoid Robotics and Computational Neuroscience
(HRCN) at CNS, ATR in Kyoto, Japan. I am grateful to Dr. Gordon Cheng
and Dr. Mitsuo Kawato for this opportunity, as well as the whole CNS labo-
ratory for the warm welcome and great atmosphere. In particular, I want to
thank Gordon Cheng for introducing me to the research field of markerless
human motion capture. I also want to thank Dr. Aleš Ude for his supervision
and helpful comments during this time. I had a great time in Japan and I am
grateful to all the people that made this time so special.

At Prof. Dillmann’s chair in Karlsruhe I joined the Humanoids group, which is
led by Dr. Tamim Asfour. I am very grateful for his wholehearted support and
supervision of my thesis. No matter if he was busy or not, he always offered
me his help and gave me valuable advice. It has always been a pleasure to
share an office with such a great and dependable friend.

The chair of Prof. Dillmann has always been a great place to work at. The
friendly and fun atmosphere, which makes this place so comfortable, is due
to all the people working here. First of all I want to thank our friendly sec-
retary office, which was run by Nela Redzovic, Christine Brand and Isabelle
Wappler during my time. In particular I want to thank Christine Brand for
taking care of all of my travel affairs and thus saving me a great amount of
time. Furthermore I want to thank Dr. Marcus “ZichtOp” Strand, with whom
together taking care of the lecture Kognitive Systeme became a lot more fun
and easier.

Many discussions with colleagues have contributed to this work. I want to
thank Kai Welke, Stefanie Speidel, David Gonzalez, and Stefan Vacek for
the fruitful discussions on various aspects of computer vision. Kai Welke’s

diploma thesis opened the way to the research topic texture-based object
recognition for me. Stefanie Speidel has always been of great help without
hesitation. Furthermore I am grateful to Nikolaus Vahrenkamp, Martin Do,
Alexander Bierbaum, Steven Wieland, and Stefan Ulbrich, without whom it
would have been impossible to demonstrate the application of the developed
methods for manipulation and imitation tasks performed with the humanoid
robot ARMAR-III. I would also like to thank Dr. Regine Becher, Dr. Peter
Steinhaus, and Alexander Kasper for developing the object modeling center
and providing a great amount of high-quality 3D object models, as well as
my students Florian Hecht, Manuel Mohr, and Lars Pätzold for their valuable
work.

It has always been a lot of fun to hang out with all colleagues, from who I
would also like to mention Joachim Schröder (who managed to motivate me
to go bike riding at 7 am, before work) and Dilana Hazer (who it is always
fun to joke around with).

I am grateful to all of my friends, who are always there and have never com-
plained, no matter for how long I had “disappeared”. I would especially like
to mention Heiko Fischer, Christiane Gaigl, Immanuel Gaiser, Till Gradinger,
Marc Jäger, Franziska Kümmel, Makan Mir-Abrischami, Ulrich Rost, Chris-
tian Schmidt, Jan Stöß, and Timo Tönnies. Furthermore I want to thank the
whole volleyball group of the Turnerschaft Durlach – playing volleyball and
hanging out with you guys is awesome!

Finally I want to thank my family and – above all – my parents for their
endless love and support, in any situation.

Contents

1 Introduction . 1
1.1 Motivation and Objective . 1
1.2 Contribution . 2
1.3 Outline . 4

2 State of the Art in Object Recognition and Pose Estimation 7
2.1 Appearance-based Methods . 8

2.1.1 Global Approaches . 8
2.1.1.1 Grayscale Correlation . 8
2.1.1.2 Moments . 9
2.1.1.3 The Viola-Jones Object Detector 10
2.1.1.4 Color Coocurrence Histograms 14

2.1.2 Local Approaches . 16
2.1.2.1 Calculation of Feature Points 16
2.1.2.2 Matching Interest Points . 17
2.1.2.3 Scale Invariant Feature Transform (SIFT) 20
2.1.2.4 Maximally Stable Extremal Regions 23
2.1.2.5 Object Recognition and Pose Estimation

Frameworks using Local Features 25
2.2 Model-based Methods . 28

2.2.1 Edge-based Object Tracking . 28
2.2.1.1 RAPiD tracker . 29
2.2.1.2 POSIT . 33
2.2.1.3 2D-3D Tracking . 35
2.2.1.4 Tracking using Particle Filtering 36

2.2.2 Edge-based Object Recognition . 36
2.2.2.1 Generalized Hough Transform 37
2.2.2.2 Geometric Hashing . 39
2.2.2.3 Recognition based on Perceptual Organization . 42

2.2.3 Pose Estimation based on Matched Feature Points 43
2.2.4 Object Recognition based on 3D Point Clouds 44

2.2.5 Hybrid Approaches . 47
2.3 Comparison . 47

3 State of the Art in Human Motion Capture 51
3.1 VICON . 52
3.2 Systems using a Search Method . 53
3.3 Systems using a Minimization Method . 54

3.3.1 Minimization Method for Articulated Objects 54
3.3.2 Systems using a 3D-3D Minimization Method 57
3.3.3 Systems using a 2D-3D Minimization Method 60

3.4 Systems based on Particle Filtering . 62
3.5 Pose Estimation based on Silhouettes . 64
3.6 Comparison . 67

4 Fundamentals of Image Processing . 69
4.1 Camera Model . 69

4.1.1 Coordinate Systems . 70
4.1.2 Intrinsic Camera Parameters of the Linear Mapping . . . 71
4.1.3 Extrinsic Camera Parameters . 72
4.1.4 Distortion Parameters . 72
4.1.5 Overview . 75

4.2 Segmentation . 76
4.2.1 Thresholding . 77
4.2.2 Background Subtraction . 77
4.2.3 Color Segmentation . 78

4.3 Correlation Methods . 80
4.3.1 General Definition . 80
4.3.2 Non-normalized Correlation Functions 81
4.3.3 Normalized Correlation Functions 81

4.4 Homography . 84
4.4.1 General Definition . 84
4.4.2 Least Squares Computation of Homography Parameters 85

4.5 Principal Component Analysis . 86
4.5.1 Mathematical Definition . 86
4.5.2 Eigenspace . 87
4.5.3 Application . 88

4.6 Particle Filtering . 89
4.7 RANSAC. 91

5 Guiding Principles . 93
5.1 Ways of using Calibrated Stereo Camera Systems 93
5.2 Eye Movements . 94
5.3 Rectification of Stereo Image Pairs . 95
5.4 Undistortion of Images . 96
5.5 Grasp Execution . 97

ii

5.6 Imitiation Learning . 98

6 Stereo-based Object Recognition and Pose Estimation
System . 101
6.1 Recognition and Pose Estimation based on the Shape 101

6.1.1 Problem Definition . 103
6.1.2 Basic Approach . 104

6.1.2.1 Region Processing Pipeline 105
6.1.2.2 Recognition . 106
6.1.2.3 6D Pose Estimation . 107
6.1.2.4 Convenient Acquisition of Training Views 109

6.1.3 Orientation Correction . 109
6.1.4 Position Correction . 110
6.1.5 Increasing Robustness . 114
6.1.6 Summary of the Algorithm . 117

6.2 Recognition and Pose Estimation based on Texture 119
6.2.1 Accuracy Considerations . 120
6.2.2 Feature Calculation . 127
6.2.3 Recognition and 2D Localization . 132

6.2.3.1 Hough Transform . 133
6.2.3.2 Homography Estimation . 136

6.2.4 6D Pose Estimation . 139
6.2.5 Occlusions . 144
6.2.6 Increasing Robustness . 144
6.2.7 Runtime Considerations . 147
6.2.8 Summary of the Algorithm . 148

7 Stereo-based Markerless Human Motion Capture System . . 149
7.1 Problem Definition . 150
7.2 Human Upper Body Model . 150

7.2.1 Kinematic Model . 150
7.2.2 Geometric Model . 151

7.3 General Particle Filtering Framework for Human Motion
Capture . 152
7.3.1 Edge Cue . 153
7.3.2 Region Cue . 155
7.3.3 Fusion of Multiple Cues . 155

7.4 Cues in the proposed System. 156
7.4.1 Edge Cue . 156
7.4.2 Distance Cue . 157
7.4.3 Cue Comparison . 157
7.4.4 Using a Calibrated Stereo System 164

7.5 Image Processing Pipeline . 164
7.6 Hand/Head Tracking . 166
7.7 Hierarchical Search . 171

iii

7.8 Fusing the Edge Cue and the Distance Cue 173
7.9 Adaptive Noise . 175
7.10 Adaptive Shoulder Position . 177
7.11 Incorporating Inverse Kinematics . 180
7.12 Summary of the Algorithm . 185

8 Software and Interfaces . 187
8.1 Integrating Vision Toolkit . 187

8.1.1 Implementation . 187
8.1.2 The Class CByteImage . 188
8.1.3 Implementation of Graphical User Interfaces 189
8.1.4 Connection of Image Sources . 189
8.1.5 Integration of OpenCV . 190
8.1.6 Integration of OpenGL . 191
8.1.7 Camera Calibration and Camera Model 192

8.2 Master Motor Map . 193
8.2.1 Specification . 193
8.2.2 Framework and Converter Modules 196
8.2.3 Conversion to the Master Motor Map 197

8.3 Interfaces . 199
8.3.1 Object Recognition and Pose Estimation 199
8.3.2 Human Motion Capture . 200

9 Evaluation . 201
9.1 Recognition and Pose Estimation System based on the Shape . 202

9.1.1 Accuracy . 202
9.1.2 Real-world Experiments . 208
9.1.3 Runtime . 211

9.2 Recognition and Pose Estimation System based on Texture . . . 212
9.2.1 Accuracy . 212
9.2.2 Real-world Experiments . 221
9.2.3 Runtime . 225

9.3 Markerless Human Motion Capture System 226
9.3.1 Automatic Initialization . 226
9.3.2 Real-world Experiments and Accuracy 227
9.3.3 Runtime . 232

10 Conclusion . 233
10.1 Contribution . 233
10.2 Example Applications . 235
10.3 Discussion and Outlook . 237

A Mathematics . 239
A.1 Singular Value Decomposition . 239
A.2 Pseudoinverse . 239

iv

A.2.1 Using the Regular Inverse . 240
A.2.2 Using the Singular Value Decomposition 240

A.3 Linear Least Squares . 240
A.3.1 Using the Normal Equation . 240
A.3.2 Using the QR Decomposition . 241
A.3.3 Using the Singular Value Decomposition 241
A.3.4 Homogeneous Systems . 241

A.4 Functions for Rotations . 242

B File Formats . 245
B.1 Camera Parameters . 245

List of Figures . 247

List of Tables . 253

List of Algorithms . 254

References . 257

Index . 269

v

1

Introduction

The development of humanoid robots is one of the most challenging research
fields within robotics. When encountering such a humanoid for the first time,
one is fascinated by its human-like appearance and mechanical complexity in
first place. Already children are often allured by little toy humanoids when
walking through a toy store. From many science-fiction movies one might even
get the impression that building robots with human-like appearance, behavior,
and abilities is a goal not far away. However, not until one tries to make such a
robot to autonomously do something useful one starts to understand that it is
a very long way from a machine to a humanoid with at least some human-like
abilities.

The hardware of such a robot can be divided into its mechanical components
and implementation, actuators, sensors, and computing hardware. Building
on top of this hardware, it is the software that makes the difference between a
simple machine and an intelligent robot. Among the components and abilities
to be implemented are the most important ones related to motor control,
speech processing and synthesis, visual perception, and some kind of high-level
planning or control module. All of these are integrated and connected within
an overall architecture, which is often referred to as the cognitive architecture
– whose design and implementation are currently among the most discussed
topics within the robotics community.

1.1 Motivation and Objective

When taking a closer look at the abilities of today’s humanoid robot systems
one finds that only very rarely they can perform a specific task in a realistic
scenario. Trying to emulate human capabilities on a robot is so complex and
hard to achieve that one research group can hardly focus on more than one
aspect. For example, the main focus of the Japanese humanoid robots is on

2 1 Introduction

locomotion and the generation of human-like motion. However, there are very
few mobile humanoids that have been designed specifically for autonomously
performing tasks in human-centered environments. Furthermore and in par-
ticular, algorithms are missing that allow the robot to visually perceive its
environment to a sufficient extent, with sufficient robustness and accuracy.
Many interesting higher-level skills, tasks, and scenarios cannot be realized
without a strong vision system as a basis.

The two capabilities of interest in this thesis are object recognition and in
particular 6D pose estimation1, and the visual perception of human motion.
In order to successfully perform any kind of object-related action, the robot
needs accurate 3D information of the object of interest, if not relying on tactile
information only. Among numerous scenarios are grasping an object from a
table or a cabinet, receiving an object from a person, and shaking hands. In
the context of action execution, most approaches rely on hand-eye calibration,
extended by a visual servoing approach if necessary. In both cases, accurate
pose estimation of the object to be grasped is crucial. Furthermore, if the
robot is to interact with humans and to learn from them, it needs to have the
ability to perceive a person’s motion activity. This information can then be
used for higher-level action understanding or online imitation-learning.

The objective of this thesis is to provide solutions that allow the robot to vi-
sually perceive its environment to an extent that enables it to autonomously
perform manipulative tasks in a household environment and to observe a
human operator or teacher in order to support interaction and learning. In
order to provide valuable methods and systems that have the potential of
being adopted for various robotics applications, it was essential to find so-
lutions that do not suffer from instabilities and perform reliably in realistic
scenarios. A kitchen environment was defined as the goal scenario, in which
the developed algorithms have to prove their functioning in practice in numer-
ous recognition, manipulation, and imitation experiments with the humanoid
robot ARMAR-III [Asfour et al., 2006].

1.2 Contribution

The contributions of this thesis are novel solutions for robust object recogni-
tion and in particular accurate 6D pose estimation, and the perception of 3D
human motion. While many systems restrict themselves to the use of a single
camera, in this thesis, the main focus is on exploiting the benefits of stereo
vision in a broad sense. It will be shown that the use of a calibrated stereo

1 6D pose estimation refers to the estimation of a rigid object pose with 6 DoF
(degrees of freedom), consisting of a rotation and a translation in 3D space,
describing an orientation and a position, respectively.

1.2 Contribution 3

system leads to a considerably more accurate and robust 6D pose estimation
compared to approaches estimating the pose on the basis of a single camera
view only.

The sensor system to be used was restricted to a stereo camera pair with
approximately human eye distance, implemented in the humanoid’s head. The
main challenges were to achieve maximum 3D accuracy, real-time applicability
as well as automatic initialization and reliability. At any point, it was taken
into account that the robot head can potentially actively move to different
observation points.

The methods developed in this thesis together build three fully integrated
vision subsystems, all having been evaluated with the same sensor system –
the stereo head of the humanoid robot ARMAR-III:

• Object recognition and pose estimation based on the shape: A
novel approach to recognition and accurate 6D pose estimation of objects
based on their shape was developed. The method requires global segmen-
tation of the object, which is accomplished by color segmentation in the
case of single-colored objects. With the proposed system, the 6D pose of a
single-colored object in 3D space can be estimated accurately – which, to
the author’s best knowledge, has so far not yet been possible for objects
whose only defining feature is their 3D shape.

• Object recognition and pose estimation based on texture: A novel
approach to accurate 6D pose estimation of textured objects was devel-
oped. For the goal of frame rate tracking, the SIFT descriptor was com-
bined with the Harris corner detector, including an effective extension for
achieving scale-invariance. A further contribution is the developed stereo-
based 6D pose estimation method that builds on top of the 2D localiza-
tion result, which was compared to conventional pose estimation based
on 2D-3D correspondences. An extensive experimental evaluation on syn-
thetic and real image data proves the superior performance of the proposed
approach in terms of robustness and accuracy.

• Markerless human motion capture: A novel approach to tracking of
real 3D upper body motion of a person was developed. The first main
contribution is the combination of 3D hand/head tracking and edge infor-
mation in the evaluation function of the particle filter. The second main
contribution is modeling the shoulder position to be adaptive in combina-
tion with an inverse kinematics method for sampling new particles. Fur-
thermore, several crucial improvements of the state of the art in human
motion capture based on particle filtering are introduced, each of them
proved by experiments performed on real image data. The developed sys-
tem is real-time applicable and succeeds also at lower frame rates. It was
successfully applied for online imitation of 3D human upper body motion,

4 1 Introduction

which, to the author’s best knowledge, has so far not been possible with a
markerless image-based tracking system.

The practical applicability of these methods for humanoid robots operating
in human-centered environments is of utmost importance. In order to achieve
this, the following three requirements were decisive for the developed algo-
rithms:

• Robustness

• Accuracy

• Real-time application

The developed methods have proved to enable research and experiments in
many areas within humanoid robotics that have to build on top of a system for
visual perception. However, it should be clearly emphasized that this thesis
does not claim to solve the problem of artificial visual perception in a broad
and general sense. Achieving the abilities of a human will remain inaccessible.

1.3 Outline

In Chapter 2, the current state of the art in object recognition, localization,
and pose estimation methods that are relevant for robotics is presented. The
state of the art in markerless human motion capture is presented in Chapter 3.
After giving a classification of the various methods within each area, they are
compared in a qualitative manner.

Chapter 4 introduces the fundamentals that are crucial for the understanding
of the following algorithms. Among these are the mathematic formulation of
the used camera model and calibration routine as well as specific image pro-
cessing routines being used by the proposed algorithms. The guiding principles
that were decisive for the developed methods and systems are summarized in
Chapter 5.

Chapter 6 presents the two proposed approaches to object recognition and
pose estimation: one for objects that can be segmented globally in a given
scene and are defined by their shape only and one for textured objects that
provide enough textural information for the computation of local features.
While offering separate solutions for two different classes of objects, both
subsystems are fully integrated by operating on the exact same images, camera
model, and pose convention.

Chapter 7 presents the proposed approach to stereo-based markerless human
motion capture. After comparing the characteristics of relevant cues, the final
evaluation function in the core of the particle filtering system is introduced,
combining the edge cue and the novel distance cue. This approach is gradually

1.3 Outline 5

extended, explaining the improvements of each extension step-by-step in order
to show what can be achieved with which approach and what are its limits.
Finally, a system is obtained that is capable of robust real-time application
and acquisition of 3D human upper body motion.

Chapter 8 gives an outline of the architecture of the developed systems in
terms of their offered methods, inputs, and outputs. The developed modules
build on top of the Integrating Vision Toolkit (IVT) – a vision library that
has been developed along with this thesis. The data formats and conventions
for the output of the systems are specified in detail.

Chapter 9 presents the results of an extensive experimental evaluation, con-
sisting of quantitative measurements of the accuracy and computation time.
The experiments were carried out in the kitchen environment of the Collab-
orative Research Center SFB-588 ‘Humanoid Robots’. In addition, various
presentations and demonstrations on conferences and exhibitions as well as
experiments within other institutes of the University of Karlsruhe have proved
the performance of the developed systems.

Chapter 10 concludes this thesis with a discussion of the presented achieve-
ments, ending with some ideas for further possible extensions and improve-
ments of the developed methods.

2

State of the Art in Object Recognition and
Pose Estimation

Computer vision is a vast research area with many applications, both in in-
dustry and artificial intelligence. One of the most traditional disciplines is the
recognition and pose estimation of objects. In the following, an overview of
existing methods and algorithms that are relevant and useful for humanoid
robots is given.

A humanoid robot system designed for grasping of objects in a real-world
scenario sets the highest requirements to object recognition and pose esti-
mation, more than any other application. Not only have the computations
to be performed in reasonable time and objects have to be recognized in an
arbitrary scene, but the pose estimation algorithms have also to provide full
6D pose information with sufficient accuracy. In the following, existing ap-
proaches to object recognition and pose estimation are presented, explaining
the pros and cons of each for the desired application. Since object recognition
on its own is already a huge research area, even a whole book dealing with the
state of the art only would hardly offer enough space for giving a complete
overview. Therefore, only those approaches are presented that are related to
pose estimation as well and are relevant in the context of humanoid robots.

Approaches to object recognition and pose estimation can be classified into
two classes: appearance-based and model-based. Appearance-based methods
store representations of a number of views (or parts of views) of an object.
Recognition and pose estimation are performed on the basis of these views,
usually by utilizing pattern recognition techniques. In contrast, model-based
methods build on top of a predefined model of the object specifying its geom-
etry. This model is fitted into the current scene in order to find an instance of
the object. Combinations of both approaches are possible, as will be explained
in the following.

8 2 State of the Art in Object Recognition and Pose Estimation

2.1 Appearance-based Methods

Appearance-based methods span a wide spectrum of algorithms, which can
roughly be classified into global and local approaches. While global methods
store complete views of an object, local approaches recognize and localize
objects based on a set of local features.

2.1.1 Global Approaches

As a global approach we understand a method that represents an object in
terms of one or several complete views. Global approaches differ in the way
these views are represented and how they are matched. Compared to local
approaches, their drawback is that they either require some kind of segmen-
tation routine in order to perform recognition, or an exhaustive search has
to be performed. Since the segmentation problem can hardly be solved for
the general case, in practice either a specific feature is used for some kind
of simplified bottom-up segmentation, e.g. color, or a specific setup such as
a black background or a static camera is assumed. If not using this kind of
segmentation, the search is in general relatively time-consuming and must be
speeded up with techniques specific to the used representation. In the fol-
lowing, several representations and recognition algorithms will be presented:
grayscale correlation, moments, the Viola-Jones detector, and color cooccur-
rence histograms.

2.1.1.1 Grayscale Correlation

When representing one view of an object as a grayscale image, conven-
tional correlation techniques can be applied for matching views. An overview
of common correlation functions is given in Section 4.3. One of the first
global appearance-based object recognition systems has been proposed in
[Murase and Nayar, 1993]. It is shown that PCA (see Section 4.5), which
had previously been applied for face recognition [Turk and Pentland, 1991],
can also be successfully used for the recognition of 3D objects. In
[Nayar et al., 1996], an object recognition system for 100 colored objects us-
ing this technique is presented. The setup consists of a rotation plate and a
color camera. Using the rotation plate with steps of 7.5 degrees, a set of 48
segmented views is stored for each object. By associating the rotational pose
information with each view, it is possible to recover the 1D pose through the
matched view from the database.

For reasons of computational efficiency, PCA is applied in order to reduce
dimensionality. The color information is used by creating three separate
eigenspaces for the three color bands red, green, and blue. In order to achieve

2.1 Appearance-based Methods 9

robustness to illumination changes while keeping the ratio of the bands, each
color band is normalized with the total signal energy in a pre-processing step.

In [Murase and Nayar, 1993], two different eigenspaces, or two triples of
eigenspaces when using color information, respectively, are introduced: the
universal eigenspace and the object eigenspace. The universal eigenspace con-
tains all views of all objects and is used for classification. In addition, for the
purpose of accurate pose estimation, each object has its own eigenspace con-
taining views at a higher rotational resolution. Throughout recognition, each
potential region, which is obtained by a conventional foreground segmenta-
tion method, is normalized in size and brightness and then transformed into
the object eigenspace. An object is declared as recognized if the transforma-
tions into the three eigenspaces of all color bands are close to the manifolds
of the same object. Once an object has been recognized, the region is trans-
formed into the respective object eigenspace. Now, the closest manifold point
identifies the current pose of the object.

In [Nayar et al., 1996], it is shown that PCA is suitable for building a powerful
and efficient object recognition system. With the described setup, experimen-
tal results yielded a recognition rate of 100% and a mean error of 2.02 degrees
with a standard deviation of 1.67 degrees while using an (universal) eigenspace
for recognition and pose estimation with a resolution of 7.5 degrees only. De-
spite the excellent results, this system is far away from being applicable on a
humanoid robot in a realistic scenario, since:

1. Different views are produced using a rotation plate. Thus, objects are not
recognized and localized with 6 DoF but with 1 DoF.

2. Recognition is performed with the same setup as for learning.

3. A black background is assumed.

In contrast, a mobile humanoid robot acting in an environment in which
objects can be placed at arbitrary positions needs to model each object with
a significantly larger view space. The projected view of a three-dimensional
object depends on its current pose relative to the camera. Our global approach,
which is presented in Section 6.1, takes this fact into account and shows that
the approach presented in [Nayar et al., 1996] can be extended for application
in a realistic scenario with full 6 DoF.

2.1.1.2 Moments

Simple grayscale correlation does not achieve any pose invariance, neither to
changes in rotation, nor in translation, nor in scale. However, if the views to
be correlated are calculated by using a segmentation routine, displacements
in the image are handled naturally as well as changes in scale. The latter is
achieved by normalizing the segmented bounding box to a window of fixed

10 2 State of the Art in Object Recognition and Pose Estimation

size. Moments can be used to calculate the main axis of the pattern in order
to achieve rotational invariance. Unfortunately, normalization of a 2D view
produced by the projection of a 3D object does not result in a view angle
invariant representation, since in general, a 3D object potentially produces
completely different views depending on its current orientation.

For calculation of the traditional moments up to the second order and
their application to 2D object recognition and pose estimation, refer to
[Azad et al., 2008]. Further types of moments are the Hu moments [Hu, 1962],
the Zernike moments [Zernike, 1934, Khotanzad and Hong, 1990], and the Alt
moments [Alt, 1962]. The traditional moments achieve invariance in rotation
and translation, while the Hu moments are invariant to scale changes as well.

In [Mashor et al., 2004], a 3D object recognition system using Hu moments is
presented. Hu moments can indeed not achieve invariance in 3D, but they are
used for achieving 2D invariance for the views of 3D objects. Each object to
be learned is placed on a rotation plate, which rotates with steps of 5 degrees.
The rotation plate is observed by three cameras. During data acquisition, 72
2D image triples are obtained for each object. For recognition, a hybrid multi-
layered perceptron (HMLP) network is used, whose number of input nodes is
equal to the number of cameras multiplied by the number of moments used,
and the number of output nodes is equal to the number of objects to be
classified.

The system was evaluated by using half of the 72 image triples of each object
(at 0o, 10o, . . . , 350o) for learning and the other half (at 5o, 15o, . . . , 355o) for
testing recognition. Using the Hu moments φ1, φ2, φ3 together with all three
images as input, resulting in a network with nine input nodes, the recognition
rate was 100%. Experiments for estimating the false positive rate were not
performed. As it is the case for the approach presented in [Nayar et al., 1996],
a system that can only deal with pose variations in 1 DoF is not applicable
on a humanoid robot. Furthermore, a humanoid robot cannot see the object
of interest from three different view angles at the same time. In the presented
setup, the benefit of Hu moments in combination with an HMLP network
is not clear, compared to the traditional correlation approach presented in
[Nayar et al., 1996].

2.1.1.3 The Viola-Jones Object Detector

Both approaches presented in the previous sections require a preceding seg-
mentation step. However, as already mentioned, the segmentation problem
for the general case is an unsolved problem in computer vision. Therefore,
the application of a separate segmentation step always has the drawback that
additional assumptions have to be made that are specific to the segmentation
algorithm. A short overview of common segmentation techniques is given in
Section 4.2.

2.1 Appearance-based Methods 11

In [Viola and Jones, 2001], an object detection system that does not require
a preceding segmentation step is presented. Detection, in contrast to recogni-
tion, means that given one object representation, the task is to find instances
of this object in an image – classification of several objects is not performed.
One of the most common detection problems is face detection, for which the
Viola-Jones algorithm has proven to be a very effective and efficient solution.

The object detection procedure classifies images based on simple rectangle
features. Three different kinds of rectangle features are used, differing in the
number of rectangles incorporated. The value of a two-rectangle feature is the
difference between the sum of intensities within two rectangular regions. The
three-rectangle and four-rectangle features are defined analogously, according
to the illustrations in Fig. 2.1. Given a resolution of the detector of 24×24, the
total number of rectangle features amounts to 45,396. [Viola and Jones, 2001]

(a) (c)(b) (d)

Fig. 2.1. Examples of rectangle features shown relative to the enclosing detection
window according to [Viola and Jones, 2001]. Two-rectangle features are shown in
(a) and (b). Fig. (c) shows a three-rectangle feature and (d) a four-rectangle feature.

Using the integral image (also referred to as summed area table) as an interme-
diate representation, rectangle features can be computed very efficiently. The
integral image at the pixel location (u, v) contains the sum of the intensities
above and to the left (see Fig. 2.2):

II(u, v) =
u∑
i=0

v∑
j=0

I(i, j)

where II(u, v) denotes the image function of the integral image and I(u, v)
the image function of the original grayscale image. With the following pair of
recurrences, the integral image can be computed in one pass over the original
image:

s(u, v) = s(u, v − 1) + I(u, v)
II(u, v) = II(u− 1, v) + s(u, v)

with s(u,−1) = II(−1, v) = 0. Using the integral image, any rectangular
sum can be computed with four array references. By exploiting adjacent rect-

12 2 State of the Art in Object Recognition and Pose Estimation

angular sums, the two-rectanglar features can be computed with six, three-
rectangular features with eight, and four-rectangle features with nine array
references. [Viola and Jones, 2001]

(u,v)

Fig. 2.2. Illustration of the integral image according to [Viola and Jones, 2001]. The
value of the integral image at the image location (u, v) is the sum of all intensities
above and to the left in the original image.

Given a number of positive and negative training images of size 24×24
and the 45,396 different rectangle features, the first task of the learning
procedure is to select and combine those features that best separate the
positive and negative examples. For this purpose, the AdaBoost algorithm
[Freund and Schapire, 1995] is used. The Adaboost learning algorithm can
boost a simple learning algorithm, which is also often referred to as a weak
learner. Weak means in this context that even the best classification function
is not expected to classify the training data well. In [Viola and Jones, 2001],
the weak learner is restricted to the set of classification functions depending
on a single feature each. Such a weak classifier hj(x) consists of a feature fj ,
a threshold tj , and a parity pj indicating the direction of the inequality sign:

hj(x) =
{

1 : pjfj(x) < pjtj
0 : otherwise

where x denotes a 24×24 sub-window of an image. In practice, a single feature
cannot perform the classification task with low error. Good features yield error
rates between 0.1 and 0.3, while bad features yield error rates between 0.4 and
0.5. In contrast, a classifier constructed by AdaBoost from 200 features yields
a detection rate of 95% and a false positive rate of 1 in 14,084 on a test
dataset. [Viola and Jones, 2001]

According to [Viola and Jones, 2001], scanning a grayscale image of size
384×288 with the constructed classifier takes 0.7 seconds – which is claimed
to be probably faster than any other published system at that time. However,
for real-time application, a computation time of 0.7 seconds is too slow. To
overcome this deficiency, a cascade of classifiers is used, which not only reduces

2.1 Appearance-based Methods 13

true true true

false false false

Further
Processing

All Sub-
Windows

Reject Sub-Window

Fig. 2.3. Illustration of a cascade according to [Viola and Jones, 2001].

computation time significantly, but also increases detection performance. The
cascade is modeled in a way that a positive result from the first classifier trig-
gers the evaluation of a second classifier, from which a positive result triggers
a third classifier, as illustrated in Fig. 2.3. A negative result at any point leads
to rejection of the sub-window. While classifiers at the beginning are adjusted
to have very high error rates, classifiers become more restrictive toward the
end of the cascade. Given a trained cascade of classifiers, the false positive
rate F of the cascade reads

F =
K∏
i=1

fi ,

where K denotes the number of classifiers, and fi is the false positive rate of
the ith classifier. Analogously, the detection rate D of the cascade is

D =
K∏
i=1

di ,

where di is the detection rate of the ith classifier. For example, a ten stage
classifier with each stage having a detection rate of 99% leads to an overall
detection rate of 0.9910 ≈ 0.9. Achieving such high detection rates in each
stage is made significantly easier by the fact that each stage needs to achieve
a false positive rate of only about 30%, leading to an overall false positive
rate of 0.310 ≈ 6 · 10−6. The algorithm for training the cascade is explained
in detail in [Viola and Jones, 2001].

The Viola-Jones detector is probably the most commonly used face detector
today. In particular, many applications benefit from the implementation in the
widely used computer vision library OpenCV (see Section 8.1.5). A humanoid
robot can also benefit from robust face detection algorithms in many ways.
Found facial regions can be analyzed to identify persons or serve as the basis
for automatic generation of skin color models, which are often used for high-
speed hand and head tracking. However, the Viola-Jones detector does not
perform as well for any kind of object. For example, hands cannot be detected
as robustly as faces, since depending on the hand pose, background clutter
can lead to varying sums of the rectangle features. Localization is performed
in terms of a 2D square in the image plane and can therefore not be used

14 2 State of the Art in Object Recognition and Pose Estimation

for any kind of grasping task without any further pose estimation routine.
As a conclusion, the Viola-Jones detector is a very effective and efficient tool
for detecting one class of objects that have a sufficient amount of common
textural information found in sub-rectangles within their region.

2.1.1.4 Color Coocurrence Histograms

Using color histograms for object recognition has first been presented in
[Swain and Ballard, 1991]. The drawback of this method is that spatial re-
lationships are not considered, having a negative effect on the robustness
of the approach. For example, objects with similar colors but totally differ-
ent appearance cannot be distinguished with high reliability. Color cooccur-
rence histograms (CCH) are an extension of the conventional color histogram
approach, incorporating spatial relationships of pixels, and have been pre-
sented in [Chang and Krumm, 1999]. Each view of an object is represented
as a CCH. A CCH holds the number of occurrences of two color pixels
c1 = (R1, G1, B1) and c2 = (R2, G2, B2) that are separated by a distance vec-
tor in the image plane (∆u,∆v). A CCH is denoted as CCH(c1, c2, ∆u,∆v).
In order to make CCHs invariant to rotations in the image plane, only
the magnitude d =

√
(∆u)2 + (∆v)2 of the distance vector is considered.

In addition, the colors are quantized into a set of nc representative colors
C = {c1, . . . , cnc}. The distances are quantized into a set of nd distance
ranges D = {[0, 1), [1, 2), . . . , [nd − 1, nd)}. In order to compute the quantiza-
tion of the colors, a k-means algorithm with nc clusters is used. By using the
quantization, a CCH is formulated as CCH(i, j, k), where i and j denote the
corresponding indices for the two colors c1 and c2, and k denotes the index
from D for the distance d. [Chang and Krumm, 1999]

An image is searched for an object by scanning the image for a rectangular
window that yields a similar CCH to one of the trained CCHs. The rectangles
from which the CCHs are computed do not have to be of the same size. The
image CCH, CCHp(i, j, k), and the model CCH, CCHm(i, j, k), are compared
by computing their intersection

Ipm =
nc∑
i=1

nc∑
j=1

nd∑
k=1

min{CCHp(i, j, k),CCHm(i, j, k)} .

The intersection is a similarity measure for two CCHs. If the image accounts
for all entries in the model CCH, the intersection becomes equal to the sum
of all entries in the model CCH i.e. Imm. An object is declared as found if the
intersection exceeds a threshold T . The number of quantized colors nc and the
size of the search window are determined on the basis of a false alarm analysis.
An efficient search is implemented by scanning the image with rectangles that
only overlap by half. [Chang and Krumm, 1999]

2.1 Appearance-based Methods 15

In the experimental results section, example test images demonstrate that the
presented approach succeeds even in the presence of clutter and occlusion. An
example of the test scenario is shown in Fig. 2.4.

Fig. 2.4. Test image and result from [Chang and Krumm, 1999], ©1999 IEEE.

The drawback of color cooccurrence histograms is that they are relatively sen-
sitive to changes in lighting conditions. Furthermore, they calculate only an
estimate of the bounding box of the object. An accurate 6 DoF pose estimation
on this basis is hardly possible without any additional assumptions. The rea-
son is that similar views of an object result in very similar color cooccurrence
histograms and thus cannot be distinguished with high reliability. In particu-
lar, the full orientation of the object cannot be calculated to a sufficient extent
on the basis of CCHs. However, combinations with correlation-based methods
lead to more powerful recognition systems. In [Björkman and Kragic, 2004],
it is shown that CCHs can successfully be used to calculate a hypothesis in
the peripheral image which is then verified and processed further for pose
estimation based on SIFT features in the foveal image.

In [Ekvall et al., 2003], an object recognition and pose estimation system us-
ing color cooccurrence histograms is presented. Two rotational DoF are as-
sumed to be zero, since the objects are placed on a table. The remaining DoF
around the vertical axis is calculated by a maximization approach. The depth
z is estimated according to the ratio between the height of the segmented
window and the height of the object, which is known from the model. Finally,
the coordinates x, y are estimated from the position of the segmented window
in the image. Since the bounding box calculated by the CCH can only serve
as a rough estimate of the object borders, the estimated pose is used as initial
condition for an iterative line fitting approach. [Ekvall et al., 2003]

As already explained in Section 1.1, most grasping approaches with a hu-
manoid robot rely on hand-eye calibration, which is extended by a visual
servoing approach, if necessary. In both cases, accurate pose estimation of the
object to be grasped expressed in the camera coordinate system is crucial. In

16 2 State of the Art in Object Recognition and Pose Estimation

Fig. 2.5. Illustration of pose estimation results computed by the approach proposed
in [Ekvall et al., 2003]. From left: i) the output of the recognition, ii) initial pose
estimation, iii) after few fitting iterations, iv) the estimated pose of the object.
Reprinted from [Ekvall et al., 2003], ©2003 IEEE.

this context, one problem of the approach presented in [Ekvall et al., 2003]
is that the accuracy of the calculated pose relies on the success of the line
fitting, which would fail if the initial condition is not close enough to the real
pose. For example, the fitting routine for localizing an object that is rotated
by more than 45 degrees in the image plane would converge to the wrong local
minimum in most cases. Furthermore, line fitting can become problematic in
cluttered scenes (see Fig. 6.25).

2.1.2 Local Approaches

As a local approach we understand a method that represents one object on the
basis of a set of local features. Most of these local features are so-called point
features or interest points, which are matched based on their local neigh-
borhood. In this context, one has to distinguish between the calculation of
feature points and the calculation of the feature descriptor. A feature point
itself is determined by the 2D coordinates (u, v) in the image plane. Since
different views of the same image patch around a feature point vary, the im-
age patches cannot be correlated directly. The task of the feature descriptor
is to achieve a sufficient degree of invariance with respect to the potentially
differing views. In general, such descriptors are computed on the basis of a
local planar assumption.

After introducing common feature point calculation methods and feature de-
scriptors in the following, object recognition and pose estimation frameworks
based on these features will be explained in detail.

2.1.2.1 Calculation of Feature Points

Many feature point calculation methods have been proposed in the
past, among which are the most popular the Harris corner de-
tector [Harris and Stephens, 1988] and the Good Features to Track
[Shi and Tomasi, 1994], also referred to as Shi-Tomasi features. While the

2.1 Appearance-based Methods 17

Harris corner detector was designed for feature tracking applications in gen-
eral, Shi and Tomasi claim that their features were specifically designed for the
tracking algorithm presented in [Tomasi and Kanade, 1991a]. In the following,
both calculation methods will be presented. The derivations are explained ex-
tensively in [Harris and Stephens, 1988] and [Shi and Tomasi, 1994], respec-
tively.

In order to be able to track and match such features, it is crucial that the
calculation method is invariant to changes in position, rotation, scale, illu-
mination, and image noise of the surrounding region of the feature point. In
other words, the position of the feature point should remain the same (with
respect to the structure it belongs to) if its neighborhood undergoes the men-
tioned changes – this property is commonly referred to as repeatability, as
defined in [Schmid et al., 1998].

Both the Harris corner points and the Shi-Tomasi features are calculated on
the basis of the so-called cornerness matrix

C(u, v) =
∑
W

(
I2
u(ui, vi) Iu(ui, vi)Iv(ui, vi)

Iu(ui, vi)Iv(ui, vi) I2
u(ui, vi)

)
where W denotes a surrounding window of the pixel (u, v). In practice, a
squared window of size (2k+1)×(2k+1) with k ≥ 1 is used. If the eigenvalues
of C(u, v) are large, a small displacement in an arbitrary direction causes a
significant change of the intensities in the neighborhood of the pixel (u, v).

The condition for Shi-Tomasi features is

min(λ1, λ2) > λ

where λ1, λ2 are the two eigenvalues of C(u, v) and λ is a predefined threshold.

In order to be more efficient, the Harris corner detector avoids eigenvalue
decomposition by finding local maxima in the image R, which is defined by

R(u, v) = detC(u, v)− k · trace2C(u, v)

where k is a predefined constant. Empirical studies have shown that k = 0.04
yields very good results [Rockett, 2003]. In order to determine feature points
on the basis of R(u, v), only those entries (u, v) with R(u, v) ≥ t are con-
sidered, where t is a predefined quality threshold. For these positions (u, v),
non-maximum suppression is applied i.e. only those positions are kept that
have the maximum value R(u, v) in their 8-neighborhood.

2.1.2.2 Matching Interest Points

In the context of object tracking and recognition, an interest point defines a
feature based on its local neighborhood. These features have to be matched so

18 2 State of the Art in Object Recognition and Pose Estimation

Fig. 2.6. Calculated Harris feature points on a test image.

that feature correspondences can be established between two sets of features.
In general, features are matched assuming local planarity i.e. the features are
described on the basis of a 2D image patch.

In tracking applications, the task is simplified by the fact that the features un-
dergo only relatively small changes between two consecutive frames, whereas
for object recognition applications this assumption does not hold. The dif-
ferences between two views of the same object are caused by variations in
the pose of the object, i.e. position and orientation, and by changing lighting
conditions. The changes between two image patches being caused by differ-
ing poses can be fully described by a 2D homography under a local planarity
assumption. In practice, often an affine transformation is assumed, which is
a restriction of a homography. Varying lighting conditions are usually han-
dled by conventional normalization methods known from common correlation
functions (see Section 4.3).

The main task of matching features that are defined by interest points is to
achieve invariance to the mentioned changes. In this context, the term feature
descriptor is often used, referring to the data structure that is compared in
order to calculate the similarity between two feature points. Various methods
have been proposed for this purpose. In [Baumberg, 2000], an approach is
presented using a rotationally symmetric Gaussian window function to calcu-
late a moment descriptor. In [Schmid and Mohr, 1997], local jets according to
[Koenderink and van Doorn, 1987] are used to compute multiscaled differen-
tial grayvalue invariants. In [Tuytelaars and Gool, 2000], two types of affinely
invariant regions are proposed: one based on the combination of interest points
and edges, and the other based on image intensities. In [Bay et al., 2006], a
speeded up approach named SURF is presented, using a fast Hessian detector
and a stripped down variant of the SIFT descriptor.

2.1 Appearance-based Methods 19

In [Mikolajczyk and Schmid, 2003], the performance of five types of lo-
cal descriptors is evaluated: Scale Invariant Feature Transform (SIFT)
[Lowe, 1999, Lowe, 2004], steerable filters [Freeman and Adelson, 1991],
differential invariants [Koenderink and van Doorn, 1987], complex
filters [Schaffalitzky and Zisserman, 2002], and moment invariants
[Gool et al., 1996]. In all tests, except for light changes, the SIFT de-
scriptor outperformed the other descriptors. The SIFT feature point
calculation and descriptor are explained in Section 2.1.2.3.

In [Murphy-Chutorian and Triesch, 2005], an object recognition system with
a database of 50 objects is presented, which uses the Gabor wavelet transfor-
mation around Shi-Tomasi features in order to calculate a feature descriptor.
This descriptor is a 40-dimensional feature vector, which is referred to as Ga-
bor jet, with each component corresponding to the magnitude of the filter
response for a specific complex Gabor wavelet. Wavelets at eight orientations
and five scales are used to cover the frequency space. In order to match fea-
tures, the Euclidean inner product is used as a similarity measure between two
given vectors. Training of objects is performed in two steps: First, k-means
clustering is applied to the Gabor jets that have been calculated for a set
of training images, each containing views of multiple objects. As a result, a
number of so-called dictionaries of shared features are generated. Each dic-
tionary corresponds to one cluster that has been computed by the k-means
clustering algorithm. In the second step, Gabor jets are calculated for a num-
ber of segmented training views and matched with all dictionaries. The best
feature match is then associated with the current object. By applying this
procedure, on average about 3,200 feature associations are learned for each
object class. Murphy-Chutorian and Triesch show empirically that for their
test database, 4,000 shared features are the optimal tradeoff between com-
putation time (27 s) and detection rate (79%). Without feature sharing, the
storage and comparison of 160,000 independent features would be required.

Fig. 2.7. Example of a view set for one image patch.

A completely different approach to point matching is presented in
[Lepetit et al., 2004]. Instead of calculating a descriptor to achieve invariance,
robustness to scaling, rotation, and skew is achieved in a brute-force manner.
Each image patch around a point feature is represented by a set of syntheti-

20 2 State of the Art in Object Recognition and Pose Estimation

cally generated different views of the same patch, intended to cover all possible
views, as illustrated in Fig. 2.7. Under a local planarity assumption, such a
view set is generated by warping an image patch using an affine transforma-
tion. If the object cannot be assumed to be locally planar, a 3D model is used
together with standard computer graphics texture mapping techniques. In or-
der to achieve real-time performance, PCA is applied to all view sets. Point
matching is performed by calculating the nearest neighbor in the eigenspace
for a given image patch. For tracking one object, about 200 so-called key
points are detected in the training image. Each key point is represented by a
view set consisting of 100 samples, resulting in a total number of 20,000 image
patches. Each image patch, having a size of 32×32, is compressed by PCA to
20 dimensions. Throughout execution, about 1,000 features are detected in a
given image, resulting in 20 · 106 comparisons of vectors ∈ R20 for one image.
This process takes about 200 ms on a 2 GHz CPU. [Lepetit et al., 2004]

2.1.2.3 Scale Invariant Feature Transform (SIFT)

The Scale Invariant Feature Transform (SIFT) [Lowe, 1999, Lowe, 2004] is
probably the most popular point feature. It defines both a method for feature
point calculation and a descriptor, which is fully invariant to rotations and
to some degree to scale and skew. The positions of the feature points are
determined on the basis of a scale space analysis. The descriptor is a floating
point vector consisting of 128 values, which are computed on the basis of
gradient histograms.

In the first stage, image locations are detected that are invariant to scale
change of the image. This is accomplished by searching for stable features
across all possible scales. The scale space of an image is defined as a function,
L(u, v, σ), which is calculated by convolving the input image I with a variable-
scale Gaussian G(u, v, σ):

L(u, v, σ) = G(u, v, σ) ∗ I(u, v)

where ∗ denotes the convolution operation, and

G(u, v, σ) =
1

2πσ2
exp

{
−u

2 + v2

2σ2

}
.

Stable keypoint locations are detected efficiently in scale space by finding
extrema in the Difference of Gaussians (DoG) function, D(u, v, σ), which can
be computed from the difference of two nearby scales separated by a constant
multiplicative factor k [Lowe, 2004]:

D(u, v, σ) = (G(u, v, kσ)−G(u, v, σ)) ∗ I(u, v)
= L(u, v, kσ)− L(u, v, σ) .

2.1 Appearance-based Methods 21

In [Lowe, 2004], an efficient approach to construct the D(u, v, σ) is described.
The input image is incrementally convolved with Gaussians, producing images
separated by a constant factor k in scale space. The scale space is divided into
a set of so-called octaves, each containing a set of s images of same size with
k = 21/s. Adjacent image scales within an octave are subtracted to produce
the DoG images i.e. D(u, v, σ). Local extrema are determined by searching the
D(u, v, σ) for local maxima and minima. Each pixel is compared to its eight
neighbors and to its nine neighbors in the scale above and below. A point is
selected if it is larger or smaller, respectively, than all of these 26 neighbors.
To produce s DoG images with having both adjacent scales each, s+ 2 DoG
images must be calculated in total for one octave, i.e. s+ 3 Gaussian images
L(u, v, σ). In Fig. 2.8, the process of constructing the DoG images for one
octave is illustrated for s = 2.

–

–

–

–

Scale

Difference of Gaussian

Gaussian

Fig. 2.8. Computation of the DoG images for s = 2.

After one octave has been processed, the Gaussian image that has twice the
initial value of σ is resampled to an image with half width and half height.
This can be done efficiently by taking every second pixel in each row and each
column. The author uses s = 3 for each octave throughout the evaluation.
Furthermore, in an experimental evaluation it is shown that the repeatability
of the keypoints increases with the amount of prior smoothing σ for each
octave. As a tradeoff between repeatability and efficiency, σ = 1.6 is chosen.
Since the highest frequencies would be discarded this way, it is proposed to
double the size of the original image. Assuming that the original image already
has a blur of at least σ = 0.5, the resized image has σ = 1.0. Therefore, only
little additional smoothing is needed to achieve σ = 1.6 for the first Gaussian
image of the first octave.

22 2 State of the Art in Object Recognition and Pose Estimation

In the second step, an invariant local image descriptor is computed for each
detected keypoint location from the previous step. The scale of the keypoint
is used to select the Gaussian smoothed image L with the closest scale so that
the following calculations are performed in a scale-invariant manner. Within
a region around the keypoint, which does not necessarily have to be of the
same size for all keypoints, the gradient magnitude m(u, v) and the orientation
θ(u, v) are computed for each pixel position (u, v):

gu := L(u+ 1, v)− L(u− 1, v)
gv := L(u, v + 1)− L(u, v − 1)

m(u, v) =
√
g2
u + g2

v (2.1)

θ(u, v) = arctan
gv
gu
. (2.2)

Using this information, an orientation histogram is formed, having 36 bins
covering the 360 degree range of possible orientations. Each sample added to
the histogram is weighted by its gradient magnitude m(u, v) and a circular
Gaussian window with σ = 1.5·σk, where σk denotes the scale of the keypoint.
Peaks in this histogram identify dominant directions of local gradients. As
representatives, the highest peak in the histogram and any other peak that
is within 80% of the highest peak are chosen. This way, it can happen that
multiple orientations are assigned to one keypoint location, leading to multiple
descriptors. The authors claim that only 15% of the points generate multiple
orientations and that this approach contributes significantly to the stability
of the matching in these cases. Finally, for each chosen peak a parabola is fit
through the peak and its two neighbors to interpolate the peak position.

Image gradients

Keypoint descriptor

Fig. 2.9. Computation of a 2× 2 SIFT descriptor for a 8× 8 window.

For each computed orientation for each keypoint location, a local image de-
scriptor is computed, which serves for robust feature matching. Before gener-

2.1 Appearance-based Methods 23

ating a descriptor, the region around the keypoint is resampled according to
its orientation in order to achieve rotation invariance. The descriptor is again
computed on the basis of the gradient magnitudes and orientations in a region
around the keypoint, as described in the Eqs. (2.1) and (2.2), respectively. As
before, a circular Gaussian window is used to assign a weight to the magni-
tude, here with σ = w

2 , where w denotes the side length of the window. The
descriptor is computed by accumulating the weighted gradient magnitudes
into an orientation histogram, where the 360 degree range is discretized into
eight directions. To allow for shifts in the gradient positions, the window is
divided into subregions and an orientation histogram is calculated for each
subregion. Fig. 2.9 illustrates the computation of the descriptor for a window
size of 8×8. With a window of this size, four subregions of size 4×4 are used,
leading to a 2×2 descriptor. Throughout the experiments in [Lowe, 2004], a
descriptor window of size 16×16 was used, with 16 subregions of size 4×4,
leading to a 4×4 descriptor, which can be stored as a feature vector of length
4 · 4 · 8 = 128.

In the final step, the feature vector is modified to achieve robustness to illu-
mination changes. To account for constant multiplicative changes, the feature
vector is normalized to unit length. The feature vector is robust to differing
brightness naturally, since constant additive intensity changes do not affect
the gradient values, as they are computed on the basis of intensity differences.
Further robustness is achieved by cutting off large values in the unit feature
vector. For this purpose, all values larger than 0.2 are set to 0.2 and finally
the feature vector is re-normalized.

2.1.2.4 Maximally Stable Extremal Regions

A related type of feature are the Maximally Stable Extremal Regions (MSER)
[Matas et al., 2002], which are region-based, but can nevertheless be used in
the same way as conventional point features. The idea is to analyze the se-
quence of images that is obtained by threshold binarization of a grayscale
image with all possible thresholds. Given an 8 bit grayscale image I with val-
ues I(u, v) ∈ {0, . . . , q}, q := 28−1, this sequence contains 28 binary images Ik,
k ∈ {0, . . . , q}, where k denotes the threshold being applied for binarization.

The first binary image I0 is always white, since I(u, v) ≥ 0 for all u, v. Analo-
gously, the last binary image Iq is usually almost black. The number of white
pixels in the sequence of the binary images Ik decreases monotonically with
increasing k. In [Matas et al., 2002], the sequence {Ik} is illustrated as a movie
where frame k is Ik. In the movie, subsequently black spots corresponding to
local intensity minima will appear and grow. These black spots are referred
to as regions or connected components and will merge at some point, finally
resulting in a completely black image. The set of all connected components
from all Ik is the set of all maximal regions. Minimal regions can be obtained

24 2 State of the Art in Object Recognition and Pose Estimation

by applying the same process to the inverted image, resulting in the same
result as when calculating the Ik on the basis of the original grayscale image
with an inverted threshold function i.e. a minimum threshold. Minimal and
maximal regions are in general referred to as extremal regions.

Fig. 2.10. Calculated MSER on a test image; only maximal regions i.e. MSER+
are shown.

An extremal region grows continuously until it eventually merges with an-
other extremal region. Such a merge operation is handled as termination of
existence of the smaller region and insertion of all its pixels into the larger
region. Finally, local minima of the rate of change of an area function identify
maximally stable extremal regions. Maximally stable maximal regions are de-
noted as MSER+ and maximally stable minimal regions as MSER−. Fig. 2.10
shows computed MSER+ on a test image. It can be seen that because of too
low resolution, some close letters of the writing Vitalis belong to the same
region while other letters are properly separated.

In [Matas et al., 2002], an efficient implementation for calculating the MSER
is presented. Instead of computing all binary images Ik by thresholding the
input image I, the pixels of I are first sorted by their intensity in O(n) using
Binsort [Sedgewick, 1988]. After sorting, the pixels are placed in increas-
ing intensity order into an initially white image in order to obtain maximal
regions, or in decreasing order into a black image for minimal regions, re-
spectively. The list of connected components for each k is computed using
the efficient UnionFind algorithm [Sedgewick, 1988] with a complexity of
(n log log n) [Matas et al., 2002].

In order to match MSER, they have to be normalized geometrically and photo-
metrically. In [Obdrzalek and Matas, 2002], the so-called Local Affine Frames
(LAF) are proposed, which define a normalization method on the basis of

2.1 Appearance-based Methods 25

an affine transformation. Correspondences between LAF are determined by
using a photometrically normalizing correlation function such as the ZNCC
(see Section 4.3). A 2D affine transformation has six degrees of freedom i.e.
six constraints are needed for computing the transformation parameters. In
[Obdrzalek and Matas, 2002], two main groups of possible constructions are
proposed:

1. Constructions based on region normalization by the covariance matrix and
the center of gravity.

2. Constructions based on the detection of stable bi-tangents.

The square root of the inverse of the covariance matrix normalizes the MSER
up to an unknown rotation. Several solutions are proposed to obtain the miss-
ing rotation in order to complete an LAF, among which are:

1. Computing the direction from the center of gravity to a contour point of
extremal (minimal or maximal) distance.

2. Computing the direction from the center of gravity to a contour point of
maximal convex or concave curvature.

A bi-tangent to a curve is a line that is tangent to the curve in two dis-
tinct points. According to [Obdrzalek and Matas, 2002], for a bi-tangent to
an MSER, these two points lie on the outer boundary and the convex hull of
the MSER, while all other points lie on the convex hull only. Constructions
based on bi-tangents need a third point to complete an LAF. Among the
proposed alternatives the most reliable ones are:

1. The center of gravity of the MSER.

2. The point of the MSER most distant from the bi-tangent.

3. The point of the concavity most distant from the bi-tangent.

After geometric and photometric normalization, PCA can be applied to
speedup the matching process, as proposed in [Obdrzalek and Matas, 2002].

2.1.2.5 Object Recognition and Pose Estimation Frameworks
using Local Features

Given a database consisting of a set of local features for each object, powerful
object recognition and pose estimation frameworks can be built. The most
simple approach is to count the number of correspondences between the fea-
tures present in the current scene and the feature set of each object, as done in
[Obdrzalek and Matas, 2002]. However, such an approach does not scale well
with an increasing number of objects, since the probability of wrong matches
due to similar features from different objects increases. Furthermore, only a

26 2 State of the Art in Object Recognition and Pose Estimation

very rough 2D position estimate can be calculated if not including the feature
positions into the process.

In [Lowe, 1999], it is shown that exploiting the spatial relationships between
features leads to a more robust object recognition system, which is also ca-
pable of calculating an accurate 2D pose estimate. The presented recognition
framework consists of three steps:

1. Establishing feature correspondences between the features present in the
scene and all features stored in the database.

2. Determining clusters of matched features that are consistent with respect
to a 2D pose by using the Hough transform.

3. Calculating a 2D affine transformation with a least-squares approach and
filter outliers in an iterative process.

The method for calculating feature correspondences depends on the features
themselves. Features represented as image patches are usually matched after
normalization with a standard correlation technique or more efficiently with
a nearest neighbor search in the eigenspace after application of PCA, as per-
formed for instance in [Lepetit et al., 2004, Obdrzalek and Matas, 2002]. The
SIFT descriptor consists of a floating point vector of size 128, which is usu-
ally matched by computing the feature vector with the minimum Euclidean
distance in 128-dimensional space. Further compression of the SIFT descrip-
tor is not necessary, since 128 dimensions are already comparatively few. In
[Lowe, 1999], a modification of the kd-tree data structure using the best-bin-
first search method [Beis and Lowe, 1997] is applied to speed up the nearest
neighbor search significantly.

In practice, the number of wrong matches increases with the number of ob-
jects and thus with the number of features stored in the database. An effi-
cient method for handling this problem is the Hough transform [Hough, 1962],
which can find feature correspondences that are consistent with respect to a
specific 2D pose of the object. For this purpose, the feature positions in the
learned view must be stored and retrieved during the recognition process. In
[Lowe, 1999], a four-dimensional Hough space is used. The four feature pa-
rameters being used for voting are: 2D position, orientation, and scale. Since
these four parameters have also been stored in the database for the learned
view, each matched feature point can vote for a 2D pose, which is relative
to the learned view, consisting of position, orientation, and scale. However,
these four parameters cannot model skew, which means that this approach
assumes that only 3D object rotations around the optical axis of the camera
are possible, with respect to the learned view. Since this is in general not the
case, broad bin sizes are used: 30 degrees for orientation, a factor of 2 for scale,
and 0.25 times the projected training image dimension for location. To avoid
problems due to boundary effects, each match votes for the two closest bins in
each dimension i.e. for 24 = 16 bins. After the voting procedure, clusters are

2.1 Appearance-based Methods 27

determined in the Hough space, each cluster identifying a number of feature
matches that are consistent with respect to a specific 2D pose.

Fig. 2.11. Object recognition and 2D localization using SIFT features. Top:
Views used for learning of two objects. Bottom: Recognition result. Reprinted from
[Lowe, 1999], ©1999 IEEE.

In the last step, for each cluster from the previous step, a 2D localization
result is computed on the basis of a 2D affine transformation. For this pur-
pose, only those 2D point correspondences between the learned view and the
current view are used that have voted for that cluster. Given these correspon-
dences, an affine transformation having six parameters is determined using a
least-squares approach (see Section 4.4). After calculating the parameters of
the affine transformation, outliers are filtered. Each match must agree within
15 degrees in orientation,

√
2 change in scale, and 0.2 times the maximum

model size in terms of location, according to [Lowe, 1999]. The least-squares
minimization is repeated if at least one outlier is discarded. At the end of
this process, only valid matches remain so that an accurate 2D pose can be
calculated by projecting the contour that has been marked in the learned view
into the current view by applying the parameters of the affine transformation.
A 6D pose can be derived from the set of filtered 2D feature correspondences
using the POSIT algorithm (see Sections 2.2.1.2 and 6.2.1).

2.2 Model-based Methods

In computer vision, a model-based approach is usually understood as a method
that is based on a geometric model of an object. However, the term model-
based can be interpreted in various ways. First of all, model-based recognition
and model-based tracking have to be distinguished. While a recognition sys-
tem is capable of recognizing instances of several learned objects in a given
scene, a pure tracking system can track the pose of an object depending on a
sufficiently accurate initial condition. Several objects are usually tracked by
running multiple instances of the tracking algorithm.

Appearance-based and model-based recognition methods can often not be
separated clearly. Methods based on matching point features as described
in Section 2.1.2, i.e. local appearance-based features, have to be regarded as
model-based at the same time if the features are attached to a 2D or 3D model
of the object – regardless whether the model is accurate or an approximation.
Other approaches are explicit combinations of appearance-based and model-
based methods on a higher level, fusing the hypotheses computed by different
subsystems into an overall result (see Section 2.2.5). An extensive overview of
monocular rigid object tracking algorithms is given in [Lepetit and Fua, 2005].

Pure model-based 3D object recognition systems often operate on 3D point
clouds computed by an accurate range sensor such as a laser scanner. Pre-
viously acquired object models are matched into a subset of the point cloud
describing the current scene in order to find instances of an object.

2.2.1 Edge-based Object Tracking

A model-based rigid object tracking algorithm using edge information is a
method that relies on a 3D rigid object model (e.g. CAD1), which usually
consists of a number of primitives. Often these primitives are straight lines,
since their projection can be computed very efficiently by the projection of
the two endpoints. Various non-curved 3D objects can be modeled using lines,
such as cuboids or pyramids, as illustrated in Fig. 2.12. Furthermore, other
feasible 3D primitives are cones and cylinders, for each of which the two char-
acteristic contour lines can be calculated with few additional computational
effort. However, any 3D shape for which the projection of arbitrarily curved
surfaces is crucial is problematic and cannot be tracked with the same ap-
proach (see Section 6.1).

In the following, a number of tracking algorithms are discussed that operate on
the introduced types of models. All these methods have in common the need
of a sufficiently accurate initial condition in order to converge to the searched

1 Computer Aided Design

2.2 Model-based Methods 29

Fig. 2.12. Examples of simple 3D models suitable for model-based tracking.

pose. For application on a humanoid robot system, however, in particular in
the context for grasping, such an initial condition can hardly be computed
automatically or only in very specific cases, respectively.

2.2.1.1 RAPiD tracker

RAPiD (Real-time Attitude and Position Determination)
[Harris and Stennett, 1990] is probably the first real-time model-based
3D tracking system. First, a number of 3D control points that lie on the
model lines are projected into the input image. For each projected control
point, the closest edge pixel along the normal to the projected line is
determined, as illustrated in Fig. 2.13.

imaged
object

projected
model edges

control
point

li

Fig. 2.13. Perpendicular distances, {li}, used to estimate the model pose.

Each control point with an associated closest edge pixel in the image forms
a triple (p,n, l), where p ∈ R3 denotes the 3D control point given in object
coordinates, n ∈ R2 denotes the normal defining the direction in which the
closest edge pixel was found, and l ∈ R is the measured 2D distance to the
closest edge pixel. For this purpose, for each projected control point, a 1D
search is performed in perpendicular direction to the projected model edge the
control point belongs to. In order to not handle subpixel positions, the search is

30 2 State of the Art in Object Recognition and Pose Estimation

performed along the closest direction from the set {0o, 45o, 90o, 135o}; details
are given in [Harris and Stennett, 1990]. In [Harris and Stennett, 1990], the
direction n is defined as the angle α relative to the horizontal axis in the
image plane. However, formulation with a normal vector is more convenient
and will thus be used in the following.

The core of the RAPiD algorithm is a minimization approach that calculates a
pose update consisting of a small rotation θ and a small translation∆, given a
set of triples {(pi,ni, li)}, with i ∈ {1, . . . , n}, n ≥ 6. A very similar iterative
minimization approach using partial derivatives has already been presented in
[Lowe, 1987]. There, the focal length f is modeled as an unknown parameter
and is estimated by the minimization method as well.

In the following, the minimization method of the RAPiD algorithm will be
discussed with a slightly differing notation, also taking into account extrinsic
camera calibration as well as the parameters cx, cy describing the principal
point and fx, fy denoting the focal length.

Given the extrinsic camera parameters cRw,
ctw describing the coordinate

transformation from world coordinates to camera coordinates, and the current
pose estimates wRo,w to describing the coordinate transformation from object
coordinates to world coordinates, the transformation from object coordinates
to camera coordinates is calculated by:

R := cRo = cRw
wRo

t := cto = cRw
wto + ctw . (2.3)

Since the algorithm requires both the rotation and the translation to be cal-
culated to be small, it is more suitable to define θ in the object coordinate
system. For this purpose, the translation t is treated separately and the pi are
pre-rotated according to the current rotation cRo before being used as input
to the minimization method.

The projection of the control point p, which is given in the object coordinate
system, into the image plane is denoted as r. As already mentioned, p is pre-
rotated, yielding x := cRo p. Given a small pose update q := (θT ,∆T)T , the
function F (q) defines the new position of the control point p in 3D space,
given in the camera coordinate system (see Section 3.3.1 for the derivation of
an approximated rotation):

F (q) = (x′, y′, z′)T

= x+ θ × x+ t+∆ . (2.4)

The function f(q) calculates the new image position r′ of r after application
of the transformation defined by q to x, i.e. f(q) is equal to the projection of
F (q) into the image plane (see Eq. (4.1) for the projection formula):

2.2 Model-based Methods 31

f(q) =
(
cx
cy

)
+

1
z′

(
fx x

′

fy y
′

)

=

cx + fx

x+ θyz − θzy + tx +∆x

z + θxy − θyx+ tz +∆z

cy + fy
y + θzx− θxz + ty +∆y

z + θxy − θyx+ tz +∆z

 . (2.5)

Furthermore, the following abbreviations are defined: xc := x+tx, yc := y+ty,
zc := z + tz, and u0 := fx

xc
zc

, v0 := fy
yc
zc

. In order to formulate an equation
that can be minimized algebraically, f(q) is linearized using the first-order
Taylor expansion:

f(q) ≈ f(0) + f ′(0) · (q − 0)
= r + f ′(0) · q = r′ (2.6)

with

f ′(0) =
1
zc

(
−u0y fxz + u0x −fxy fx 0 −u0

−fyz − v0y v0x fyx 0 fy −v0

)

n

r

r'
f'(0)q cql

l'(q)

projected model edge

imaged object edge

Fig. 2.14. Illustration of the distance l′ to be minimized in the RAPiD algorithm.

To be minimized is the difference between the current distance l and the
distance of r′ along n to the same edge (see Fig. 2.14), which can be formulated
as

l′(q) = l − n (f ′(0) q)
= l − n ((a, b)T q)
= l − c q (2.7)

assuming that |n| = 1, and defining (a, b)T := f ′(0), and c := nx a + ny b.
Now, the function to be minimized can be formulated as

32 2 State of the Art in Object Recognition and Pose Estimation

E(q) = min
q

n∑
i=1

(li − ni (f ′i(0) q))2

= min
q

n∑
i=1

(li − ci q)2 (2.8)

where the index i denotes that xi was used as input to Eq. (2.4). In order to
find the vector q that minimizes E(q), the first derivative of E(q) is set to
zero, which finally leads to(

n∑
i=1

cic
T
i

)
q =

n∑
i=1

li ci . (2.9)

This linear equation system of the form A q = b with A ∈ R6×6, q, b ∈ R6 can
be solved with the help of standard methods. Having calculated q by solving
the equation system, the translation is updated by wto

′ := wto +∆. With θ,
the model points can be updated directly by p′ := p+θ×p. However, usually
one is interested in leaving the model points unchanged and updating the
transformation only, which is defined by the rotation matrix wRo ∈ SO(3)
and the translation vector wto ∈ R3. This can be achieved by transforming
the set of all model points according to the calculated pose update and then
calculating the optimal 3D transformation between the model points and the
new points using the algorithm described in [Horn, 1987]. Given the set of
source points {pi} for this, the target points are defined as follows:

xi = Rpi

p′i = cRw
T (xi + t+∆+ θ × xi − ctw) (2.10)

where R, t are defined as introduced in Eq. (2.3). Given the source points {pi}
and the target points {p′i} as input, the algorithm described in [Horn, 1987]
directly computes the new transformation wRo, wto. The RAPiD algorithm
can be performed iteratively on the same image in order to converge to an
accurate pose estimate.

As an improvement to the pure minimization approach, the use of a Kalman
filter with a constant velocity model is proposed in [Evans, 1990, Harris, 1992].
The prediction of the Kalman filter yields a better initial condition for the
minimization approach than simply using the pose estimate from the last
frame.

Several extensions to the RAPiD algorithm have been proposed to achieve a
more robust tracking. In [Armstrong and Zisserman, 1995], the use of primi-
tives (mainly lines) is introduced, which are extracted prior to application of
the RAPiD algorithm. In order to achieve robustness to outliers, a RANSAC
method (see Section 4.7) is applied for the extraction of primitives. Primitives
with few support are rejected. Furthermore, primitives that are hidden due

2.2 Model-based Methods 33

to self-occlusions are removed by sorting the model surfaces in depth-order.
Having extracted robust primitives, the RAPiD algorithm is applied to the
non-occluded projected model edges and their corresponding extracted edges.

2.2.1.2 POSIT

POSIT (Pose from Orthography and Scaling with Iterations)
[DeMenthon and Davis, 1992, DeMenthon and Davis, 1995] is an itera-
tive algorithm that computes a 3D object pose consisting of a rotation and
a translation, given a set of at least four 2D-3D point correspondences.
As further input POSIT needs knowledge about the focal length of the
camera. The algorithm can easily be extended to account for the principal
point (cx, cy) as well as the extrinsic camera parameters cRw, ctw. In the
following, the POSIT algorithm is presented, accounting for all intrinsic and
extrinsic camera parameters except distortion parameters. Therefore, for an
accurate estimation, the input image must be undistorted beforehand (see
Section 4.1.4). A detailed derivation of the POSIT algorithm is given in
[DeMenthon and Davis, 1992, DeMenthon and Davis, 1995].

Given a set of model points {Mi}, i ∈ {0, . . . , N − 1}, N ≥ 4, and their
projections into the image {mi}, the transformation wRo,

wto is searched
that satisfies the condition

mi = p(wRoMi + wto) (2.11)

where p : R3 → R2 defines the projection from the 3D world coordinate
system into the 2D image coordinate system, which is defined by the pa-
rameters cx, cy, fx, fy and cRw, ctw. Furthermore, we denote (ui, vi) := mi,
f := fx+fy

2 , and ‖.‖ denotes the Euclidean norm. Given a set of N > 4
2D-3D point correspondences, the problem is over-determined, i.e. a solu-
tion is searched that minimizes the projection error. The steps of the al-
gorithm described in [DeMenthon and Davis, 1992] for this purpose are as
follows (i ∈ {1, . . . , N − 1}):

1. Build the matrix A ∈ R(N−1)×3, each row being a transposed vector
Mi −M0.

2. Calculate the matrix B ∈ R3×(N−1) as the pseudoinverse of A.

3. Set εi(0) := 0 and n := 1.

4. Calculate x′ ∈ RN−1 with x′i = (ui − cx)(1 + εi(n−1))− (u0 − cx) and
y′ ∈ RN−1 with y′i = (vi − cy)(1 + εi(n−1))− (v0 − cy).

5. I := B x′, J := B y′.

6. i :=
I

‖I‖
, j :=

J

‖J‖
, k =

i× j
‖i× j‖

.

34 2 State of the Art in Object Recognition and Pose Estimation

7. s :=
‖I‖+ ‖J‖

2
, Z0 :=

f

s
.

8. εi(n) :=
1
Z0

(Mi −M0) · k.

9. If ∃i : |εi(n) − εi(n−1)| > threshold, then: n := n+ 1, go to step 4.

10. cRo := (i,k × i,k)T
cto := 1

s (u0 − cx, v0 − cy, f)T − cRoM0

11. wRo := cRw
T cRo

wto := cRw
T (cto − ctw)

Instead of the threshold-based termination condition in step 9, a fixed
number of iterations can be used as well. Furthermore, note that the
term −cRoM0 in step 10 is not provided in [DeMenthon and Davis, 1992,
DeMenthon and Davis, 1995], but is needed if M0 is not the zero vector.

In the case of coplanar points, calculation of the pseudoinverse of the matrix
A by computing (ATA)−1AT fails. In this case, the pseudoinverse must be
calculated with a more sophisticated approach. The numerically most stable
approach is based on the singular value decomposition (see Appendix A.2.2).

In [Oberkampf et al., 1993, Oberkampf et al., 1996], an extension to the
POSIT algorithm for the special case of coplanar points is presented. The
authors claim that when the distance of the object to the camera is large or
when the accuracy of the feature point extraction is low, conventional closed-
form solutions for four coplanar points are not robust, because they only
provide one of two possible solutions. In contrast, the extension computes two
plausible estimates in the first iteration, which are then independently refined
in the following iterations. Depending on the application and the object dis-
tance, one of the two computed solutions can be chosen finally. The extension
of the POSIT algorithm takes place in step 5, where now two pairs of solutions
I,J corresponding to two symmetrical poses are computed.

Instead of the final solution I,J in step 5, first the vectors I0,J0 are com-
puted. Given the normal vector u of the plane the input points (which can
be calculated by a least-squares method) belong to, the possible solutions for
all parallel planes can be written as I = I0 + λu and J = J0 + µu. The
additional fact that I and J must be perpendicular and of same length yield
together λµ = −I0J0 and λ2 − µ2 = J2

0 − I2
0 . Solving this set of equations

leads to the two solutions

λ1/2 = ±

√
J2

0 − I2
0

2
+

√
(J2

0 − I2
0)2

4
+ (I0J0)2

µ1/2 = −I0J0

λ1/2
. (2.12)

2.2 Model-based Methods 35

In the first iteration, both solutions are stored, which are independently re-
fined in the following iterations, i.e. two branches are generated. In the fol-
lowing iterations of each branch, the pose quality is calculated by the average
Euclidean distance between the given image points {mi} and the projected
model points {Mi} using the calculated pose:

E({mi}, {Mi}) =
1
N

N−1∑
i=0

‖mi − p(Mi)‖ . (2.13)

The overall modification of the steps 5–9 in the iterations n > 1 can be
summarized as follows:

5.1 I0 := B x′, J0 := B y′.

5.2 Calculate λ1, µ1 and λ2, µ2 using Eq. (2.12).

5.3 Set I1 := I + λ1I0, J1 := J + µ1J0 and I2 := I + λ2I0, J2 := J + µ2J0.

5.4 Perform the steps 6, 7, 10, and 11 for I1,J1 and I2,J2.

5.5 Calculate the projection errors e1 and e2 using Eq. (2.13).

5.6 Choose the solution which produces the smaller error and perform the
steps 8 and 9.

A more recent solution to the problem of 6D pose estimation on the basis
of 2D-3D correspondences is presented in [Lu et al., 2000], also succeeding in
the case of coplanar points. Experimental results using this method are given
in the Sections 6.2.1 and 9.2.

2.2.1.3 2D-3D Tracking

In [Marchand et al., 1999], a model-based rigid object tracking approach con-
sisting of three steps is presented. In the first step, the 2D motion between the
last frame and the current frame is calculated by iteratively computing a 2D
affine transformation. For this purpose, point correspondences between model
points and edge pixels in the image are established in the same manner as in
the RAPiD algorithm. A 1D search is performed in perpendicular direction
to the projected model edges, again using the closest direction from the set
{0o, 45o, 90o, 135o}, in order to avoid subpixel positions. The algorithm used
for this purpose is the so-called moving edges algorithm [Bouthemy, 1989].
Having established 2D-2D point correspondences, the affine transformation is
computed using the robust M-estimator [Odobez and Bouthemy, 1995]. The
M-estimator allows not to be affected by locally incorrect measures (due to
shadows, locally wrong matches, occlusions, etc.) [Marchand et al., 1999].

In the second step, the POSIT algorithm is used, followed by the method
described in [Lowe, 1992] to calculate a first estimate of the object pose. The

36 2 State of the Art in Object Recognition and Pose Estimation

iterative computation of the affine transformation together with the POSIT
algorithm already lead to a functioning tracking algorithm, if performed iter-
atively on the same image.

In addition, the authors perform a further optimization in the third step, in
which the projection of the object model is fitted on the intensity gradients in
the image by using an iterative minimization approach, similar to the RAPiD
algorithm.

2.2.1.4 Tracking using Particle Filtering

A completely different approach to the problem of model-based rigid object
tracking is based on particle filtering. Rather than directly computing the
object pose by using optimization methods, a type of statistically profound
search for the optimal pose is performed. As will be explained in Section 4.6,
the goal is to find the model configuration that maximizes a likelihood function
which is specific to the problem. In the case of edge-based rigid object tracking,
the space of model configurations is the space of possible object poses, and
the likelihood function measures the number of edge pixels along projected
model edges. The computational effort for such particle filter based approaches
depends on the number of evaluations of the likelihood function per frame. In
conventional particle filters, this number is equal to the number of particles.

In [Klein and Murray, 2006], a real-time system for rigid object tracking using
particle filtering is proposed. In order to achieve real-time performance, the
evaluation of the likelihood function is implemented on the GPU of a graphics
card. Particle filtering is performed in two stages: First, an automatically
adjusted number of particles is used on the down-sampled input image of
size 320×240, together with a broader i.e. smoothed likelihood function. In
the second stage, 100 particles are used with a peaked likelihood function,
which is applied to the input image at full resolution. The system achieves
a processing rate of 30 fps on a 3.2 GHz CPU with an nVidia GeForce 6800
graphics card.

2.2.2 Edge-based Object Recognition

After giving an overview of edge-based object tracking methods in Sec-
tion 2.2.1, in this section approaches to model-based object recognition will
be dealt with. The fact that pure recognition tasks cannot benefit from any
temporal information makes the problem significantly more complex. First,
traditional methods for the recognition of 2D shapes will be presented, namely
the generalized Hough transform and geometric hashing. The application of
geometric hashing for recognizing 3D shapes from single 2D images will be
explained, as well as a related method based on grouping operations and per-
ceptual organization.

2.2 Model-based Methods 37

2.2.2.1 Generalized Hough Transform

The Generalized Hough transform (GHT) [Ballard, 1981] is one of the earliest
algorithms for the recognition of 2D shapes in images. It is an extension of
the conventional Hough transform [Hough, 1962], which is able to recognize
arbitrary 2D shapes by using directional information. In general, contour pix-
els, which are computed with an appropriate edge filter, build the input to
the algorithm. The design of the Hough space depends on three questions:

1. Which transformations is the object allowed to undergo?

2. Which transformation parameters are to be estimated?

3. Which transformation parameters can be derived from a single feature?

In the following, the generalized Hough transform will be explained by the
example of an arbitrary 2D shape which is allowed to be transformed by a
2D rotation and translation. In [Ballard, 1981], the rotation is assumed to be
known throughout the main part of the paper, i.e. only the vector y ∈ R2

defining the position of a reference point in the image plane is unknown. This
reference point can be chosen arbitrarily, but must be fixed throughout the
acquisition procedure. The representation on the basis of which recognition is
performed is called R-table. An R-table is a lookup table, which is indexed
with absolute angles φ denoting the gradient direction for a given edge pixel.
Absolute means here that φ is defined relative to a fixed axis, commonly the
u-axis. Each entry R(φ) holds a list of vectors r that point to the reference
point.

tangent
x

y

r g

u-axis
φ(x)

Fig. 2.15. Illustration of the vectors involved in the generalized Hough transform.
The vector r connects the edge point x to the reference point y. The gradient
direction g in the point x is perpendicular to the tangent, and the gradient angle
φ(x) is measured relative to the u-axis.

The R-table is acquired by the following procedure. Each edge pixel x, having
the gradient angle φ(x), adds the vector r = y − x (see Fig. 2.15) to the list

38 2 State of the Art in Object Recognition and Pose Estimation

R(φ(x)), i.e.
R(φ(x)) = R(φ(x)) ∪ {y − x} . (2.14)

After having performed this operation for each edge pixel, the R-table contains
for a given angle φ, a set of vectors r, each of which pointing to the reference
point y, relative to the point x (with φ(x) = φ) they were produced with.
The fact that several vectors r can be stored for an angle φ results from the
circumstance that different points can have the same gradient direction i.e.
φ(x) is not injective in general. The contents of R can be described by

R(φ) = {r | ∃x ∈ C : y − r = x ∧ φ(x) = φ} (2.15)

where x ∈ C expresses that x belongs to the contour C of the object. Through-
out recognition, each edge pixel x votes for its reference point y by using the
R-table. The votes are collected in a so-called accumulator array A, which is
often also referred to as Hough space. In the case of a fixed (resp. known)
rotation and the unknown position y of the reference point that is to be esti-
mated, A is two-dimensional. Each edge pixel x uses the indices R(φ(x)) for
incrementing the bins in A:

∀r ∈ R(φ(x)) : A(x+ r) := A(x+ r) + 1 (2.16)

Only one vote for each point x is correct, all others are wrong due to the fact
that φ(x) is not injective, as already mentioned. However, given many voting
edge pixels x, each instance of the object present in the scene produces a local
maximum in A. Therefore, recognition is performed by identifying maxima in
the Hough space A.

According to the three mentioned questions, in this example the allowed trans-
formations were 2D translations, a 2D translation was to be estimated, and no
transformation parameters could be derived from a single feature. In general,
transformation parameters can only be derived from single features if features
can be matched to learned features, as done in [Lowe, 1999] as well as in this
thesis (see Section 6.2.3.1). Now, let us suppose that 2D translations and rota-
tions are allowed, only the 2D translation is to be estimated, and as before no
transformation parameters can be derived from single features. If the rotation
is unknown, which is usually the case, the mapping from an edge pixel x to
the corresponding vectors r from R is unknown. This is an underdetermined
case of the Hough transform, similar to the conventional Hough transform for
lines or circles. One solution is to use a single R-table, but vote for all possible
directions φ that x could have relative to the learned representation i.e. voting
for all vectors r ∈ R. For this purpose, each vector r ∈ R(φ) must be rotated
according to the difference between φ(x) and φ. The voting formula for an
edge pixel x ∈ C can then be formulated as:

∀φ ∈ [0, 2π) : ∀r ∈ R(φ) : A(x+R∆φ r) = A(x+R∆φ r) + 1 . (2.17)

where ∆φ = φ(x) − φ and R∆φ ∈ R2×2 denotes the corresponding rotation
matrix.

2.2 Model-based Methods 39

If the unknown rotation is not only to be compensated but is also a parameter
to be estimated, the Hough space A must be extended to three dimensions.
This is not an underdetermined case of the Hough transform anymore, and the
proper solution is to build R-tables for all expected orientations offline and to
vote for all R-tables throughout recognition, as proposed in [Ballard, 1981].
With this approach, the votes for different object orientations are separated,
leading to a more robust recognition. However, for a three-dimensional Hough
space, more memory is needed and the determination of maxima becomes
computationally more expensive.

Another possible transformation a 2D shape can undergo is scaling, which can
be dealt with in the same manner as with an unknown rotation. Note that if
both rotation and scaling are unknown, the Hough transform is undetermined
twice.

The success of the generalized Hough transform depends on the reliable com-
putation of the gradient direction φ(x). The approach will fail for example in
the case of binary images if the gradient direction is only computed on the
basis of the first derivatives without prior smoothing. As an alternative, the
direction φ(x) can be calculated based on the determination of the tangent to
the object in the point x. This can be achieved by fitting a curve through x
and its neighboring edge pixels, or extracting line segments in a pre-processing
step. In all variants, both the angle φ and the 2D space for the position must
be quantized appropriately, depending on the application.

2.2.2.2 Geometric Hashing

Geometric hashing is a technique that was first developed for the recognition
of 2D objects from 2D images [Lamdan et al., 1988, Lamdan et al., 1990]. In
[Lamdan and Wolfson, 1988], the approach was extended to the recognition
of 3D objects from 3D data and the recognition of 3D objects from 2D images.
An illustrative overview is given in [Wolfson and Rigoutsos, 1997]. In the fol-
lowing, first the 2D case will be discussed. A possible extension for recognition
of 3D objects from 2D images, as introduced in [Lamdan and Wolfson, 1988],
will be explained at the end of this section.

The idea of geometric hashing is to transform all points of an object – these can
be edge or corner points – within the vector space R2 from the standard basis
B with the basis vectors (1, 0)T , (0, 1)T and the origin (0, 0)T to a canonical
basis BM . The basis transformation TM from B to BM is built on the basis of
the set M containing the minimum number m of points pi, i ∈ {1, . . . ,m} that
can define TM . Given the set of object points {xi},xi ∈ R2, i ∈ {1, . . . , n}, the
algorithm for acquiring the representation on the basis of which recognition
is performed can be described by the following steps:

1. For each m-tuple M ⊂ {xi} perform the steps 2 and 3:

40 2 State of the Art in Object Recognition and Pose Estimation

2. Calculate the basis transformation TM : B → BM .

3. For each point x ∈ {xi}\M perform the steps 4 and 5:

4. Calculate xt = TM (x)

5. Add an entry identifying M to the list at the quantized position xq(xt)
of the hash table H.

According to [Wolfson and Rigoutsos, 1997], the complexity of this acquisition
procedure is O(nm+1) for one object with n points and an m-point basis.

Throughout recognition already one arbitrary m-tuple of points belonging to
the object of interest is sufficient to recognize the object. Therefore, in the
best case, only one hypothesis has to be verified. However, in practice several
m-tuples have to be drawn until one is found from which all points belong
to the object of interest. The worst case complexity or the complexity for
a full scene analysis, respectively, is O(n′m+1) with n′ being the number of
points present in the current scene. Given the set of points {x′i}, x′i ∈ R2,
i ∈ {1, . . . , n′}, the recognition algorithm can be described by the following
steps:

1. For each m-tuple M ′ ⊂ {x′i} perform the steps 2 and 3:

2. Calculate the basis transformation TM ′ : B → BM ′ .

3. For each point x′ ∈ {x′i}\M ′ perform the steps 4 and 5:

4. Calculate x′t = TM ′(x′)

5. Read all entries Mt from the list at the quantized position x′q(x
′
t) in the

hash table H and cast a vote for each basis Mt in a histogram.

6. For each bin in the histogram containing at least a certain number of hits
perform the steps 7 and 8:

7. Establish 2D point correspondences between the scene points x′i and the
model points xi, e.g. via the hash table entries x′q(x

′
t).

8. Verify the hypothesis by least-squares computation of the affine transfor-
mation between the two point sets.

Now, the question is how the transformation TM can be calculated for a given
point basis M . In 2D, there are mainly three cases of interest in terms of the
transformations an object may undergo:

• Translation: a one-point basis is sufficient.

• Similarity transformation i.e. rotation, translation, and scaling: a two-
point basis is sufficient.

• Affine transformation: a three-point basis is sufficient.

2.2 Model-based Methods 41

First, a set of three basis vectors b0, b1, b2 must be defined on the basis of the
basis points. We want b0 to express the translation between the two coordinate
systems and b1, b2 to define the pure basis transformation. For the three cases
mentioned above, these basis vectors can be built as follows.

Translation
For a given basis point p1, the basis vectors can be defined by

b0 := p1

b1 := (1, 0)T

b2 := (0, 1)T .

Similarity Transformation
For the given basis points p1,p2, the basis vectors can be defined by

b0 := p1

b1 := p2 − p1

b2 := Rπ
2
b1 .

Affine Transformation
For the given basis points p1,p2,p3, the basis vectors can be defined by

b0 := p1

b1 := p2 − p1

b2 := p3 − p1 .

Given the basis vectors b0, b1, b2, a point x can be expressed as

x = b0 + x′1 b1 + x′2 b2 . (2.18)

The coordinates (x′1, x
′
2) =: x′ with respect to the new basis can thus be

calculated by
T (x) = x′ = (b1, b2)−1(x− b0) . (2.19)

The calculations can be applied for the recognition of 3D objects from 3D point
data as well; the only difference is the vector space R3 instead of R2. Finally,
the case of recognition of 3D objects from 2D images needs to be addressed.
In [Lamdan and Wolfson, 1988], the problem is broken down to a 2D problem
by using an affine transformation as an approximation of a full homography
and introducing a constant set of c predefined view angles. For each object
model, the acquisition procedure is performed for each view angle, leading to
a c-times higher computational effort for building the representation. Overall,
geometric hashing can be regarded as a suitable technique for recognizing 2D
objects – or 2D projections of 3D objects in the case of limited potential view
angles – that have undergone an affine transformation, if the shape of the
object can be defined on the basis of interest points. If all edge pixels must
be taken into account, the computational effort becomes relatively high.

42 2 State of the Art in Object Recognition and Pose Estimation

2.2.2.3 Recognition based on Perceptual Organization

Another approach for the recognition of 3D objects from single 2D images
is based on grouping operations and perceptual organization. The term per-
ceptual organization has been introduced in [Lowe, 1985] and describes the
strategy to group perceptual features in order to allow the efficient detection
of viewpoint invariant structures. The main problem of the task to be solved
is the so-called viewpoint invariance condition: Perceptual features must re-
main stable over a wide range of viewpoints of some corresponding three-
dimensional structure [Lowe, 1987]. Three types of feature relations that are
invariant with respect to changes in viewpoint of a 3D scene are introduced:

• Proximity

• Parallelism

• Collinearity

On the basis of these feature relations, significant grouping operations can
be defined. However, it is possible that, e.g., two points are close together
in the image, but are widely separated in 3D space. Therefore, a significant
relation is understood to the extent that it is unlikely to have arisen by ac-
cident [Lowe, 1987]. As features, straight line segments are used, which are
extracted by using a method based on the iterative endpoint fit algorithm
[Duda and Hart, 1973] on the edge filtered image.

Fig. 2.16. Example of a scene analysis with the system proposed in [Lowe, 1987].
The models are projected into the image from the final calculated viewpoints.
Reprinted from [Lowe, 1987], ©1987, with permission from Elsevier.

2.2 Model-based Methods 43

After finding stable feature groupings, object instances in the scene are recog-
nized by searching for matches in the database. Grouping of features already
leads to a significant speedup compared to matching all features present in the
scene to all features stored in the database. In order to make recognition even
more efficient, only groupings are considered that contain at least three line
segments. All possible groupings a model can produce are precomputed offline.
Matching is finally performed by comparing all extracted feature groupings
from the scene to all precomputed groupings. For each match, a verification
procedure is executed, which calculates the viewpoint and determines whether
the match was correct or not on the basis of an error analysis. The viewpoint
is calculated using a Jacobian-based minimization method, which is similar to
the probably more popular RAPiD algorithm for model-based tracking (see
Section 2.2.1.1). An example result of the system is illustrated in Fig. 2.16.

2.2.3 Pose Estimation based on Matched Feature Points

In Section 2.1.2.5, the framework introduced in [Lowe, 1999] for recognition
and 2D localization of 3D objects based on matched 2D point features was
presented. As already mentioned, a 6 DoF pose can be calculated on the basis
of 2D-3D correspondences using the POSIT algorithm (see Section 2.2.1.2).
For this purpose, 2D point features extracted from the learned view of the
object must be associated with global 3D coordinates.

In [Lepetit et al., 2003], the point features presented in detail in
[Lepetit et al., 2004] (see Section 2.1.2.2) are used for building a 6D pose
estimation system for non-planar objects with a given 3D object model. Sev-
eral views of one object – which are denoted as keyframes – are collected with
a calibrated camera. The registration of the views is achieved by manually
choosing a few points on the surface of the 3D object model and matching
them with the corresponding points in the image. One view of an object thus
produces a set of features {xi,pi}, where xi denotes the feature vector used for
matching and pi ∈ R3 denotes its associated 3D point in a global coordinate
system, which is the same for all views.

The representation of one feature is computed by synthesizing a set of views of
one image patch, as explained in Section 2.1.2.2. While in [Lepetit et al., 2004]
these views are generated under a local planar assumption by using an affine
transformation, in [Lepetit et al., 2003] the views are generated by rendering
a 3D model of the object. This model is constructed using the registrated
keyframes in conjunction with texture mapping.

To initialize the tracking, an initial pose of the object is computed by choos-
ing the keyframe producing the maximum number of feature matches and
applying the POSIT algorithm. A RANSAC approach is used to handle
and eliminate wrong correspondences. Throughout tracking, an M-estimator

44 2 State of the Art in Object Recognition and Pose Estimation

[Huber, 1981] is used for calculating the pose; the estimated pose from the
last frame is used as the initial condition for the estimator. Robustness is in-
creased further by merging information from keyframes and previous frames
using local adjustment, as explained in [Lepetit et al., 2003].

Fig. 2.17. Exemplary results of tracking a projector with the system proposed
in [Lepetit et al., 2003]. Reprinted from [Lepetit et al., 2003], courtesy of Vincent
Lepetit.

The approach is efficient for tracking one object and has been successfully
demonstrated for augmented reality applications. An example pose estimation
result is illustrated in Fig. 2.17.

2.2.4 Object Recognition based on 3D Point Clouds

A completely different type of object recognition methods operates on 3D
point cloud level. Such methods usually require relatively dense 3D surface
scans acquired with an appropriate range sensor such as a laser scanner. Since
the objective of this thesis is to use the cameras in the robot head as only
sensors and disparity maps from stereo vision are in general not sufficiently
dense and accurate, such an approach would not result in a robust system.
However, for reasons of completeness, an overview is given.

One of the most popular algorithms for object recognition on 3D point cloud
level are probably the so-called spin images [Johnson, 1997], which will be
explained in the following. A more recent algorithm for the same problem is
introduced in [Mian et al., 2006], also giving a good overview of other recent
achievements and improvements in this research field.

Spin images have been introduced in [Johnson, 1997] and applied to the
problem of efficient recognition of multiple objects in cluttered scenes in
[Johnson and Hebert, 1998b, Johnson and Hebert, 1999]. A spin image is a
2D histogram of cylindrical coordinates α, β in an oriented point p of a 3D
mesh. The orientation of the point p is its normal vector n, which is computed
by fitting a plane to the neighboring points of p in the mesh. In this point, α
denotes a radial coordinate, which is defined as the perpendicular distance to

2.2 Model-based Methods 45

the line through the surface normal, and β denotes an elevation coordinate,
defined as the signed perpendicular distance to the tangent plane defined by
the point p and the normal vector n [Johnson and Hebert, 1999].

The coordinates α, β are calculated for all mesh points in a predefined sur-
rounding space of the oriented point p. Each pair α, β is used to index the
histogram and increment the counter of the bin at that position; bilinear
interpolation is used in order to smooth the contribution of each point. If
the surfaces of two objects are uniformly sampled, then the spin images in
corresponding points are linearly related. Uniform sampling is achieved by
pre-processing the surface meshes with the resampling algorithm presented
in [Johnson and Hebert, 1998a]. Since a spin image has the same representa-
tion as a conventional 2D image, efficient pattern matching techniques can
be used to establish correspondences between spin images. A spin image has
three generation parameters:

1. Bin size

2. Image width

3. Support angle

The bin size is a parameter that defines the resolution of the bins relative to
the resolution of the mesh. A bin size > 1 thus means that the bin size is larger
than the mesh resolution and results in coarser spin images. Analogously, bin
sizes < 1 result in fine representations. Large bin sizes reduce the effect of
individual point positions while producing a less descriptive spin image. Small
bin sizes are more sensitive to imperfect sampling but are more descriptive.
In [Johnson and Hebert, 1999], a bin size of 1 is used.

The image width w denotes the number of bins in one row of the spin image.
In general, squared spin images are used so that the total number of bins is w2.
The product of image width and bin size is denoted as the support distance Ds,
which determines the space swept out by a spin image. A large image width
makes the spin image more descriptive while making it less robust to clutter
and occlusion. A small image width contains less information in terms of the
global shape, but is less sensitive to clutter due to its more local character.
In [Johnson and Hebert, 1999], an image width of 15 is used, resulting in an
spin image containing 225 bins.

The support angle As denotes the maximum allowed angle between the di-
rection n of the oriented point p and the direction of points to contribute to
the spin image. Given a candidate point p′ with normal n′, the condition can
be formulated as arccos (n · n′) < As, assuming normal vectors of unit length
i.e. |n| = |n′| = 1. The maximum support angle π results in including all
points within the support distance of the spin image. Smaller support angles
make the spin image less descriptive, while making it more robust to clutter
and self-occlusions, since significantly different normal directions are unlikely

46 2 State of the Art in Object Recognition and Pose Estimation

to belong to the same local surface area. In [Johnson and Hebert, 1999], a
support angle of As = π

3 , i.e. 60o, is used.

Fig. 2.18. Examples of spin images of large support for three oriented points on
the surface of a rubber duck model. Reprinted from [Johnson and Hebert, 1999],
©1999 IEEE.

The set of all points that contribute to a spin image, i.e. fulfill the conditions
established by the image width and support angle, is denoted as the support
of the spin image. Fig. 2.18 shows spin images for three oriented points on the
surface of a rubber duck model.

A spin image representation for one object is built by calculating the spin
image for every point of the mesh. These spin images are stored in a spin
image stack. Throughout recognition, random points are selected from the
pre-processed mesh and their spin images are calculated. Correspondences
between scene points and model points are established by matching their spin
images. This procedure is repeated for approx. 100 points in the scene. Point
correspondences are then grouped and outliers are eliminated on the basis
of geometric consistency. For each consistent group of correspondences, the
Iterative Closest Point (ICP) algorithm [Besl and McKay, 1992] is applied in
order to align the surfaces and to verify the hypothesis.

The computation of matches between spin images is speeded up by using
PCA. For this purpose, each spin image is treated as a floating point vector
of length w2 = 225. The PCA is computed for all spin images of all objects

2.3 Comparison 47

and matching is performed by determining the closest point in the eigenspace
using the data structure proposed in [Nene and Nayar, 1996]. Throughout the
experiments in [Johnson and Hebert, 1999], a compression factor of 10 was
used, i.e. the views were compressed from 225 to 22 dimensions.

2.2.5 Hybrid Approaches

In this section, related hybrid model-based approaches combining several cues
are presented. Potential cues are in this context texture, edges, color, and 3D
point clouds acquired by stereo triangulation.

In [Laganiere et al., 2006], a rigid object tracking system is presented that
combines point features and stereo information for the purpose of 3D model
acquisition. After an initial snapshot of the object, 2D corner points are com-
puted and tracked with the Lukas-Kanade tracker [Lucas and Kanade, 1981].
A calibrated stereo system is used for computing 3D points for the tracked
2D corner points. The object pose is estimated by registration of the 3D point
clouds on the basis of 3D-3D point correspondences. Outliers originating from
wrong stereo correspondences are filtered using a RANSAC method (see Sec-
tion 4.7).

An approach combining several 2D cues for the purpose of object tracking
is presented in [Taylor and Kleeman, 2003]. An Iterated Extended Kalman
Filter (IEKF) is used for fusing texture, edge, and color information. Although
it is stated that a stereo camera system is used, only the image sequence of
a single camera is used as input to the system. Using depth information is
referred to as future work. The proposed system is used in [Taylor, 2004] for
tracking objects for the purpose of manipulation, after having acquired 3D
object models with the aid of a laser range finder at runtime.

2.3 Comparison

In the following, the approaches and methods discussed in the Sections 2.1
and 2.2 are compared in a qualitative manner. Since most of the algorithms
are often varied and extended in practice, it is hardly possible to provide
all necessary information within a single table. In order to provide a clear
overview nevertheless, pure 2D approaches and 6D pose estimation algorithms
are summarized in separate tables. Typical combinations of 2D recognition
approaches and 6D pose estimation algorithms are discussed below, as well
as possible extensions of 2D approaches to achieve view-angle invariance to
some degree.

In Table 2.1, the previously discussed 2D recognition and localization ap-
proaches are compared. Note that runtime and accuracy often have a negative

48 2 State of the Art in Object Recognition and Pose Estimation

effect on each other for these methods and thus cannot be regarded completely
independently. The rating given in Table 2.1 refers to the typical field of ap-
plication of each method. Additional information on the relationship between
runtime and accuracy is given below for each method, if relevant.

Needs Global Needs 2D Pose Accuracy Speed
Segmentation Color

Brute-force Correlation no no R,T ++ – –

PCA Correlation yes no R,T,S ++ ++

Moments yes no R,T,S ++ ++

Viola/Jones no no T,S – – o

CCH no yes T,S – –

GHT no no R,T + –

Geometric Hashing no no R,T + – –

SIFT no no A + +

Table 2.1. Comparison of 2D object recognition and localization methods. The
abbreviations R, T, S, and A stand for rotation, translation, scaling, and affine
transformation.

The limitations of each method are not expressed by Table 2.1 and will be
discussed briefly in the following. All approaches that depend on global seg-
mentation require a specific setup or set restrictions to the color of the object
(see Section 4.2). The Viola/Jones algorithm as well as color co-occurence his-
togram can only provide a coarse estimate of the position and to some extent
scaling in terms of a rectangular window. The generalized Hough transform
is a powerful method for finding instances of an object on the basis of its
contour. It can be optimized by using pyramid approaches so that objects
can be found and localized at frame rate in industrial 2D machine vision ap-
plications. The runtime of the generalized Hough transform is proportional
to the number of edge pixels in the scene of interest. Geometric hashing is
considered not to be applicable in practice, which is due to the high com-
putational complexity when using edge pixels as features. The proposition of
[Lamdan et al., 1988] that geometric hashing can recover affine transforma-
tions can only be considered realistic for objects with few interest points, to
be recognized in uncluttered environments.

The general approaches to 6D pose estimation are summarized in Table 2.2.
All of these methods require a 3D geometric model of the object of interest.
The POSIT algorithm is understood as representative for all pose estimation
methods that operate on a set of 2D-3D point correspondences. These meth-
ods compute a 6D pose without any other prior knowledge such as temporal
information. In contrast, the RAPiD algorithm, 2D-3D tracking, and methods
based on particle filtering are pure tracking methods, i.e. they depend on the
pose difference between consecutive frames being small. The RAPiD algorithm

2.3 Comparison 49

and 2D-3D tracking are based on optimization methods and therefore suffer
from typical recovery problems once tracking has got lost. Solutions based on
particle filtering are more robust, but less accurate due to the nature of the
particle filter. However, particle filtering can be combined with optimization
in order to achieve a higher accuracy. Note that the POSIT algorithm itself
is fast, but the computational effort for computing and matching the feature
points is not considered, since this depends on the particular feature type.

Robustness Accuracy Speed

RAPiD o + +

2D-3D tracking + + o

POSIT – o ++

Particle Filter ++ – – –

Table 2.2. Comparison of 6D pose estimation methods.

Finally, in Table 2.3 the methods developed in this thesis are compared. The
entities are a combination of those of the Tables 2.1 and 2.2. As before, speed
refers to estimating the pose of a single object; details are discussed in the
Sections 9.1.3 and 9.2.3. The superior robustness and accuracy compared to
the previously discussed 6D pose estimation methods is due to the use of a
calibrated stereo camera system, as will be shown in the Chapters 6 and 9.
In particular the depth estimate is more robust and accurate compared to
monocular approaches. As indicated in Table 2.3, the accuracy of the pose
estimation for single-colored objects depends on the geometry of the object:
The pose of objects with a rotational symmetry axis can be determined with
a higher accuracy (see Section 9.1.1).

Needs Global Needs Robustness Accuracy Speed
Segmentation Color

Single-Colored Objects yes yes ++ + / ++ ++

Textured Objects no no ++ ++ +

Table 2.3. Comparison of the developed object recognition and pose estimation
methods.

3

State of the Art in Human Motion Capture

Human motion capture is a discipline which first gained importance and pop-
ularity through the film and animation industry. Animated sequences of hu-
mans or creatures from science-fiction movies are nowadays often created by
mapping human motion to an animated figure. For this purpose, the motion
must be captured in a way that allows for mapping of the observed motion
to the target kinematic model. The VICON system1, a marker-based tracking
system using optical reflective markers, can be regarded as the gold standard
for such applications.

Recently, human motion capture has become of major interest in the field
of humanoid robotics. The observation and perception of human motion is a
valuable capability for two reasons: It allows the robot to observe and inter-
pret actions and activities on the basis of the perceived movements and thus
to interact with humans in a more natural way. Second, perceived trajectories
can be used as an important source for learning movements and actions from
humans, commonly referred to by the term imitation learning. For imitation
learning, marker-based systems can be used, since learning does not neces-
sarily have to be performed periodically and can even be performed offline.
However, naturally, it would be more desirable to give the robot the ability
to perceive human motion online and without the need of additional complex
sensor systems and marker setups. In particular, for the first mentioned appli-
cation, namely human-robot interaction, the use of a marker-based system is
not convenient. A person should not need to undergo a preparation procedure
by means of the attachment of markers in order to interact with the robot.

In this chapter, first a brief introduction to the VICON system is given. Sub-
sequently, various approaches to the problem of markerless human motion
capture are discussed. The methods are characterized by the type of sen-
sor system used, the underlying mathematical framework, and the observa-

1 http://www.vicon.com

http://www.vicon.com

52 3 State of the Art in Human Motion Capture

tion space they operate on. In the context of this thesis, purely image-based
systems are of major interest and therefore will be discussed in detail. An
extensive overview of the current state of the art in this area is given in
[Moeslund and Granum, 2001, Moeslund et al., 2006].

3.1 VICON

The VICON system is an optical tracking system, which uses a set of small
spherical reflective markers. These markers must be attached to the person
to be tracked. Depending on the application, the marker setup can differ in
terms of placement and the number of markers; a typical marker setup for the
acquisition of arm and hand motion is shown in Fig. 3.1.

Fig. 3.1. Illustration of a marker setup for capturing arm and hand motion with
the VICON system. Reprinted from [Beth et al., 2003], ©2003 IEEE.

The markers are tracked by a number of grayscale cameras, which are placed
around the area of interest. Each camera has a circular diode array attached
to the front of the camera, as can be seen in Fig. 3.2. The markers have the
property that they reflect light maximally in the opposite direction of the light
beams that illuminate them. Therefore, the diode array has the effect that the
markers produce areas of maximum intensity in the image. The software which
is part of the VICON system includes a convenient calibration method and a
system for calculating a 3D position for each visible marker in each frame. The
3D positions are calculated by first detecting markers in the grayscale image

3.2 Systems using a Search Method 53

of every camera, and then matching these by utilizing the trifocal geometry,
followed by triangulation using the calibration information.

Fig. 3.2. A VICON camera. Image appears courtesy of Vicon.

The temporal resolution depends on the camera model. Currently, cameras
with 4 megapixels at 370 Hz and 2 megapixels at 500 Hz are available; both
cameras can be operated at frame rates up to 2,000 Hz in windowed mode.
The 3D position of each marker is calculated automatically and in real-time;
the user directly gets trajectories of 3D marker positions. However, occlu-
sions can cause markers to disappear as well as reappear. Therefore, usually
the data must be post-processed to handle cases that could not be resolved
automatically.

In order to map the captured motion to the target kinematic model, joint
angles must be computed on the basis of adjacent marker positions, as done
in [Beth et al., 2003]. Trajectories acquired in this manner using the VICON
system have a very high temporal resolution and a high spatial accuracy. How-
ever, markers must be attached to the person to be tracked, several cameras
must be placed around the area of interest, manual post-processing is nec-
essary usually, and the costs for purchasing the system are relatively high.
Nevertheless, human motion capture using optical markers is the method of
choice if highly accurate data is needed at a high temporal resolution.

3.2 Systems using a Search Method

In [Gavrila and Davis, 1996], one of the earliest works toward real-time mark-
erless human motion capture is presented. A multiview approach is used and
foreground segmentation is achieved by background subtraction. After apply-
ing an edge filter to the input images, the chamfer image is computed in order
to increase the coverage of edge pixels. Prediction is performed by assuming
a constant acceleration model. The human pose is estimated by performing
a best-first search and using the chamfer distance as a similarity measure.

54 3 State of the Art in Human Motion Capture

The search problem is solved by applying search space decomposition i.e.
performing a hierarchical search. An automatic initialization procedure is im-
plemented assuming an upright standing person; the torso axis is estimated
by calculation of the main axis using PCA. Initial joint values are estimated
on the basis of further constraints. Example screenshots are shown in Fig. 3.3.

Fig. 3.3. Example screenshots of the system proposed in [Gavrila and Davis, 1996].
Reprinted from [Gavrila and Davis, 1996], ©1996 IEEE.

The search-based monocular tracking method presented in [Rohr, 1997] fo-
cusses on the walking cycle of a person walking in parallel direction to the
image plane. By restricting the range of motion to the walking cycle, the
tracking problem is reduced to a 1D search problem. A stationary camera is
assumed so that potential regions in the image can be determined by motion
segmentation. Based on the size of the bounding box the 3D position of the
person is estimated by using knowledge of the height of the person. Then,
straight line segments are extracted within the computed bounding box. The
similarity measure used for searching is defined on correspondences between
model lines and the extracted image lines. A Kalman filter with a constant ve-
locity model is used as tracking framework. The system automatically initial-
izes itself based on the 1D search performed on 10–15 images before starting
the tracking procedure.

3.3 Systems using a Minimization Method

3.3.1 Minimization Method for Articulated Objects

Optimization-based methods compute a pose update by minimizing an error
function. This error function is usually a sum of squared distances between
corresponding model features and observed features. In this section, the com-
monly used minimization method for a given kinematic chain is explained.
Various approaches utilize the same principle for minimization, using differ-
ent but mostly equivalent formulations of a kinematic chain.

For computer vision applications, an articulated object is usually modeled as a
serial kinematic chain. A human can be modeled by hierarchical combination

3.3 Systems using a Minimization Method 55

of several kinematic chains, e.g. one for each arm, one for each leg, one for
the head, all being attached to the torso, which has additional 6 DoF for base
rotation and translation. In the following, the general minimization method
is explained for one arbitrary serial kinematic chain on the basis of 3D-3D
point correspondences. While other types of correspondences are possible, the
underlying minimization principle remains the same. The different variants of
feature correspondences are listed in the Sections 3.3.2 and 3.3.3.

The transformation between two coordinate systems is formulated as a rigid
body transformation. Various formulations can be used, such as homogenous
transformation matrices, twists and exponential maps, or quaternions. In the
following, the transformation between two coordinate systems is formulated
as a rotation matrix and a translation vector. The principle can easily be
transferred to any other formulation of a rigid object transformation.

We define a kinematic chain as a chain of coordinate transformations
k−1Tk : R3 → R3, where the index k denotes the source coordinate system
Ck, and k − 1 denotes the target coordinate system Ck−1:

k−1Tk(x) = k−1Rk(θ)x+ k−1tk . (3.1)

Here, k−1Rk(θ) ∈ SO(3) denotes the rotation matrix defined by the Euler-
angles θ, and k−1tk ∈ R3 denotes the translation vector. Depending on the
type of joint, θ can contain one, two, or three values. In the following, the gen-
eral case θ ∈ R3 will be assumed; the other cases can be derived analogously.
The key to formulating a minimization problem is to linearize the application
of a rotation. Using the first Taylor expansion, an incremental rotation of the
vector x with the angles ∆θ can be approximated by

R(θ +∆θ,x) ≈ R(θ,x) + J(θ,x)∆θ (3.2)

with R(θ,x) = R(θ)x. We model the rotation matrix R(θ) with the stan-
dard Euler convention Rxyz and define θ := (θ1, θ2, θ3)T yielding R(θ) :=
Rz(θ3)Ry(θ2)Rx(θ1). The Jacobi matrix J(θ,x) is defined by

J(θ,x) =
(
∂R(θ,x)
∂θ1

∂R(θ,x)
∂θ2

∂R(θ,x)
∂θ3

)
. (3.3)

As shown in [Lowe, 1987], the partial derivatives can easily be computed for
the standard rotation matrices Rx(θ), Ry(θ), and Rz(θ), which define rota-
tions around the fixed axes of the current coordinate system. The partial
derivatives become particularly simple for θ = 0, leading to the following
incremental changes for a given vector x := (x, y, z)T :

56 3 State of the Art in Human Motion Capture

∂Rx(θ,x)
∂θ

∣∣∣∣
0

= (0,−z, y)T

∂Ry(θ,x)
∂θ

∣∣∣∣
0

= (z, 0,−x)T

∂Rz(θ,x)
∂θ

∣∣∣∣
0

= (−y, x, 0)T (3.4)

which finally leads to

J(0,x) =

 0 z −y
−z 0 x
y −x 0

 = −[x]× . (3.5)

The Eqs. (3.2) and (3.5) yield for θ = 0 the following approximation of a
rotation with the small angles ∆θ:

R(∆θ,x) ≈ x− [x]× ·∆θ = x+∆θ × x (3.6)

In order to formulate the minimization problem, we define a kinematic chain
according to Eq. (3.1) with p segments i.e. coordinate systems:

0Tp(x) = (0T1 ◦ 1T2 ◦ . . . ◦ p−1Tp)(x) (3.7)

where C0 is the world coordinate system. Given a point with the coordinates
x defined in the coordinate system Cp, the task is to determine the relative
position change defined in world coordinates, depending on small changes in
each coordinate transformation. For the coordinate transformation 0T1, which
defines the base transformation, both rotation and translation can possibly
change. In all other coordinate transformations, the translation is fixed, since
we deal with articulated objects with rotational joints only.

In order to benefit from the simplified formulation for θ = 0, the point x
must be transformed into the coordinate system for which the change is to be
computed. Given a model point x defined in the coordinate system Cp and a
corresponding measured world point xw, their relationship can be formulated
after application of a rotation change ∆θ in the coordinate system Ci (0 ≤
i ≤ p) as follows:

x′ := iTp(x)
0Ti(x′ − [x′]× ·∆θ) = 0Ri · (x′ − [x′]× ·∆θ) + 0ti = xw

⇔ 0Ti(x′)− 0Ri · [x′]× ·∆θ = xw

⇔ 0Ri · [iTp(x)]× ·∆θ = 0Tp(x)− xw (3.8)

with 0Ri ∈ SO(3) defined by

0Ri =
i∏

k=1

k−1Rk . (3.9)

3.3 Systems using a Minimization Method 57

A relative change ∆t of the base translation – which is already given in the
world coordinate system – is simply related by

∆t = 0Tp(x)− xw . (3.10)

Finally, the Jacobian J for all degrees of freedom can be formulated with the
abbreviation T ′i (x) := 0Ri · [iTp(x)]× and I ∈ R3×3 being the unit matrix by

J =
(
I T ′0 T

′
1 . . . T ′p

)
. (3.11)

The final over-determined equation system for n point correspondences
xi,xw,i can be formulated as

 J1

...
Jn

∆t
∆θ1

...
∆θp

 =

0Tp(x1)− xw,1

...
0Tp(xn)− xw,n

 . (3.12)

For model points xi that are given in a coordinate system Ck with k < p, all
T ′j with k < j ≤ p from Ji are set to the zero matrix, and p is replaced by k
in Eq. (3.12). Other serial kinematic chains can be integrated into the same
equation system analogously. The presented method can be transferred to the
use of 2D-3D correspondences by calculating the Jacobian for the projected
points in the same manner as done in the RAPiD tracker for rigid objects (see
Section 2.2.1.1).

3.3.2 Systems using a 3D-3D Minimization Method

The Iterative Closest Point (ICP) algorithm [Besl and McKay, 1992] is widely
used for the registration of two 3D point clouds i.e. 3D-3D minimization for
rigid objects. Variants of the ICP algorithm align algebraically specified 3D
primitives with measured 3D point clouds, which in general also has the advan-
tage of a more efficient nearest neighbor search. In its original version, the ICP
algorithm calculates the optimal rigid body transformation that aligns two 3D
representations. For application of the ICP algorithm in the context of hu-
man motion capture, constraints arising from an articulated body model must
be incorporated. The presented approaches differ in the way these kinematic
constraints are integrated into the update process. All methods presented in
this section operate on 3D point clouds or 3D meshes, respectively.

In [Ogawara et al., 2007], a system is presented that uses high-quality 3D data
computed by a volume intersection method [Laurentini, 1994]. For this pur-
pose, input images from eight cameras captured at 30 Hz are pre-processed
using a background subtraction method. After computing the 3D data, a tri-
angular mesh is computed by using a variant of the marching cubes algorithm.

58 3 State of the Art in Human Motion Capture

Guided by the approach presented in [Kehl et al., 2005], the human is mod-
elled by a link model and a deformable skin model. The link model consists
of 29 DoF for modelling joints, and additional 6 DoF are used for the base
transformation. The body posture is estimated in two steps. In the first step,
an ICP-based method is applied hierarchically for each body segment, i.e. first
the rigid body transformation for the torso is computed, then for the upper
arms and thighs, and so on. Instead of the basic ICP algorithm, which usually
uses a linear least squares method such as [Horn, 1987], a robust M-estimator
[Huber, 1981] is used for minimization, as presented in the authors’ earlier
work [Wheeler and Ikeuchi, 1995, Ogawara et al., 2003]. The nearest neigh-
bor search for establishing point-to-point correspondences is implemented by
a kd-tree search and uses both position and normal information of the ver-
tices. In the second step, a back tracking method is applied that re-estimates
all joint angles simultaneously, which essentially is the application of a mini-
mization method as explained in Section 3.3.1. The initialization problem is
not addressed. Example screenshots are shown in Fig. 3.4.

Fig. 3.4. Example screenshots of the system proposed in [Ogawara et al., 2007].
Left: Image captured by one camera. Middle: 3D reconstruction. Right: Estimated
pose. Reprinted from [Ogawara et al., 2007], ©2007 IEEE.

A multi-view stereo system is presented in [Ziegler et al., 2006]. Four stereo
camera systems are used in a cross-over setup with approximately five me-
ters distance to each other. The camera system calculates synchronized
depth maps at a frame rate of 10 Hz. Foreground segmentation is per-
formed by using a background model and observing a 3D area of inter-
est. The estimation method is inspired by the ICP algorithm, but in con-
trast does not utilize a closed-form solution for minimization. Instead, esti-
mation is performed within an Unscented Kalman Filter (UKF) framework
[Julier and Uhlmann, 1997, Julier, 2002]. Multiple samples are generated by
the UKF, which are then updated by applying the Kalman filter correction
formulas based on the measurements. The final estimate produced by such an
update step is computed by calculation of the weighted mean configuration
over all samples – as known from particle filtering. The approach uses multiple
iterations of update steps for one frame, hence the similarity to the ICP algo-
rithm. The system achieves a processing rate of approx. 1 Hz on conventional
hardware. The initialization problem is not addressed.

3.3 Systems using a Minimization Method 59

In [Demirdjian et al., 2003], a system operating on single-view stereo depth
maps is presented. The proposed approach consists of three steps for each
frame. In the first step, the ICP algorithm is applied to calculate a rigid
body transformation for each body segment independently. In the second step,
articulated constraints are enforced by projecting the estimated pose from
the previous step onto the articulated motion space. After projection, the
Mahalanobis distance is minimized using linearized twist representations for
modeling the kinematics. Body pose constraints are enforced in the third step
by application of a learning method. 150,000 poses taken from 200 human
motion capture sequences are used for training a Support Vector Machine
(SVM). The SVM is trained to compute the motion transformation that maps
a given previous body posture to a new valid body posture that minimizes the
error function. As input to the algorithm, depth maps computed from stereo
images with a resolution of 320×240 are used. The proposed system achieves
a processing rate of 6–10 Hz on a 2 GHz CPU. Initialization is carried out on
the basis of a person tracking system, assuming canonical configurations at
the beginning of the tracking. Example screenshots are shown in Fig. 3.5.

Fig. 3.5. Example screenshots of the system proposed in [Demirdjian et al., 2003].
Reprinted from [Demirdjian et al., 2003], ©2003 IEEE.

A further system operating on single-view depth maps is presented in
[Knoop et al., 2005, Knoop et al., 2006]. The sensor used for computation of
the depth maps is the SwissRanger [Mesa Imaging, 2008], which produces
depth maps with a resolution of 176×144 at frame rates up to 30 Hz. At
three meters distance, the sensor has a xy-resolution of 15 mm and a depth
resolution of 22 mm [Mesa Imaging, 2008]. In the proposed approach, joint
constraints are incorporated directly into the ICP procedure by adding ar-
tificial point correspondences. These artificial point correspondences can be
understood as elastic bands, which enforce the connection of each body seg-
ment to the body segments connected to it. The type of joint is modeled by

60 3 State of the Art in Human Motion Capture

the spatial distribution of the artificial correspondences. The update of the
joint values is calculated by applying the ICP algorithm for each body seg-
ment separately. For this purpose, the measured 3D points must be associated
with the body segments beforehand. The proposed system achieves a process-
ing rate of 10–14 Hz. The initialization problem is being referred to as future
work.

In [Grest et al., 2005], a system is presented which uses a minimization ap-
proach, as presented in Section 3.3.1, on 3D point cloud level. As input, depth
maps are calculated by a calibrated stereo system at frame rates up to 20 Hz.
The articulated human model consists of 28 DoF, which are estimated on the
basis of 3D-3D point correspondences that are determined by a nearest neigh-
bor search. Segmentation is performed by assuming that no scene objects are
within a certain distance of the person to be tracked. The minimization prob-
lem is solved with standard non-linear optimization methods using gradient
descent. Similar to the ICP, the final estimation for each frame is calculated
iteratively. The authors state a processing rate of 4 Hz on a 3 GHz CPU, using
1,000 point correspondences and ten iterations. The initial pose is determined
manually.

3.3.3 Systems using a 2D-3D Minimization Method

In this section, various systems using a 2D-3D minimization approach are
briefly presented. The systems differ in the sensor systems used, the type of
feature correspondences building the input to the minimization procedure, as
well as additional methods used for increasing tracking robustness.

Fig. 3.6. Example screenshots of the system proposed in [Bregler and Malik, 1998].
Reprinted from [Bregler and Malik, 1998], ©1998 IEEE.

In [Bregler and Malik, 1998], one of the earliest approaches to human mo-
tion capture using a minimization method is presented. The solution to the
problem is formulated as a multi-view minimization problem. However, the
presented experiments are performed on single view image sequences of a per-
son walking in parallel direction to the image plane. Foreground segmentation

3.3 Systems using a Minimization Method 61

is achieved by background subtraction. The projections of the body segments
into the image are modeled as ellipsoids. The relation between modeled body
segments and edge pixels is established by calculating so-called support maps
using an Expection Maximization (EM) approach [Dempster et al., 1977]. The
kinematic chain used for tracking is modeled with twists and exponential
maps, which essentially leads to the same partial derivative for a rotation as
presented in Section 3.3.1. The minimization problem is solved iteratively for
2D-3D point correspondences. After each iteration, the image is warped using
the current solution and the image gradients are computed again based on the
re-warped image. The tracking is initialized manually by clicking on 2D joint
locations at the first time step. Example screenshots are shown in Fig. 3.6.

A further tracking system using monocular image sequences is presented in
[Wachter and Nagel, 1999]. The image sequence used for tracking has a rel-
atively high frame rate of 50 Hz. Experiments are shown on a simple back-
ground, and a more textured background using the gradient direction for
distinguishing foreground and background edge pixels. As input to the min-
imization method, edge and region information are used. The minimization
problem is solved within an Iterated Extended Kalman Filter (IEKF) frame-
work. Initialization is performed interactively. The authors state a processing
time of 5–10 seconds for one half frame on a 167 MHz CPU.

In [de Campos et al., 2006], an extension to the RAPiD tracker
[Harris and Stennett, 1990] (see Section 2.2.1.1) for the tracking of ar-
ticulated objects is presented. Analogous to the RAPiD tracker for rigid
objects, minimization is performed on the basis of 3D-point to 2D-line
correspondences. Results are shown for tracking the motion of a hand on the
basis of monocular image sequences.

In [Grest et al., 2006], the approach proposed in [Grest et al., 2005] (see Sec-
tion 3.3.2) is extended to the application of monocular human motion capture.
The presented method consists of two steps. In the first step, 2D-2D motion
is estimated by using the Kanade-Lucas-Tomasi feature tracking algorithm
(KLT) [Lucas and Kanade, 1981, Tomasi and Kanade, 1991b]. On the basis
of the tracking result, 2D-3D point correspondences are established by know-
ing the 2D-3D correspondences for the initial frame by manual initialization
of the tracking system. Since this method on its own tends to drift, in the
second step, additional 2D-3D point correspondences are determined directly.
For this purpose, edge pixels are searched in perpendicular direction to the
projected model edges, as commonly done in model-based tracking. Non-static
and cluttered background can be handled to some degree by using a histogram
analysis in combination with the maximum gradient search. Finally, all 2D-3D
correspondences are used as input to the minimization method. Throughout
the experiments, images were captured at a frame rate of 7 Hz. The processing
rate of the system is approx. 1 Hz on conventional hardware while using an
articulated body model with 19 DoF.

62 3 State of the Art in Human Motion Capture

3.4 Systems based on Particle Filtering

Approaches to the problem of human motion capture based on particle fil-
tering can be considered contrary to minimization-based methods. Methods
relying on minimization solve an optimization problem whose solution yields
the best fit to the currently observed data, usually assuming that the changes
between two consecutive frames are small. Methods based on particle filtering
usually assume small changes as well, but in contrast, perform a statistically
well-founded search, whose core is an evaluation function. The task of this
likelihood function is to measure how well the currently observed data fits a
given configuration of the used human model.

The main problem of these approaches is that in the case of human motion
capture, the size of the search space is extremely large. More precisely, its
size grows exponentially with the number of degrees of freedom of the human
model. A particle filter models the probability density function by a fixed
number of particles, each being a pair of one configuration of the model and
an associated likelihood. As the search space grows exponentially with an
increasing dimensionality of the human model, the number of particles needed
for a meaningful resolution and thus approximation grows exponentially as
well. Since the runtime of a particle filter is proportional to the number of
particles, conventional approaches to the problem of human motion capture
do not lead to a system capable of real-time application.

Fundamentals on particle filtering are explained in Section 4.6. In the fol-
lowing, a selection of relevant image-based markerless human motion capture
systems using a particle filter is presented. Most of these systems use two
different types of cues: edge-based and region-based cues. Both cues have in
common that they measure the amount of pixels that are consistent with pro-
jection of a given model configuration. While edge-based cues measure these
pixels along the projected contour of the human model, region-based cues
compare whole body segments with the image data. The systems presented in
the following mainly differ in the number of cameras involved as well as their
specific strategy for tackling the problems caused by the high-dimensional
search space.

One of the first human motion capture systems based on particle filtering
is presented in [Deutscher et al., 1999], which was further improved by in-
troducing the so-called annealed particle filter in [Deutscher et al., 2000]. In
[Deutscher et al., 2001], a further extension is presented, which is called the
amended annealed particle filter. The amended version performs automatic
search space decomposition by choosing the amount of noise added to each
parameter to be proportional to the estimated variance of that parameter.
Furthermore, a crossover operator is used to improve the ability of the tracker
to search different partitions in parallel.

3.4 Systems based on Particle Filtering 63

In [Deutscher et al., 1999, Deutscher et al., 2000, Deutscher et al., 2001],
both an edge-based and a region-based cue are used, whose results are fused
within the particle filter. The hardware setup consists of three cameras placed
around the area of interest. Compared to the case of monocular or stereo sys-
tems, here, real occlusions occur only very rarely, since usually at least one
camera will have an appropriate view angle. Furthermore, the accuracy of po-
tentially derivable depth information is much higher due to the significantly
greater baseline. Segmentation is performed by background subtraction using
a rather simple background. Throughout the experiments, ten annealed lay-
ers were used, with 200 particles each. The performance of the system was
proved by tracking complex movements such as a front handspring and a per-
son running in a circle. However, the system has a processing time of approx.
15 seconds on a 1.5 GHz CPU. The initialization problem is not addressed.
Example screenshots are shown in Fig. 3.7.

Fig. 3.7. Example screenshots of the system proposed in [Deutscher et al., 2000].
Reprinted from [Deutscher et al., 2000], ©1999 IEEE.

In [Sidenbladh, 2001], the problem of 3D human motion capture is tackled
on the basis of monocular image sequences. It is shown that 3D motion can
be computed from monocular image sequences. However, the involved pos-
tures must exhibit enough information in the projected image. For instance,
an arm that points in a direction which is approximately parallel to the im-
age plane can be perceived, but if the arm points toward the camera, i.e.
is perpendicular to the image plane, the system will fail. In addition to the
region-based cue and the conventional gradient cue, a so-called ridge cue is
used, which is also edge-based. In [Sidenbladh et al., 2002], the problem of
the high-dimensional search space is tackled by focussing on the resampling
of the particles. Instead of using merely noise or assuming a simple constant
velocity model, a specific motion model is used, which is learned from training
data. Rather than representing the training data with an explicit probabilistic
motion model, configuration transitions are computed on the basis of a search
in a large database of motions. In order to achieve a suitable runtime with
this approach, an approximate probabilistic search operating on a binary tree
is performed. Throughout the experiments, 300 particles were used, together
with a database of 50,000 motions. Two experiments were performed: track-
ing one arm with the shoulder being at a fixed position and a person walking

64 3 State of the Art in Human Motion Capture

parallel to the image plane. In both experiments it could be shown that, as
expected, a learned motion model is superior compared to a constant velocity
model. The processing time is 7 minutes per frame on a 400 MHz CPU, when
using 5000 samples and all cues. Example screenshots are shown in Fig. 3.8.

Fig. 3.8. Example screenshots of the system proposed in [Sidenbladh, 2001].
Reprinted from [Sidenbladh, 2001], courtesy of Hedvig Kjellström.

Recently, the incorporation of 3D hand/head tracking as an additional cue,
as proposed in [Azad et al., 2006b] (see Section 7.4), has been adopted by
other works. In [Fontmarty et al., 2007], in addition, a certain percentage of
the particles is sampled with a Gaussian distribution around a single solu-
tion computed by an analytical inverse kinematics method for the purpose of
re-initialization. Taking into account all relevant solutions of the redundant
inverse kinematics problem is not considered. In Section 7.11, it is shown how
the solutions of the redundant inverse kinematics problem can be integrated
to achieve smooth tracking through potential local minima.

In the context of using an inverse kinematics method on the basis of hand/head
tracking for the purpose of human motion capture, the work presented in
[Mulligan, 2005] is to be mentioned. As only input to the system, the 3D
position of the head and a hand are used. The shoulder position is in-
ferred by the head position on the basis of the body rotation, which is es-
timated by fitting a plane through a 3D point cloud computed by stereo
triangulation. The arm configuration is estimated by computing a natural
arm posture with the method presented in [Soechting and Flanders, 1989b,
Soechting and Flanders, 1989a]. As the arm posture is computed on the basis
of the shoulder and hand position only, the existing redundancies cannot be
resolved.

3.5 Pose Estimation based on Silhouettes

In the previous sections, a variety of tracking approaches to the problem of
human motion capture was presented. All of them have in common that they
rely to some extent on temporal information. In other words, it is assumed
that the change of the model configuration to be estimated is small between
consecutive frames.

3.5 Pose Estimation based on Silhouettes 65

However, it is also possible to estimate a person’s pose without any temporal
information. For this purpose, usually so-called view-based methods are used,
which are trained with a sufficiently large number of training views. Image
pre-processing consists here usually of a a figure-ground segmentation method
relying on background subtraction, determining potential regions containing a
human silhouette. The various approaches differ in the type of representation
of a silhouette, as well as the estimation method utilized.

In the following, a brief overview of systems using a learning method based on
global silhouettes is given. Global means in this context that not individual
body parts are segmented and recognized, but the complete silhouette of a
person is used as input. As before, the main problem here is also the high
dimensionality of the search space. With a brute-force matching approach, dn

views would be needed, where n denotes the number of DoF of the human
model, and d denotes the number of discretizations for each DoF. For as few as
ten discretizations and only 8 DoF (e.g. two arms with 3 DoF for the shoulder
and 1 DoF for the elbow), already 108 views would be needed, not taking
into account any body rotations or changes of the view angle, respectively.
Therefore, such systems are usually used for recognition of specific poses,
rather than acquisition of human motion i.e. smooth trajectories of joint angle
configurations.

In [Belongie et al., 2001, Belongie et al., 2002], the so-called shape context is
introduced for representing the contour of a 2D silhouette. Given a point
p ∈ R2, which is usually a point of the contour, a shape context is defined as
a histogram of the polar coordinates of all other contour points, relative to
p. The polar coordinates, defined by the radius r and the angle θ, must be
quantized appropriately in order to form discrete bins.

In [Mori and Malik, 2002, Mori and Malik, 2006], it is shown that shape con-
texts can be used for describing human silhouettes and thus allow the recogni-
tion of 3D human poses. A silhouette is represented by a set of shape contexts:
one shape context for each contour point. Furthermore, in each learned silhou-
ette, body parts and joint positions are marked manually for later retrieval.
Throughout recognition, silhouettes are matched on the basis of the shape
contexts describing them by using a bipartite graph. Once a correspondence
has been established, the joint positions in the current view are determined by
retrieving and mapping the stored joint positions of the matched silhouette.
Finally, the 3D pose is derived from the computed 2D joint positions using
the method presented in [Taylor, 2000].

A similar approach is presented in [Sullivan and Carlsson, 2002], however not
using a set of shape contexts for representing a silhouette but so-called key
frames. A key frame is a set of contour pixels belonging to one silhouette i.e.
one view of a pose. These key frames are matched using a discrete geometry
version of the geometric hashing algorithm (see Section 2.2.2.2). In contrast
to conventional geometric hashing, the fourth basis point is replaced by the

66 3 State of the Art in Human Motion Capture

topological type of the observed point. This topological type is defined by
the three components point order, line direction order, and relative intersec-
tion of the lines and the points in a complex [Sullivan and Carlsson, 2002].
Having established 2D point correspondences by means of the geometric
hashing variant, joint positions can be inferred in the current view. In
[Sullivan and Carlsson, 2002], 3D poses are not calculated in terms of con-
figurations of a 3D human model, but actions are recognized and tracked in
2D directly.

In the approaches presented so far in this section, so-called lazy learning meth-
ods have been utilized, which are often also called example-based methods.
In lazy learning methods, generalization takes place at the moment a query
instance is observed i.e. during recognition. In other words, generalization is
not performed in terms of learning a generalized representation of the train-
ing data, but by using a matching algorithm that compensates differences
between the trained and the observed instances to some degree. In contrast,
eager learning methods actually try to learn a generalized representation by
training a specific function. Throughout recognition, the observed instance
must only be mapped by the trained function in order to compute the result.
Recently, eager learning methods have been utilized for 3D human pose recog-
nition. In the following, the most recent works in this area will be presented.

In [Cohen and Li, 2003], 3D human poses are recognized by performing a
classification on 3D data. A 3D visual hull of the person of interest is computed
on the basis of multiple-view silhouettes using the volume intersection method
presented in [Laurentini, 1994]. Based on the calculated 3D visual hull, a 3D
shape context is computed, which is then classified using an SVM. Throughout
the experiments four cameras were used and twelve distinct postures were
trained. Using approx. 2,000 trained instances for each posture, the system
can classify the twelve postures very reliably.

In [Curio and Giese, 2005], an SVM is used as well, however not for classifica-
tion, but for regression. Silhouettes from single 2D images are segmented and
described using the first five lower-order Alt moments [Alt, 1962]. The used 2D
human model consists of twelve trapezoidal patches and has 68 DoF. These are
compressed to twelve dimensions using PCA. Thus, the Support Vector Re-
gression (SVR) function is of the form R5 → R12. A competitive particle filter
then selects the relevant regression hypotheses computed by the SVR. In the
proposed system, these results are used as priors for automatic initialization
of the gradient-based 2D tracking algorithm from [Cham and Rehg, 1999].

The use of a Relevance Vector Machine (RVM) instead of an SVM is proposed
in [Agarwal and Triggs, 2004, Agarwal and Triggs, 2006]. The estimation of
a 3D human pose is again formulated as a regression problem. Here, the
2D shape contexts from [Belongie et al., 2001, Belongie et al., 2002] are used
with five radial and twelve angular bins, resulting in a 60D histogram. A 100D
histogram is computed on the basis of the set of all shape contexts describing

3.6 Comparison 67

a silhouette by using a k-means clustering algorithm. The RVM is trained
in simulation using a 3D human model with 55 DoF, leading to a regression
function of the form R100 → R55. Throughout recognition, the result of the
RVM regression is directly interpreted in terms of configurations of the 3D
human model that was used for training. Example screenshots are shown in
Fig. 3.9.

Fig. 3.9. Screenshots of the system proposed in [Agarwal and Triggs, 2006].
Reprinted from [Agarwal and Triggs, 2006], ©2006 IEEE.

3.6 Comparison

In the following, the camera-based tracking approaches and methods dis-
cussed in this chapter are compared in a qualitative manner. Marker-based
approaches as well as methods relying on a specific type of 3D sensor will not
be considered. The focus will be on the applicability for imitation of upper
body motion. Due to the multiplicity of published systems, which often only
differ in several details but share the same core principles, it is hardly possible
to estimate the robustness and the achievable accuracies of each single one.
Therefore, only the facts of all systems are summarized in form of a table –
the qualitative differences of the general approaches are discussed below.

Body pose estimation based on silhouettes is not suitable for smooth tracking
and imitation of human motion. In the past, search methods were used, which
have been superseded by methods based on particle filtering. As can be seen
in Table 3.1, only few approaches use a single stereo camera system as sensor.
Two of them operate on 3D point cloud level, i.e. rely on the disparity maps
computed with the aid of the stereo camera system. However, the quality of
such disparity maps is relatively low in practice and depends on strongly tex-
tured clothing. In [Azad et al., 2006b], we have started to focus on exploiting
a stereo camera system as an image sensor and not as a pure 3D sensor. Later,
in [Fontmarty et al., 2007], similar work is presented, which, however, is not
real-time applicable having a processing rate of 1–2 Hz and produces too noisy
trajectories for imitation with a humanoid robot system. Our approach, which
does not suffer from these deficiencies, is presented in detail in Chapter 7.

68 3 State of the Art in Human Motion Capture

A
p
p
ro

a
ch

N
u
m

b
er

o
f

C
a
m

er
a
s

In
p
u
t

R
ep

re
se

n
ta

ti
o
n

M
o
ti

o
n

R
es

tr
ic

ti
o
n
s

S
p

ee
d

[G
av

ri
la

a
n
d

D
av

is
,

1
9
9
6
]

S
ea

rc
h

m
u
lt

i
im

a
g
es

n
o
n
e

?

[R
o
h
r,

1
9
9
7
]

S
ea

rc
h

1
im

a
g
es

1
D

w
a
lk

in
g

cy
cl

e
?

[O
g
aw

a
ra

et
a
l.
,

2
0
0
7
]

3
D

-3
D

M
in

.
8

3
D

m
es

h
n
o
n
e

–
–

[Z
ie

g
le

r
et

a
l.
,

2
0
0
6
]

U
K

F
4
×

st
er

eo
3
D

p
o
in

t
cl

o
u
d

n
o
n
e

+

[D
em

ir
d
ji

a
n

et
a
l.
,

2
0
0
3
]

3
D

-3
D

M
in

.
st

er
eo

3
D

p
o
in

t
cl

o
u
d

n
o
n
e

+

[G
re

st
et

a
l.
,

2
0
0
5
]

3
D

-3
D

M
in

.
st

er
eo

3
D

p
o
in

t
cl

o
u
d

n
o
n
e

o

[B
re

g
le

r
a
n
d

M
a
li
k
,

1
9
9
8
]

2
D

-3
D

M
in

.
1

im
a
g
es

n
o
n
e

?

[W
a
ch

te
r

a
n
d

N
a
g
el

,
1
9
9
9
]

2
D

-3
D

M
in

.
1

im
a
g
es

n
o
n
e

o

[G
re

st
et

a
l.
,

2
0
0
6
]

2
D

-3
D

M
in

.
1

im
a
g
es

n
o
n
e

o

[D
eu

ts
ch

er
et

a
l.
,

2
0
0
0
]

P
a
rt

ic
le

F
il
te

r
3

im
a
g
es

n
o
n
e

–

[S
id

en
b
la

d
h
,

2
0
0
1
]

P
a
rt

ic
le

F
il
te

r
1

im
a
g
es

le
a
rn

ed
–

–

[F
o
n
tm

a
rt

y
et

a
l.
,

2
0
0
7
]

P
a
rt

ic
le

F
il
te

r
st

er
eo

im
a
g
es

n
o
n
e

o

P
ro

p
o
se

d
a
p
p
ro

a
ch

P
a
rt

ic
le

F
il
te

r
st

er
eo

im
a
g
es

n
o
n
e

+
+

T
a
b
le

3
.1

.
C

o
m

p
a
ri

so
n

o
f

ca
m

er
a
-b

a
se

d
a
p
p
ro

a
ch

es
to

m
a
rk

er
le

ss
h
u
m

a
n

m
o
ti

o
n

ca
p
tu

re
.

T
o

a
ll
ow

co
m

p
a
ri

so
n

o
f

th
e

sp
ee

d
,

th
e

u
se

d
h
a
rd

w
a
re

is
ta

k
en

in
to

a
cc

o
u
n
t

fo
r

th
e

ra
ti

n
g
.

4

Fundamentals of Image Processing

In this chapter, the fundamentals that are necessary for the following chapters
are introduced. A comprehensive introduction to the basics of image process-
ing is given in [Azad et al., 2008].

The camera model used in this thesis is introduced in Section 4.1. Common
segmentation techniques for robotic vision applications are briefly summa-
rized in Section 4.2. In Section 4.3, correlation techniques are introduced,
which are used by the object recognition systems developed in this thesis. Ho-
mographies and affine transformations are briefly introduced in Section 4.4,
including least-square methods for their computation on the basis of 2D-2D
point correspondences. A brief introduction to principal component analy-
sis is given in Section 4.5, which is applied for compression of the views in
the proposed shape-based object recognition and pose estimation approach.
In Section 4.6, the concept of particle filtering is explained, which forms the
statistical framework for the proposed human motion capture system. The
RANSAC method, which is used in this thesis for filtering data sets before
application of least squares methods, is explained in Section 4.7.

4.1 Camera Model

In the following, the camera model used in this thesis is introduced. As the ap-
plied stereo camera system is calibrated with the OpenCV implementation of
Zhang’s method [Zhang, 2000], the OpenCV camera model has been analyzed
and is formulated in the following. The camera model consists of the intrin-
sic camera parameters fx, fy, cx, cy and d1, . . . , d4, and the extrinsic camera
parameters R, t. A more detailed introduction to camera models and camera
calibration, also including basics such as the pinhole camera model and the
Direct Linear Transformation method (DLT), is given in [Azad et al., 2008].

70 4 Fundamentals of Image Processing

4.1.1 Coordinate Systems

First, the three commonly used coordinate systems are defined; an illustration
is given in Fig. 4.1.

Image coordinate system: The image coordinate system is a two-dimen-
sional coordinate system. Its origin lies in the top left-hand corner of the
image, the u-axis points to the right, the v-axis downward. The units are in
pixels.

Camera coordinate system: The camera coordinate system is a three-di-
mensional coordinate system. Its origin lies in the projection center Z, the x-
and y-axes run parallel to the u- and v-axes of the image coordinate system.
The z-axis points forward i.e. toward the scene. The units are in millimeters.

World coordinate system: The world coordinate system is a three-dimen-
sional coordinate system. It is the basis coordinate system, and can lie any-
where in the area arbitrarily. The units are in millimeters.

optical axis

image plane

principal point
camera coordinate

system

world coordinate
system

image coordinate
system

x

z

y

v
u

Z

Fig. 4.1. Illustration of the coordinate systems of the camera model. The optical
axis and the image plane are perpendicular. The x- and the u-axes run parallel, as
do the y- and v-axes.

Note that e.g. bitmap images define their origin in the bottom left-hand cor-
ner of the image. In order to ensure consistency and compatibility of image
sources, all IVT (see Section 8.1) image acquisition modules convert the im-
ages, if necessary, so that the previously defined image coordinate system is
valid.

4.1 Camera Model 71

4.1.2 Intrinsic Camera Parameters of the Linear Mapping

The linear mapping function of the camera model is described by the intrinsic
camera parameters fx, fy, cx, cy. The parameters fx and fy denote the cam-
era constants in u- and v-direction, usually referred to as the focal length, the
units are in pixels. They contain the conversion factor from [mm] to [pixels],
independently for each direction, and can therefore also model non-square pix-
els. The principal point (cx, cy) is the intersection of the optical axis with the
image plane, specified in image coordinates. Using a purely linear projection
defined by the intrinsic parameters fx, fy, cx, cy, the mapping from camera
coordinates xc, yc, zc to image coordinates u, v reads(

u
v

)
=
(
cx
cy

)
+

1
zc

(
fx xc
fy yc

)
. (4.1)

This mapping can also be formulated as a matrix multiplication with the
calibration matrix

K =

 fx 0 cx
0 fy cy
0 0 1

 (4.2)

using homogeneous coordinates:u · zc
v · zc
zc

 = K

xc
yc
zc

 . (4.3)

The inverse of this mapping is ambiguous; the possible points (xc, yc, zc) that
are mapped to the pixel (u, v) lie on a straight line through the projection
center. It can be formulated through the inverse calibration matrix

K−1 =

 1
fx

0 − cx
fx

0 1
fy
− cy
fy

0 0 1

 (4.4)

and the equation xc
yc
zc

 = K−1

u zc
v zc
zc

 . (4.5)

Here the depth zc is the unknown variable; for each zc, the coordinates xc, yc
of the point (xc, yc, zc) that maps to the pixel (u, v) are calculated. In line with
the notation from Eq. (4.1), the mapping defined by Eq. (4.5) can analogously
be formulated as xc

yc
zc

 = zc

u−cx
fx
v−cy
fy

1

 . (4.6)

72 4 Fundamentals of Image Processing

4.1.3 Extrinsic Camera Parameters

Arbitrary twists and shifts between the camera coordinate system and the
world coordinate system are modeled by the extrinsic camera parameters.
They define a coordinate transformation from the world coordinate system to
the camera coordinate system, consisting of a rotation R and a translation t:

xc = Rxw + t (4.7)

where xw := (x, y, z) define the world coordinates and xc := (xc, yc, zc) the
camera coordinates of the same 3D point. The complete mapping from the
world coordinate system to the image coordinate system can finally be de-
scribed in closed-form by the projection matrix

P = K(R | t)

using homogeneous coordinates:u · zc
v · zc
zc

 = P

x
y
z
1

 . (4.8)

The inversion of the mapping from Eq. (4.7) reads

xw = RTxc −RT t . (4.9)

Thus the inverse of the complete mapping from Eq. (4.8), which is ambiguous
like the inverse mapping from Eq. (4.5), can be formulated as:x

y
z

 = P−1

u · zc
v · zc
zc
1

 (4.10)

with the inverse projection matrix

P−1 = RT (K−1| − t) .

4.1.4 Distortion Parameters

The intrinsic camera parameters d1, . . . , d4 model the effects that are caused
by lens distortions, which lead to non-linearities during the camera mapping.
The most important kind of distortion is radial lens distortion, which arises
particularly strongly from lenses with a small focal length (≤ 4 mm). Tan-
gential lens distortion will also be discussed, since it is implemented by the
OpenCV camera model. In many cases, however, its effect is negligible.

4.1 Camera Model 73

So far, u, v have denoted the image coordinates for the purely linear mapping.
Now, u, v denote the undistorted image coordinates, i.e. those coordinates
that are calculated by the pure linear mapping from 3D to 2D. Additionally,
the distorted image coordinates ud, vd are now introduced. These are the co-
ordinates of that point that is eventually mapped onto the image sensor. The
task of modeling the lens distortions is the mathematical description of the
relationship between the undistorted image coordinates u, v and the distorted
image coordinates ud, vd. For this, usually ud, vd are expressed as a function
of u, v. As the basis for the following calculations serves the projection of u, v
onto the plane z = 1 in the camera coordinate system. The result of this
projection is calculated by (

xn
yn

)
:=

(
u−cx
fx
v−cy
fy

)
. (4.11)

From the coordinates xn, yn, the distorted coordinates xd, yd are then calcu-
lated in the plane z = 1 in accordance with the distortion model. For the
distorted image coordinates it applies(

ud
vd

)
=
(
fx xd + cx
fy yd + cy

)
. (4.12)

On the basis of the radius r :=
√
x2
n + y2

n, the corrective terms for the de-
scription of the lens distortion are defined. If two parameters d1, d2 are used
for radial lens distortion, then the relationship between xd, xd and xn, yn can
be expressed as (

xd
yd

)
= (1 + d1r

2 + d2r
4)
(
xn
yn

)
. (4.13)

Independently from radial lens distortion, tangential lens distortion can be
described with the two parameters d3, d4 by the relationship(

xd
yd

)
=
(
xn
yn

)
+
(
d3(2xnyn) + d4(r2 + 2x2

n)
d3(r2 + 2y2

n) + d4(2xnyn)

)
. (4.14)

The OpenCV (version 1.0), the IVT and thus also the distortion model un-
derlying this thesis combine the two presented approaches. The relationship
between xd, yd and xn, yn finally reads(

xd
yd

)
= (1 + d1r

2 + d2r
4)
(
xn
yn

)
+
(
d3(2xnyn) + d4(r2 + 2x2

n)
d3(r2 + 2y2

n) + d4(2xnyn)

)
. (4.15)

The calculation of the distorted image coordinates ud, vd from the undistorted
image coordinates u, v is summarized in Algorithm 1.

This description of the distortion model formulates the distorted image co-
ordinates as a function of the undistorted image coordinates. It can be used
directly for two applications:

74 4 Fundamentals of Image Processing

Algorithm 1 DistortImageCoordinates(u, v) → ud, vd

1. xn := u−cx
fx

, yn :=
v−cy

fy
, r :=

√
x2

n + y2
n

2. Calculate xd, yd with Eq. (4.15).
3. ud := xd fx + cx, vd := yd fy + cy

• Calculation of the projection from 3D to 2D into the camera image, with
consideration of lens distortions.

• Calculation of the undistorted image from the camera image.

For the former application, the coordinates u, v are calculated with Eq. (4.8)
and are used as argument to Eq. (4.15). For the calculation of the undistorted
image from the camera image, in a first step, a lookup table is generated
offline by calculating for every (u, v) ∈ {0, . . . , w − 1} × {0, . . . , h − 1} the
corresponding coordinates ud, vd in the distorted original image, where w de-
notes the width of the image in pixels and h the height. Since in general no
integer values arise for u, v, the undistorted image is calculated using bilinear
interpolation. In any case it is important to consider that undistorting an im-
age entails an information loss, and should thus be avoided whenever possible
if the image data is to be processed further (see Section 5.4). The result of
the undistortion is illustrated in Fig. 4.2.

Fig. 4.2. Example of the undistortion of a camera image. Left: original image.
Right: undistorted image.

For 3D reconstruction, the back-calculation from 2D to 3D is of special inter-
est, i.e. the determination of the straight line of all possible points Pw(x, y, z)
in the world coordinate system that map to a given pixel Pb(ud, vd). If the
image is undistorted before, then the coordinates u, v in the undistorted image
can directly be used as argument to Eq. (4.10), whereas, if working with the
original image, the inversion of Eq. (4.15) is necessary. Since xn, yn and thus
also r depend on u, v and not on ud, vd, this equation cannot be inverted an-
alytically. However, the coordinates u, v and ud, vd differ only slightly, which

4.1 Camera Model 75

is why an approximate solution can be calculated by(
x′n
y′n

)
=

1
1 + d1r2 + d2r4

[(
xd
yd

)
−
(
d3(2xnyn) + d4(r2 + 2x2

n)
d3(r2 + 2y2

n) + d4(2xnyn)

)]
. (4.16)

Using the fast converging iterative Algorithm 2, the inversion of Eq. (4.15)
and consequently the undistortion can finally be calculated on the basis of
Eq. (4.16). With k = 10 iterations, a sufficiently accurate result can be calcu-
lated even for a relatively strongly distorting lens with 4 mm focal length. In
general, the accuracy for a fixed number of iterations depends on two factors:
the magnitudes of the parameters d1 . . . d4 and the distance between the point
to be undistorted and the principal point. It applies: The greater the values
of the distortion parameters and the greater the distance, the more iterations
are needed.

Algorithm 2 UndistortImageCoordinates(ud, vd) → u, v

1. xd := ud−cx
fx

, yd :=
vd−cy

fy

2. xn := xd, yn := yd, r :=
√
x2

n + y2
n

3. Repeat the steps 4 and 5 k times:
4. Calculate x′n, y

′
n with Eq. (4.16).

5. xn := x′n, yn := y′n, r :=
√
x2

n + y2
n

6. u := x′n fx + cx, v := y′n fy + cy

4.1.5 Overview

As an overview, the camera mapping functions from 3D to 2D and from 2D
to 3D are summarized in the following, taking into account the distortion
parameters. The mapping of a world point Pw(x, y, z) to the appropriate dis-
torted pixel Pb(ud, vd) is composed of the Eqs. (4.7)/(4.1) (resp. (4.8)) and
Algorithm 1, and is summarized in Algorithm 3. The mapping of a distorted
pixel Pb(ud, vd) to the appropriate straight line of all world points Pw(x, y, z)
mapping to this pixel, is composed of Algorithm 2 and the Eqs. (4.6)/(4.9)
(resp. (4.10)), and is summarized in Algorithm 4. As an additional parameter,
s ∈ R is used here; each s defines one point on the straight line. In practice,
for example, s = 1 can be used in order to obtain a point. As a second point
and starting point of the straight line, the projection center can always be
used, which is calculated by −RT t.

76 4 Fundamentals of Image Processing

Algorithm 3 CalculateImageCoordinates(x) → ud, vd

1. (xc, yc, zc)T := Rx+ t

2.

(
u
v

)
:=

(
cx
cy

)
+ 1

zc

(
fx xc

fy yc

)
3. ud, vd ← DistortImageCoordinates(u, v) {Algorithm 1}

Algorithm 4 CalculateWorldCoordinates(ud, vd, s) → x

1. u, v ← UndistortImageCoordinates(ud, vd) {Algorithm 2}

2. xc := s

 u−cx
fx

v−cy
fy

1

3. x := RTxc −RT t

4.2 Segmentation

For many image processing tasks, the basis is to extract relevant areas of the
image as a unit. These units can either be regions containing potential objects,
geometric primitives such as lines or circles, or point features. In this context,
one distinguishes the segmentation of global views, i.e. containing an object
as a whole, and the segmentation of local features, i.e. features an object view
is composed of.

Humans are able to solve this so-called segmentation problem almost perfectly
and effortlessly, influenced by a lot of background knowledge and experience.
Computer vision, on the other hand, is still far from solving the segmentation
problem as well as humans. In practice, only partial solutions are available,
which are adapted to a specific setup and require certain assumptions in order
to hold true.

Segmentation usually takes place on the basis of the evaluation of one or
more cues, which can be extracted from the images. Among these cues are
intensity, color, edges, motion, and texture. If a 3D sensor is available, then
segmentation can take place by using depth information as well. However,
disparity maps computed by stereo camera systems are of comparatively low
quality in practice, and can therefore often only be used for generating rather
rough hypotheses.

In the following, a short overview of global 2D segmentation method types
that are frequently used for robot vision applications is given. The focus will
be on efficient segmentation methods that are often used in practice. The seg-
mentation of local features has already been dealt with in Chapter 2, namely
point features (see Section 2.1.2) and geometric structures (see Section 2.2.2).
An introduction to basic methods for the segmentation of geometric struc-
tures, such as lines and circles, can be found in [Azad et al., 2008].

4.2 Segmentation 77

4.2.1 Thresholding

Thresholding is the simplest method for separating relevant areas of an im-
age from the background. It is a homogeneous point operator operating on
grayscale images. The decision whether a pixel belongs to foreground or back-
ground is made on the basis of a grayscale threshold, which is applied to every
pixel independently. The mapping function for a thresholding operation reads

I ′(u, v) =
{
q if I(u, v) ≥ t
0 otherwise (4.17)

where t ∈ {0, . . . , q} is a previously defined threshold and q = 28−1 = 255 for
8 bit grayscale images. In the output image, pixels with intensity I ′(u, v) = 0
symbolize background and pixels with I ′(u, v) = q foreground. If, instead,
dark regions in the image are to be segmented, then an inverse threshold
function must be used.

The choice of the threshold t can either be made manually, or, in case of
variable lighting conditions, automatically on the basis of a histogram analysis,
if e.g. a bimodal histogram can be assumed. A robust method for this is the
use of quantiles, as discussed in [Azad et al., 2008].

In general, for successful thresholding, the setup must be chosen specifically
with regard to the object constraints. Often it is suitable to operate with a
homogeneous black background so that all areas in the image that exhibit
a higher intensity than black must be part of an object. In many industrial
applications of computer vision, thresholding is still a very efficient and effec-
tive method. In contrast, in the context of humanoid robotics, thresholding
can hardly be used in any realistic scenario. However, it can serve as a simple
segmentation method in an experimental setup for the purpose of validating
concepts that depend on robust segmentation.

4.2.2 Background Subtraction

The idea of background subtraction is to keep a representation of the back-
ground and subtract it from the current view, assuming a static camera. By
doing this only those parts of the image remain that are not consistent with
the background representation. Since a static camera cannot be assumed for
application on humanoid robot systems, background subtraction is not rele-
vant in the context of this thesis. Therefore, only the basic principle will be
explained in the following. An overview of various background subtraction
methods is given in [Piccardi, 2004].

The basic principle is to store a view I0 of the empty scene, which is subtracted
from the images captured at all following time steps t > 0. The mapping
function reads

78 4 Fundamentals of Image Processing

I ′(u, v) =
{
q if |It(u, v)− I0(u, v)| ≥ s
0 otherwise (4.18)

where s ∈ {1, . . . , q} denotes a predefined threshold. Problems with this ap-
proach arise from changing lighting conditions as well as already marginal
pose changes of the camera. Furthermore, all automatic adjustments of the
camera must be turned off, such as white balance and automatic gain control.

Closely related to this approach are motion segmentation techniques, which
are also based on image subtraction. Here, however, not a reference image is
subtracted, but a background representation built by the previous time steps.
The most simple approach is to subtract consecutive images:

I ′(u, v) =
{
q if |It(u, v)− It−1(u, v)| ≥ s
0 otherwise . (4.19)

The clear difference is that with this approach purely motion is segmented,
while with the first approach also static objects that do not belong to the
background representation can be detected. A commonly used extension of
Eq. (4.19) is to not only take into account the frame It−1, but a set of frames
It−n, . . . , It−1. For each pixel, the background intensity can then be calculated
for instance by the mean or the median over the n previous frames. A survey
of more sophisticated methods, such as background modeling with Gaussian
distributions, mean-shift, and the incorporation of color information is given
in [Piccardi, 2004].

4.2.3 Color Segmentation

When using color images, not only the intensity but also color information
can be evaluated. For color segmentation, there exists a number of approaches,
which differ both in the color model as well as in the type of the classifier. The
subject of this thesis is clearly neither color segmentation nor segmentation
in general, but it is used as a necessary technique for subsequent application
of other methods. Therefore, an efficient and robust method is needed, rather
than adaptive methods that suffer from the problem of adapting to an un-
desired color model. An introduction to basic color segmentation methods is
given in [Azad et al., 2008]; an overview of state-of-the-art color segmentation
methods can be found in [Yang et al., 2002].

A very effective and efficient color segmentation method is obtained by defin-
ing fixed bounds for the individual channels of the HSV image. It is important
to note that this method will in general fail if applied to an RGB image, be-
cause here the proportions of the channels are distinctive for a color. In the
RGB color model, these proportions cannot be expressed by simple intervals
for the red, green and blue channel. In the HSV color model, however, the
actual color value is separated. Therefore the definition of intervals for the

4.2 Segmentation 79

individual channels is feasible and leads to satisfactory segmentation results.
For the definition of the bounds for the H-channel, it is to be noted that it
contains color angles from the interval [0, 360) degrees, thus the beginning
and end of this interval are connected like a circle. For this reason, a case
differentiation is required for handling the min/max values for the H-channel.

In Algorithm 5, this case differentiation and the subsequent classification are
performed. The input image I is an HSV image in 24 bit representation and
the output image I ′ is a grayscale image. An example of the application of
this algorithm is shown in Fig. 4.3.

Fig. 4.3. Example of a color segmentation. Left: input image. Right: segmentation
result.

Algorithm 5 SegmentColorHSV(I, hmin, hmax, smin, smax, vmin, vmax) → I ′

if hmax > hmin then
for all pixels (u, v) in I do

(h, s, v) := I(u, v)

I ′(u, v) :=

{
q if h ≥ hmin AND h ≤ hmax AND s ≥ smin AND

s ≤ smax AND v ≥ vmin AND v ≤ vmax

0 otherwise
end for

else
for all pixels (u, v) in I do

(h, s, v) := I(u, v)

I ′(u, v) :=

{
q if (h ≥ hmin OR h ≤ hmax) AND s ≥ smin AND

s ≤ smax AND v ≥ vmin AND v ≤ vmax

0 otherwise
end for

end if

80 4 Fundamentals of Image Processing

4.3 Correlation Methods

In image processing, correlation methods are applied for establishing corre-
spondences between images or image patches, respectively. The two appli-
cations relevant for this thesis are the determination of correspondences for
stereo triangulation and matching features (resp. views) extracted from the
current scene to features stored in a database. In the following, an overview
of non-normalized and normalized correlation functions is given.

4.3.1 General Definition

In the following it is assumed that a square grayscale image I1 with an odd
edge length n = 2k + 1, k ≥ 1 is compared to an image I2 of same size.
Depending on the application, these square images are to be understood as
image patches. The methods being explained in the following can also be
applied to arbitrary rectangular images; for most applications, however, square
images (resp. image patches) are usually used. The choice of an odd edge
length offers the advantage that the pixel with the coordinates k, k defines
the center of the image, and can serve as a reference point, which is necessary
for the calculation of depth maps, for example.

Depending on the correlation function, either a similarity measure is calcu-
lated, which is to be maximized, or an error measure is calculated, which is to
be minimized. Furthermore, normalized and non-normalized correlation func-
tions are to be distinguished. Normalized correlation functions are invariant
with respect to constant additive or multiplicative brightness differences be-
tween the images I1 and I2. The response of non-normalized correlation func-
tions on the other hand will change depending on the illumination. The basic
formula for non-normalized correlation functions for two square grayscale im-
ages I1 and I2 of same size reads

c(I1, I2) =
n−1∑
u=0

n−1∑
v=0

f(I1(u, v), I2(u, v)) .

The function f : R × R → R differs depending on the correlation method.
Correlation functions can also be calculated directly for image patches, which
is common for the calculation of depth maps with stereo camera systems.
Given a pixel (u0, v0) from I1, the task is then to determine a correspondence
in the image I2. The search is performed within an area of shifts (du, dv) ∈
D ⊂ Z × Z, which is specific to the application. For the correlation of image
patches, the sums are usually defined in such a manner that the n × n sized
window around the point I1(u0, v0) and I2(u0 + du, v0 + dv) is compared. The
formula reads then

4.3 Correlation Methods 81

c(I1, I2, u0, v0, du, dv) =

k∑
u=−k

k∑
v=−k

f(I1(u0 + u, v0 + v), I2(u0 + du + u, v0 + dv + v))

The two notations are equivalent for the calculations that are specific to
the correlation functions. For reasons of clarity, the notation from the first
equation is used in the following shortened way of writing:

c(I1, I2) =
∑
u

∑
v

f(I1(u, v), I2(u, v)) .

4.3.2 Non-normalized Correlation Functions

In this section, the most well-known non-normalized correlation functions are
presented. For cross-correlation, the specific function is f(x, y) = x · y:

CC(I1, I2) =
∑
u

∑
v

I1(u, v) · I2(u, v) . (4.20)

The cross-correlation defines a similarity measure: The larger the value, the
more similar are the images I1 and I2. However, in practice the non-normalized
cross-correlation is rarely used; the corresponding normalized function is pre-
sented in Section 4.3.3. An often used correlation function is the Sum of
Squared Differences (SSD), with the function f(x, y) = (x− y)2:

SSD(I1, I2) =
∑
u

∑
v

(I1(u, v)− I2(u, v))2 . (4.21)

The SSD calculates an error measure; in the case of complete identity, the
value is zero. With the same or similar brightness conditions in the images
I1 and I2, the SSD provides a reliable measure, whereby, however, outliers
affect the result considerably because of the squaring. The Sum of Absolute
Differences (SAD) is less sensitive to outliers, with the function f(x, y) =
|x− y|:

SAD(I1, I2) =
∑
u

∑
v

|I1(u, v)− I2(u, v)| . (4.22)

4.3.3 Normalized Correlation Functions

As already addressed, normalized correlation functions achieve invariance with
respect to constant brightness differences. To be distinguished are additive and
multiplicative brightness differences, each of which being handled by a specific
approach.

Let the images I1 and I2 to be compared be given, as defined before. It is now
assumed that these differ by an additive constant value d. Accordingly, for all
(u, v) ∈ {0, . . . , n− 1} × {0, . . . , n− 1} it applies

82 4 Fundamentals of Image Processing

I1(u, v) + d = I2(u, v) . (4.23)

In order to normalize the image data, the calculation of the arithmetic mean
value Ī of a grayscale image I is needed:

Ī :=
1
n2

∑
u

∑
v

I(u, v) . (4.24)

The additively normalized images I ′1 and I ′2 are calculated by the subtraction
of the respective mean value:

I ′1(u, v) = I1(u, v)− Ī1 I ′2(u, v) = I2(u, v)− Ī2 . (4.25)

As can easily be shown, it is I ′1(u, v) = I ′2(u, v):

I ′2(u, v) = I2(u, v)− Ī2 = I2(u, v)− 1
n2

∑
u

∑
v

I2(u, v)

= I1(u, v) + d− 1
n2

∑
u

∑
v

(I1(u, v) + d)

= I1(u, v)− 1
n2

∑
u

∑
v

I1(u, v) = I1(u, v)− Ī1

= I ′1(u, v) .

Now, the additively normalized variants corresponding to the correlation func-
tions presented in the previous section are given. This type of normalization
is usually called Zero mean. The formula for the Zero mean Cross Correlation
(ZCC) reads

ZCC(I1, I2) =
∑
u

∑
v

(I1(u, v)− Ī1) · (I2(u, v)− Ī2) . (4.26)

Analogously, the formulas for the Zero mean Sum of Squared Differences
(ZSSD) and for the Zero mean Sum of Absolute Differences (ZSAD) read

ZSSD(I1, I2) =
∑
u

∑
v

[(I1(u, v)− Ī1)− (I2(u, v)− Ī2)]2 (4.27)

ZSAD(I1, I2) =
∑
u

∑
v

|(I1(u, v)− Ī1)− (I2(u, v)− Ī2)| . (4.28)

In order to deal with multiplicative brightness differences, it is now assumed
that the pixels of the images I1 and I2 differ by a constant factor r. It applies
thus to all (u, v) ∈ {0, . . . , n− 1} × {0, . . . , n− 1}:

r · I1(u, v) = I2(u, v) . (4.29)

In order to normalize the image data, the calculation of the Frobenius norm
||I||H of a grayscale image I is required:

4.3 Correlation Methods 83

||I||H :=
√∑

u

∑
v

I2(u, v) . (4.30)

The multiplicatively normalized images I ′′1 and I ′′2 are calculated by division
by the respective Frobenius norm:

I ′′1 (u, v) =
I1(u, v)
||I1||H

I ′′2 (u, v) =
I2(u, v)
||I2||H

. (4.31)

As can easily be shown, it is I ′′1 (u, v) = I ′′2 (u, v):

I ′′2 (u, v) =
I2(u, v)
||I2||H

=
I2(u, v)√∑
u

∑
v
I2
2 (u, v)

=
r · I1(u, v)√∑

u

∑
v

(r · I1(u, v))2

=
I1(u, v)√∑
u

∑
v
I2
1 (u, v)

=
I1(u, v)
||I1||H

= I ′′1 (u, v) .

The approaches for the normalization of additive and multiplicative brightness
differences are often combined. A purely multiplicative normalization is usu-
ally called normalized, an additive and multiplicative normalization is called
zero mean normalized. In order to normalize both additively and multiplica-
tively, the mean values must first be subtracted and the result be divided by
the Frobenius norm of the new image data I ′. The Frobenius norm of the
additively normalized image data is calculated by

||I ′||H =
√∑

u

∑
v

(I(u, v)− Ī)2 . (4.32)

The formula for the Zero mean Normalized Cross Correlation (ZNCC) reads
then

ZNCC(I1, I2) =
∑
u

∑
v

I1(u, v)− Ī1
||I ′1||H

· I2(u, v)− Ī2
||I ′2||H

=

∑
u

∑
v

(I1(u, v)− Ī1) · (I2(u, v)− Ī2)

||I ′1||H · ||I ′2||H
. (4.33)

With the Zero mean Normalized Sum of Squared Differences (ZNSSD) and
the Zero mean Normalized Sum of Absolute Differences (ZNSAD), the Frobe-
nius norm cannot be excluded from the sum, which affects the runtime un-
favourably. The formulas are:

ZNSSD(I1, I2) =
∑
u

∑
v

[
I1(u, v)− Ī1
||I ′1||H

− I2(u, v)− Ī2
||I ′2||H

]2
(4.34)

ZNSAD(I1, I2) =
∑
u

∑
v

∣∣∣∣I1(u, v)− Ī1
||I ′1||H

− I2(u, v)− Ī2
||I ′2||H

∣∣∣∣ . (4.35)

84 4 Fundamentals of Image Processing

4.4 Homography

A 2D homography can describe the spatial changes in 2D images that are
caused by a pose change of the camera, assuming a planar scene. With a ho-
mography, rotation, distortion, and scaling of an image can be described and
applied. The transformation matrices for the specific cases rotation and scaling
are more relevant for image editing and are described in [Azad et al., 2008].
In the context of object recognition and pose estimation, in particular the
computation of a homography on the basis of a set of 2D-2D point correspon-
dences is of interest, which will be presented in Section 4.4.2.

4.4.1 General Definition

Given the coordinates u, v of an arbitrary image point, the mapping of these
coordinates to the new coordinates u′, v′ by a homography is defined by:

u′ =
a1 u+ a2 v + a3

a7 u+ a8 v + a9

v′ =
a4 u+ a5 v + a6

a7 u+ a8 v + a9
(4.36)

where a1 . . . a9 ∈ R are the parameters specifying the homography. This equa-
tion can be formulated with homogeneous coordinates asu′ s

v′ s
s

 =

a1 a2 a3

a4 a5 a6

a7 a8 a9

u
v
1

or abbreviated

x′ = Ax . (4.37)

The inverted mapping is received through the application of the inverse trans-
formation matrix:

x = A−1x′ . (4.38)

Since this formulation utilizes homogeneous coordinates, it is important to
note that both in Eq. (4.37) and in Eq. (4.38), after the matrix multiplication,
the first two entries of the result vector must be divided by the third entry, in
order to receive the new image coordinates u′, v′. Furthermore, w.l.o.g. a9 = 1
is assumed, since each real-valued multiple of the matrix A defines the same
mapping.

4.4 Homography 85

4.4.2 Least Squares Computation of Homography Parameters

In the context of object recognition and pose estimation on the basis of local
point feature correspondences, homographies are a powerful mathematical
tool for describing and estimating the relationship between the current view
and a matched learned view. With the least squares method presented in the
following, the transformation matrix relating two views can be computed on
the basis of a set of 2D-2D point correspondences. When used iteratively, this
method can filter outliers and compute a reliable 2D pose estimate.

Let a set of point correspondences {xi = (ui, vi),x′i = (u′i, v
′
i)} with i ∈

{1, . . . , n}, n ≥ 4 be given. It is assumed that xi and x′i are related through
Eq. (4.36). As previously mentioned, w.l.o.g. a9 = 1 applies. By reformulation
we get:

a1 u+ a2 v + a3 − a7 uu
′ − a8 v u

′ = u′

a4 u+ a5 v + a6 − a7 u v
′ − a8 v v

′ = v′ .

This finally leads to the following over-determined system of linear equations
using all point correspondences:

u1 v1 1 0 0 0 −u1 u

′
1 −v1 u′1

0 0 0 u1 v1 1 −u1 v
′
1 −v1 v′1

...
...

...
...

...
...

...
...

un vn 1 0 0 0 −un u′n −vn u′n
0 0 0 un vn 1 −un v′n −vn v′n

a1

a2

a3

a4

a5

a6

a7

a8

=

u′1
v′1
...
u′n
v′n

 . (4.39)

This over-determined system of linear equations can be solved optimally in the
sense of the Euclidean norm by using the method of least squares. In practice,
solving this system is numerically unstable i.e. the matrix tends to be ill-
conditioned for imperfect point correspondences. Therefore, the numerically
most stable method for solving the least squares problem should be used,
which is based on the singular value decomposition (see Appendix A.3.3).
However, even when using this method, the computation of the solution re-
mains problematic, and using the 64 bit data type double instead of the 32 bit
data type float leads to significantly more stable results.

Depending on the application, the parameters of a subclass of the homography
can be determined with this approach. For a7 = a8 = 0, we get the subclass of
the affine transformations in two-dimensional space. An affine transformation
has less degrees of freedom and is therefore less flexible. However, the result
is more robust and succeeds also when only few point correspondences are
available. From experience, determining the affine transformation does not

86 4 Fundamentals of Image Processing

suffer from numerical instabilities. The system of linear equations for the
computation of the parameters a1 . . . a6 of the affine transformation on the
basis of at least n ≥ 3 point correspondences reads

u1 v1 1 0 0 0
0 0 0 u1 v1 1
...

...
...

...
...

...
un vn 1 0 0 0
0 0 0 un vn 1

a1

a2

a3

a4

a5

a6

 =

u′1
v′1
...
u′n
v′n

 . (4.40)

4.5 Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical tool that allows to
determine for a given data an orthogonal linear transformation into a coordi-
nate space of lower dimension. This transformation has the property that the
information with the greatest variance is projected on the first coordinate of
the result vector (which is called the principal component), the second great-
est variance on the second coordinate, and so on. In terms of least squares,
PCA computes the optimal transformation for a given data. A descriptive
tutorial on PCA is given in [Smith, 2002].

4.5.1 Mathematical Definition

Let a data consisting of N data sets in an n-dimensional real coordinate space
be given, i.e. {xi} with i ∈ {1, . . . , N} and xi ∈ Rn. Given a target dimension
m < n, PCA computes the optimal linear transformation f : Rn → Rm of the
data in terms of minimal information loss. This transformation f is defined
by a matrix T ∈ Rm×n, whose computation is explained in the following.

First, the data must be mean adjusted, i.e. for each dimension of the data, the
mean value is calculated over all data sets and subtracted from the respective
coordinate of each data set. The adjusted data sets x′i are thus computed by

x′i = xi − x (4.41)

with

x =
1
N

N∑
k=1

xk . (4.42)

The adjusted data is then stored in a matrix B ∈ Rn×N , where each column
contains a data set:

B =
(
x′1 · · · x′N

)
. (4.43)

4.5 Principal Component Analysis 87

In the next step, the covariance matrix C ∈ Rn×n is calculated by

C = BBT . (4.44)

Now, the eigenvectors and eigenvalues of the covariance matrix C must be
computed. Since C is always a symmetric square positive semi-definite matrix,
the eigenvalue decomposition can be accomplished with the singular value
decomposition (see Appendix A.1). In this special case, the SVD of C is equal
to the eigenvalue decomposition C U = UD, i.e. it is

C = UDUT (4.45)

where D ∈ Rn×n is a square diagonal matrix containing the eigenvalues λi of
C and U ∈ Rn×n is a square matrix containing in its columns the eigenvectors
ui of C, i.e.:

D =

λ1

. . .
λn

 (4.46)

and
U =

(
u1 · · · un

)
. (4.47)

The transformation matrix T is now built by choosing the eigenvectors cor-
responding to the m greatest eigenvalues. Assuming that the eigenvalues in
D have been stored in descending order, i.e. λ1 ≥ λ2 ≥ · · · ≥ λn, the m × n
matrix T finally reads

T =
(
u1 · · · um

)T
. (4.48)

4.5.2 Eigenspace

The m-dimensional coordinate space into which the matrix T transforms the
original data is called the eigenspace. For transforming an arbitrary data set
y into the eigenspace, the mean x of the training data (see Eq. (4.42)) must
first be subtracted, and then the transformation matrix T is applied:

y′ = T · (y − x) . (4.49)

Expanding Eq. (4.49) leads to

y′ = T y − c (4.50)

where c = T x is a constant offset, since it only depends on the training data.
In many applications, the main interest is to determine the best match to a
given data set by performing a nearest neighbor search in the eigenspace. In
this case, the subtraction of the constant offset c can be omitted, since it does
not affect the relative distances of the data sets in the eigenspace.

88 4 Fundamentals of Image Processing

If n = m, then T is a square matrix and no compression is achieved. In this
case, assuming that the original data was linearly independent, T has full rank
and can be inverted conventionally. However, for practical use, m < n applies
i.e. T is a non-square matrix, thus the pseudoinverse T+ (see Appendix A.2)
must be used for the inverse transformation. The lossy original data y∗ can
be finally computed by

y∗ = T+y′ + x . (4.51)

Note that the mean x must not be added if it was not subtracted in Eq. (4.49)
or the constant offset c was not subtracted in Eq. (4.50), respectively.

4.5.3 Application

In [Turk and Pentland, 1991], it was shown that PCA can be successfully
utilized for face recognition. Later, it was shown in [Murase and Nayar, 1993]
that PCA can also be used for appearance-based recognition of arbitrary 3D
objects. In the context of this thesis, PCA is used for the compression of the
object views in the object recognition and pose estimation approach proposed
in Section 6.1, in order to make the matching more efficient.

There is a wide variety of other applications of the PCA in computer vi-
sion, among which are the compression of local features [Lepetit et al., 2004,
Obdrzalek and Matas, 2002], of spin images [Johnson and Hebert, 1998b],
or of joint angle configurations of human models [Curio and Giese, 2005].
Apart from compression, PCA can also be used for analyzing image data,
e.g. finding the main axis of a segmented human silhouette, as done in
[Gavrila and Davis, 1996].

When using PCA for pattern matching, it is important to understand what
PCA actually accomplishes. For this, let us regard the training data set as
features in a feature space. PCA maps these features into a lower-dimensional
feature space in which the features are maximally distinctive with the prede-
fined target dimension. Therefore, PCA is suitable for speeding up brute-force
pattern matching algorithms i.e. in the context of example-based learning
methods (see Section 3.5), where no generalization takes place during the
training procedure. Given a set of differing views, either arising from differ-
ent objects or from the same object, PCA allows the efficient and effective
computation of the best match to a given view.

In contrast, PCA is not the adequate mathematical tool for analyzing or
compressing a set of very similar views of the same object. The reason is that,
in general, given a set of similar views of one object, the task is not to find the
best matching view within the set, but to learn a generalized representation
that describes the similarities of these views. PCA would achieve the opposite,
since the principal components correspond to the dissimilarities and not the

4.6 Particle Filtering 89

similarities of the views. In the worst case, the differences of the views are due
to image noise only, which would result in the PCA practically learn noise.

In such cases, not the eigenvectors to the greatest but to the smallest eigen-
values are of interest. In an eigenspace that is constructed by means of the
eigenvectors to the smallest eigenvalues, the decision whether a view belongs
to a class of learned similar views can be accomplished by comparison with
one representative of the class. Classes of similar views can also be automat-
ically identified with the aid of clustering techniques, which are often used
in the context of unsupervised learning methods. The Linear Discriminative
Analysis (LDA), which is closely related to the PCA, computes also a linear
transformation, but takes into account differences between the classes of the
data.

4.6 Particle Filtering

Particle filters, also known as sequential Monte-Carlo methods, are sampling-
based Bayesian filters. A variant of the particle filter is the Condensa-
tion algorithm (Conditional Density Propagation) [Isard and Blake, 1996,
Isard and Blake, 1998], which has become popular in the context of vision-
based tracking algorithms. In the following, given a pre-specified model, a
particle filter is understood as an estimator, which tries to determine the
model configuration that matches the current observations in the best possi-
ble way.

Particle filters approximate the probability density function of a probability
distribution, modeling the state of the estimator by a fixed number of particles.
A particle is a pair (s, π), where s ∈ Rn denotes a model configuration and
π is an associated likelihood; n denotes the dimensionality of the model. The
state of the set of all N particles at the discrete time step t is denoted as

Xt = {(s(i)
t , π

(i)
t)} (4.52)

with i ∈ {1, . . . , N} and t ∈ N0. Particle filtering is an iterative algorithm
operating on this set. In each iteration, the following three steps are performed:

1. Draw n particles from Xt−1, proportionally to their likelihood.

2. Sample a new configuration st for each drawn particle (st−1, πt−1) .

3. Compute a new likelihood πt for each new configuration st by evaluating
the likelihood function p(zt | st) .

where p(z | s) is a likelihood function that computes the a-posteriori probabil-
ity of the configuration s matching the observations z. Here, z is an abstract
variable that stands for any type of data, e.g. for image data in the case of

90 4 Fundamentals of Image Processing

vision-based tracking algorithms. The three steps of a particle filter iteration
are summarized in Algorithm 6 in pseudo code.

Algorithm 6 ParticleFilter(Xt−1, zt) → Xt

Xt := ∅
for k := 1 to N do

Draw i with probability ∝ π(i)
t−1

Sample s
(k)
t ∝ p(st | s(i)

t−1)

π
(k)
t := p(zt | s(k)

t)

Xt := Xt ∪ {(s(k)
t , π

(k)
t)}

end for

Drawing a particle (s(i)
t , π

(i)
t) with probability ∝ π

(i)
t−1 can be accom-

plished efficiently by binary subdivision [Isard and Blake, 1998] (see method
CParticleFilterFramework::PickBaseSample of the IVT).

Sampling a new particle from p(st | s(i)
t−1) is usually accomplished by taking

into account a dynamic model of the object to be tracked and by adding
Gaussian noise for handling unpredictable movements. The given formulation
for the sampling step is specific to the Condensation algorithm. In the general
particle filter, new particles are sampled from p(st | s(i)

t−1, zt), i.e. the current
observations are taken into account in the sampling step as well.

If no dynamic model is used, then the dimensionality of the model is equal
to the number of DoF to be estimated, for instance n = 2 for a 2D tracking
problem. Sampling is performed merely by adding noise:

s
(k)
t = s

(i)
t−1 +B ω (4.53)

where ω ∈ Rn denotes Gaussian noise i.e. the components of the vector are
sampled (independently) from a Gaussian distribution. B ∈ Rn×n is a diago-
nal matrix that contains weights for the components of ω.

When using a constant velocity model for sampling new particles, one com-
mon approach is to estimate the velocity within the particle filter as well by
incorporating the velocity into the particles. Then, for a 2D tracking problem,
it would apply n = 4. For this purpose, the configuration s ∈ Rn is split up
into a position part x ∈ Rn/2 and a velocity part v ∈ Rn/2, i.e. s := (x,v).
Sampling is then performed as follows:

x
(k)
t = x

(i)
t−1 +∆tv

(i)
t−1 +Bx ω

v
(k)
t = v

(i)
t−1 +Bv ω (4.54)

where Bx, Bv ∈ Rn/2×n/2 and ∆t denotes the time elapsed between the dis-
crete time steps t and t− 1. In order to keep the characteristics of a constant

4.7 RANSAC 91

velocity model, the magnitudes of the components of the diagonal matrix Bx
must be small. If Bx is chosen to be the zero matrix, then the position is
strictly determined by the estimated velocity from the previous particle filter
iteration. Note that the likelihood function p(z | s) is usually implemented
as p(z |x) in this case, i.e. the velocity is not incorporated explicitly in the
weighting function.

Finally, the estimation of a particle filter after an iteration is usually calculated
by the weighted mean s over all particles:

s :=
N∑
k=1

πk · sk . (4.55)

Various extensions to the standard particle filtering scheme have
been proposed. Among these are the partitioned sampling theory
[MacCormick and Isard, 2000, MacCormick, 2000], annealed particle fil-
tering [Deutscher et al., 2000, Deutscher et al., 2001], Rao-Blackwellization
[Casella and Robert, 1996, Doucet et al., 2000], and auxiliary particle filters
[Pitt and Shepard, 1999]. Switching between dynamic models in particle fil-
ters has been proposed in [Bando et al., 2004]. The extensions used by the
proposed human motion capture system are explained in Chapter 7.

4.7 RANSAC

The RANSAC paradigm (RANdom SAmple Consensus)
[Fischler and Bolles, 1981] describes a method for robustly determining
a consistent subset of a data set, with respect to a given model. It can be
regarded as the counterpart to iterative least squares methods. Conventional
iterative least squares is a top-down method i.e. all data points of the
data set are used as input to an over-determined equation system, which is
minimized. Subsequently, outliers are filtered on the basis of the solution,
and the whole procedure is performed iteratively. In contrast, RANSAC is
a bottom-up method that iteratively selects a minimum number of data
points to specify an instance of the model. If the number of data points
satisfying this instance is sufficiently high, then it is returned as the result.
Usually, RANSAC is used for filtering outliers before applying an (iterative)
least squares method. In this thesis, the RANSAC algorithm is used for
homography estimation (see Section 6.2.3.2) and for fitting a plane into a 3D
point cloud (see Section 6.2.4).

Let a model be given that requires a minimum of n data points to compute an
instance and a set P consisting of |P | ≥ n data points. Then, the RANSAC
method is specified as follows:

92 4 Fundamentals of Image Processing

Algorithm 7 RANSAC(P, n) → M,S∗
1. Perform the steps 2–4 at most k times.
2. Randomly select a subset S ⊂ P of n data points and compute an instance M

of the model.
3. Determine the subset S∗ ⊂ P of all data points that satisfy the model M within

some error tolerance t. The set S∗ is called the consensus of S.
4. If the number of points |S∗| exceeds a threshold m, then return M,S∗.

The parameters of Algorithm 7 are the maximum number of attempts k,
the error tolerance t, and the minimum required number of data points m
satisfying the model in order to state success. In [Fischler and Bolles, 1981],
it is shown that the maximum number of attempts needed can be estimated
as a function of n:

k(n) = w−n (4.56)

where w ∈ [0, 1] denotes the probability that any point of the data set P is
within the error tolerance t. Given a desired probability p ∈ [0, 1] that some
solution is found, the number of attempts needed is:

k(n, p) =
log (1− p)

log (1− wn)
. (4.57)

According to [Fischler and Bolles, 1981], one or two times the standard devi-
ation of k should be added before giving up, approximately resulting in two
or three times the result of k(n) or k(n, p), respectively.

5

Guiding Principles

In this chapter, the guiding principles underlying this thesis are summarized.
Some readers might not fully agree with the importance of stereo vision for
the goal of pose estimation in 3D space as it is understood in this thesis. Nev-
ertheless, it is this conviction that was decisive for the developed algorithms
in this work.

5.1 Ways of using Calibrated Stereo Camera Systems

Using a stereo camera system is more than computing and operating on dis-
parity maps. In fact, the quality of disparity maps is relatively low in practice.
However, there are several other variants for using a stereo camera system:

1. Stereo triangulation of single point correspondences.

2. Computation of sparse but accurate 3D point clouds.

3. Implicit stereo.

Single point correspondences can be established on the basis of specific fea-
tures. For instance, when performing color segmentation, the centroids of color
blobs can be triangulated in order to calculate a 3D position. In the systems
developed in this thesis, this variant is used for the calculation of position esti-
mates of the hands and the head of a person, as well as for an initial estimate
for the position of single-colored objects. The corrective calculations for the
refinement of the position estimate are explained in the respective sections.

The reason for the comparatively low quality of disparity maps is that the
correspondence problem cannot be solved within homogeneous regions with
conventional correlation methods. However, correspondences can be estab-
lished reliably at highly textured image locations. Naturally, image points
calculated by corner detectors (see Section 2.1.2.1) are optimal candidates for

94 5 Guiding Principles

this purpose. Within a certain area of interest in the left camera image, corre-
spondences in the right camera image can be computed for these candidates
only. For each correspondence, the matched position can be refined to subpixel
precision, in order to subsequently compute an accurate 3D point by stereo
triangulation. The result is a sparse 3D point cloud consisting of reliable and
accurate surface points.

So far, methods have been introduced that perform explicit 3D calculations
on the basis of 2D-2D point correspondences between the left and right cam-
era image. In what we call implicit stereo, 3D information is acquired as well,
but not by explicit stereo triangulation of previously established point cor-
respondences. A good example is the application within a particle filtering
framework (see Section 4.6). Suppose a specific configuration of the 3D model
of the object of interest is projected into the left and the right camera im-
age. An evaluation function that becomes maximal when the configuration
matches both images in the best way, automatically drives the particle filter
toward configurations that are consistent in 3D. It must be noted that, in
general, 3D information calculated in this way is not as accurate as the result
of explicit stereo triangulation, especially for stereo systems with a small base-
line. However, implicit stereo can be combined with explicit 3D calculations,
as will be shown in Chapter 7.

For all mentioned variants, it is convenient to have explicit knowledge about
the pose of the world coordinate system. Therefore, the extrinsic parameters
R1, t1 and R2, t2 determined by the calibration procedure are transformed,
so that the camera coordinate system of the left camera becomes the identity
transformation, i.e. R′1 = I and t′1 = 0. The transformed extrinsic param-
eters of the right camera, R = R′2, t = t′2, are then defined by (see e.g.
[Azad et al., 2008]):

R = R2R
T
1

t = t2 −R2R
T
1 t1 . (5.1)

Throughout the following chapters, it is assumed that this transformation
has been applied after performing stereo calibration, and thus the extrinsic
calibration of the stereo camera system is defined by the parameters R and t.

5.2 Eye Movements

When dealing with a robot head with moveable eyes, a strategy is required
for coping with the problem of the potentially changing extrinsic calibration.
There are four alternative approaches for this:

1. Defining one or several home positions, for which the extrinsic calibration
is known.

5.3 Rectification of Stereo Image Pairs 95

2. Updating the extrinsic calibration at runtime on the basis of an offline
kinematic calibration of the head.

3. Performing automatic calibration at runtime.

4. Avoid the use of the extrinsic calibration if possible.

Given a sufficient repeat accuracy of the involved degrees of freedom, the
extrinsic calibration can be computed offline for one or more home positions.
When 3D calculations are to be performed, then one of these home positions
is approached and the respective calibration parameters are retrieved. This
approach has been used within this thesis, since it achieves maximum accuracy
with minimum effort.

By knowing the position and orientation of the camera axes, the extrinsic
calibration can be updated at runtime. However, due to manufacturing im-
perfections and since the position of the image sensors within the cameras are
not known, a kinematic calibration of the head must be performed offline.

The automatic calibration of stereo camera systems, or short auto-calibration,
calculates the extrinsic camera parameters at runtime on the basis of 2D-2D
point correspondences between the left and right camera images. For this
purpose, first the fundamental matrix is computed by a least squares method
using the point correspondences. Using the constant intrinsic camera param-
eters, the essential matrix can be computed directly from the fundamental
matrix, finally yielding the rotation and translation between the two cameras
(see [Hartley and Zisserman, 2004]).

Some tasks can be performed without any knowledge of calibration param-
eters. One example is the active tracking of objects that can be located in-
dependently in both camera images. Based on the differences between the
located positions and a pre-calculated fixed 2D relaxation position for each
camera – e.g. the center in each image – control laws can be specified that
move the neck and the eyes in a way that the object moves toward a pre-
defined relaxation position in both images [Ude et al., 2006]. While smooth
pursuit can be achieved with such an approach, explicit 3D measurements for
grasp execution cannot be computed in this way.

5.3 Rectification of Stereo Image Pairs

The rectification of a stereo image pair is a transformation that is defined by
a pair of homographies, one for each image. The goal is to align the epipolar
lines so that they all become parallel and horizontal and that corresponding
epipolar lines are located at the same height in both images. The main ap-
plication for rectified images is the calculation of dense disparity maps. On

96 5 Guiding Principles

rectified images, the correlation procedure can be optimized significantly by
utilizing running sum tables [Faugeras et al., 1993].

However, when not computing disparity maps, rectification should be avoided.
The only goal of rectification is the alignment of the epipolar lines, which
is bought at the expense of potential distortions. Depending on the stereo
setup, the resulting image pair does not exhibit the same geometric conditions
as the original image pair. Furthermore, the application of the rectification
homography involves interpolation for assigning the new pixel values, which
is to be avoided whenever possible.

Finally, it must not be forgotten that when calculating 3D points by stereo tri-
angulation of correspondences in the rectified images, the projection matrices
must be updated for being valid for the rectified images. An alternative is to
calculate the corresponding pixel coordinates in the original images by apply-
ing the inverse mapping function and use the resulting coordinates as input
to the stereo triangulation algorithm with the original projection matrices.

5.4 Undistortion of Images

The undistortion of an image is defined on a single image and its goal is to undo
the effects of lens distortions, as illustrated in Fig. 4.2. It has nothing to do
with the epipolar geometry. In contrast to rectification, undistortion does not
falsify geometric conditions but restore them. In particular, lenses with a small
focal length can cause severe lens distortions. For instance, a straight line in
3D space projects to a curve in the distorted image, but appears straight again
in the undistorted image. For any kind of computation that involves epipolar
lines, the images should be undistorted – if the effect of lens distortions is
visible – since the epipolar geometry is valid for a purely linear projection
only.

However, the undistortion operation performs a remapping of the complete
image involving interpolation of pixel values, as it is the case for rectification.
Furthermore, the additional computational effort for performing undistortion
should be considered as well. Therefore, for lenses that cause only few distor-
tions, it can be advantageous to operate on the distorted images and instead
use Algorithm 1 for calculating the undistorted pixel coordinates if necessary.
The undistorted coordinates can then be used directly as input to compu-
tations from 2D to 3D, i.e. from the image coordinate system to the world
coordinate system, as shown in Algorithm 4. In this way, it is possible to
compute precise 3D points, e.g. by stereo triangulation, without having to
undistort the images beforehand.

As already stated, the decision whether to perform undistortion or not de-
pends on the used lenses. When dealing with wide-angle lenses, it is crucial

5.5 Grasp Execution 97

to perform undistortion if geometric structures are to be detected and recog-
nized. Throughout the experiments with lenses having a focal length of 4 mm,
the images were undistorted before applying the developed object recogni-
tion and pose estimation systems. From experience, lenses with a focal length
of 6 mm or higher produce good enough images so that undistortion can be
omitted.

5.5 Grasp Execution

Object manipulation with humanoid robotic systems is an essentially different
problem compared to solving the same task with an industrial robotic manip-
ulator. The main difference lies in the accuracy of the so-called hand-eye
calibration. With industrial robotic systems, this problem can be solved fairly
easily: The inverse kinematics of an industrial robotic arm is very precise, and
often a static stereo camera system is used. For instance, the precision of one
of the smallest Kuka six-axis jointed arms, KR 5 sixx R6501, weighing 28 kg
and having a maximum payload of 5 kg, has a repeatability of < ± 0.02 mm.
With a static camera system, the accuracy of the hand-eye calibration thus
practically depends on the accuracy of the stereo system only. Depending on
the setup, precisions of approx. ± 1 mm can be achieved easily.

With a humanoid robotic system with light-weight arms and often using wire-
driven mechanics, the repeatability is significantly lower. Even more critical
is the problem of the usually imprecise inverse kinematics and therefore the
hand-eye calibration. The reason for this is that the kinematic model of the
robot is formulated on the basis of CAD models of the robot. However, in
practice, small translational and rotational deviations in each joint occur dur-
ing manufacturing. These lead to a large accumulated error of the calibration
between the camera system and the end effectors, i.e. the robot’s hands. One
has to keep in mind that for a 7 DoF robot arm and 3 DoF neck with even
fixed eyes, already the kinematic chain between the hand and the eye consists
of 10 DoF. In practice, the final error of the inverse kinematics with respect
to the camera system can amount to > ± 5 cm.

One approach to tackle this problem is to learn the hand-eye calibration on
the basis of a 3D tracking object attached to the hand, which is observed by
the robot’s camera system. While this is a good approach for executing the
trajectory computed by a path planning module, it cannot solve the problem
for the final centimeters to the object when using wire-driven actuators. The
reason is that the wires can stretch between the time of learning and the time
of application. Therefore, often visual servoing is used for the final close range.
Visual servoing means here that both the robot’s hand and the target object

1 http://www.kuka.com

http://www.kuka.com

98 5 Guiding Principles

are tracked by the camera system, and a specific control law defined on the
measured 3D pose difference incrementally moves the hand toward the object.

For such an approach, it is usually not sufficient to compute the object pose
once and then execute the grasp. The reason is that the robot’s hip and
head often must be involved in the servoing procedure, in order to extend the
working space of the robot. Both head and hip movements change the relative
pose of the object with respect to the camera coordinate system. Since, as
explained, the kinematics of humanoid robotic systems are often not accurate
enough to update the pose, this must be computed within the loop of the
visual servoing controller. Finally, the described visual servoing technique for
grasping objects sets the following requirements to the vision system:

1. The higher the processing rate of the vision system, the faster the grasp
can be executed with the same precision.

2. The depth accuracy is of essential importance for a successful grasp.

As explained in Section 6.2.1 in theory and shown in Section 9.2.1 in practice,
for image-based solutions, a maximum depth accuracy is achieved by utilizing
a calibrated stereo camera system. In particular, it is advantageous to esti-
mate the (robot’s) hand pose and the object pose with the same mathematic
principles, since then, the effect of constant absolute errors of the pose esti-
mation method becomes minimal. When using stereo triangulation as a basis
both for estimating the hand pose and the object pose, small errors of the
stereo calibration have only limited or even no consequence.

5.6 Imitiation Learning

Humanoid robots are expected to exist and work together with human beings
in everyday environments some day. In doing so they need to be able to
interact and cooperate with humans. Interaction is facilitated if the robot
behaves in a human-like way, which implies that its movements look natural.
In addition to that, given the dynamic character of the environment in which
humanoid robots are expected to work, they need to have a high degree of
flexibility. They need to be able to adapt to changes in the environment and
to learn new tasks continuously, and they are expected to carry out a huge
variety of different tasks. This distinguishes them from industrial robots which
normally only need to perform a small number of rather primitive tasks in
a static environment. It seems impossible to create a humanoid robot with
built-in knowledge of all possible states and actions. Therefore, there has to
be a way of teaching the robot new tasks. [Asfour et al., 2008]

Teaching a robot can be done in a number of ways, for example by means of
a robot programming language or a simulation-based graphical programming

5.6 Imitiation Learning 99

interface. Another method is “teaching by guiding”, where the instructor op-
erates a robot manipulator while its motion is recorded. The recorded move-
ments are then added to the robot’s action repertoire. Such techniques are
well-suited for industrial robots; however, in the domain of humanoid robots,
where robots are expected to cooperate with unexperienced users, these tech-
niques suffer from several drawbacks. They are lengthy, complex, inflexible and
require special programming skills or costly hardware [Kuniyoshi et al., 1994].
That contradicts the purpose of humanoid robots which is to make life easier
for us. It is essential that teaching such robots will not be too difficult and
time-consuming.

An approach that addresses both issues (human-like motion and easy teach-
ing of new tasks) is imitation learning : It facilitates teaching a robot new
tasks and at the same time makes the robot move like a human. Imi-
tation learning is basically the concept of having a robot observe a hu-
man instructor performing a task and imitating it when needed. Robot
learning by imitation, also referred to as programming by demonstration,
has been dealt with in the literature as a promising way to teach hu-
manoid robots, and several imitation learning systems and architectures
based on the perception and analysis of human demonstrations have been
proposed [Dillmann, 2004, Billard and Siegwart, 2004, Billard et al., 2004,
Calinon et al., 2005, Atkeson and Schaal, 1997, Schaal et al., 2003]. In most
architectures, the imitation process proceeds through three stages: percep-
tion/analysis, recognition, and reproduction. An overview of the basic ideas
of imitation learning in robots as well as humans is given in [Schaal, 1999].

The work in this thesis on a markerless human motion capture system for
humanoid robot systems, which is presented in Chapter 7, aims at provid-
ing a basis for the first stage of the imitation learning process: perception.
In order to allow natural teaching of robots by means of imitation learning,
it is crucial that the robot possesses the capability to perceive 3D human
motion with its onboard sensors and without any additional facilities such as
artificial markers. For this purpose, the human motion capture system must
run in real-time, be capable of automatic initialization, and acquire smooth
trajectories, while not missing out characteristic details of the trajectory. The
recognition of distinctive body postures only or the acquisition of noisy trajec-
tories in between such postures, respectively, is not sufficient for the purpose
of imitation learning.

6

Stereo-based Object Recognition and Pose
Estimation System

In this chapter, the developed system for the recognition and pose estimation
of objects is presented. The system consists of two subsystems: one for objects
that can be segmented globally and are defined by their shape only, and the
other for textured objects, which can be recognized on the basis of point
features. The relation to state-of-the-art systems will be explained at the
beginning of the Sections 6.1 and 6.2, respectively.

In both subsystems, a calibrated stereo system is used for calculating the
object pose, leading to a more robust estimation and a higher accuracy, as
will be shown in the Sections 9.1 and 9.2. Both subsystems offer two operation
modes: one for a complete scene analysis, and the other for the recognition and
pose estimation for a specific object representation. The latter mode allows
fast tracking of a single object, which is in particular necessary for visual
servoing applications.

6.1 Recognition and Pose Estimation based on the Shape

The recognition and in particular pose estimation of 3D objects based on their
shape has so far been addressed only for specific object geometries. Edge-
based recognition and tracking methods rely on the extraction of straight line
segments or other primitives, as explained in the Sections 2.2.1 and 2.2.2.
Straight-forward extensions of 2D approaches such as geometric hashing (see
Section 2.2.2.2), which for practical application also rely on the extraction of
primitives or interest points, in addition assume a limited range of possible
view angles.

It is an accepted fact that 3D shapes can in general not be represented by a
single 2D representation [Lowe, 1987]. The reason is that a 3D object can po-
tentially produce completely different 2D projections depending on the view

102 6 Stereo-based Object Recognition and Pose Estimation System

angle, as illustrated in Fig. 6.1. One way to tackle this problem is to use
canonical views, which were introduced by the biological vision community
[Palmer et al., 1981] and later became of interest in the computer vision com-
munity [Weinshall and Werman, 1997, Denton et al., 2004]. The general idea
of canonical views is to represent an object by a reduced number of views that
are sufficient to cover all possible appearances of the object. A suitable data
structure for storing and arranging such views is an aspect graph; a survey is
given in [Schiffenbauer, 2001]. However, such representations are mainly used
for recognition and a rather coarse localization of the object; an accurate
shape-based 6D pose estimation requires more information than matching of
canonical views can provide and must be regarded as a separate problem.
Other approaches model the appearance of an object by one or several 2D
contours. Similarly to canonical views, the full pose of the object, i.e. rota-
tion and translation in 3D space, cannot be derived accurately on the basis
of deformable 2D contours directly.

Fig. 6.1. Different views of a measuring cup.

As already stated, traditional model-based recognition and pose estimation
methods rely on relatively simple object geometries. Straight line segments
can be mapped very efficiently to the image and correspondences between 2D
points or lines and 3D model points can be established easily. These corre-
spondences build the input to a minimization approach, as explained in Sec-
tion 2.2.1. However, when dealing with more complex shapes, as illustrated
in Fig. 6.2, this approach becomes inapplicable. In particular, curved sur-
faces can be modeled accurately only by a multiplicity of polygons, leading to
a substantially higher computational effort for 2D projection. Furthermore,
the contour of the object cannot be expressed by straight line segments of
the model anymore, making both contour and correspondence computation a
complicated and computationally expensive task.

In the recent past, global appearance-based recognition and pose estimation
methods (see Section 2.1.1) have become less popular; the trend goes to-
ward local appearance-based methods using point features (see Section 2.1.1).
However, there is no practical reason for which global methods are used very
rarely. Restricting the range of the material (i.e. texture and color) – not the
background – allows relatively simple segmentation of objects. Especially for
the intended application of manipulation with humanoid robots, this is a rea-

6.1 Recognition and Pose Estimation based on the Shape 103

Fig. 6.2. Illustration of a 3D model of a can. Left: wire model. Right: rendered
model.

sonable choice. The goal is robust and fast application on a humanoid robot
system, therefore it is legitimate to make a simplifying assumption in order to
make the segmentation problem tractable. Segmenting arbitrary objects in an
arbitrary scene, which humans are able to accomplish perfectly on the basis
of a lot of background knowledge, is an unsolved problem in computer vision.
Thus, choosing the material so that the objects can be segmented with state-
of-the-art methods is a legitimate choice to tackle a problem that is unsolved
for the general case.

In the following, a new approach to the problem of shape-based recognition
and 6D pose estimation of globally segmentable objects will be presented. As
the focus is clearly on the robust recognition and accurate pose estimation,
the segmentation routine used for pre-processing is not of particular interest.
Throughout the experiments, the color segmentation method explained in
Section 4.2.3 was utilized, which achieves very good segmentation results using
fixed color models.

At a first glance the problem might give the impression to be rather easy to
solve. However, when taking a closer look, a single-colored object does not
provide any features that could be used for processing – except its shape.
Therefore, all approaches based on the extraction and matching of local point
features would fail. The solution of the problem to be defined in the following
section is thus also interesting from a theoretical point of view. In particular,
the computation of an accurate pose in 3D space is a problem that does not
become any simpler, when moving from real data to perfect simulation data.

After defining the problem to be solved in Section 6.1.1, the basic approach will
be introduced in Section 6.1.2. Important improvements of the basic approach
regarding the accuracy of the estimated pose and the enhancement of the
robustness of the method are explained in detail in the subsequent sections.

6.1.1 Problem Definition

In the following, the definition of the problem to be solved will be formulated:
Given a database consisting of geometric 3D object models of arbitrary shape,

104 6 Stereo-based Object Recognition and Pose Estimation System

a calibrated stereo camera system, and the segmented views of an object in
both camera images, the task is to efficiently compute the identity of the
object and its accurate position and orientation in 3D space. The system
should recognize and reject unknown views robustly i.e. exhibit a minimum
false positive rate, while having a maximum recognition rate. An optimal
input image pair, which was generated in simulation, is shown in Fig. 6.3.

Fig. 6.3. Example of an optimal input image pair of a measuring cup. Left: left
camera image. Right: right camera image.

Segmentation is understood as the computation of a region of connected pix-
els containing the object; it is not part of the theoretical problem itself. An
optimal segmentation result for the input image pair from Fig. 6.3 is shown
in Fig. 6.4. The regions can be computed with a connected components algo-
rithm, such as region growing (see e.g. [Azad et al., 2008]).

Fig. 6.4. Example of an optimal segmented image pair of a measuring cup. Left:
left camera image. Right: right camera image.

6.1.2 Basic Approach

The basic idea of the developed approach for this problem has been presented
in [Azad et al., 2006a], and will be explained in the following. The approach

6.1 Recognition and Pose Estimation based on the Shape 105

has been inspired by the global appearance-based object recognition system
proposed in [Nayar et al., 1996] (see Section 2.1.1.1). However, this system is
far away from being applicable on a humanoid robot in a realistic scenario for
the following reasons:

• A black background is assumed.

• Different views are produced using a rotation plate. Thus, the pose of the
object is not estimated in 6D but in 1D.

• Recognition is performed with practically the same setup as for learning.

The approach being presented in the following is based on the idea of global
appearance-based object recognition and pose estimation, and extends the
state of the art by the recognition and 6D pose estimation of 3D objects using
stereo vision.

6.1.2.1 Region Processing Pipeline

Before a segmented region can be used as input to pattern matching algo-
rithms, it has to be transformed into a normalized representation. For ap-
plication of the PCA, the region has to be normalized in size. This is done
by resizing the region to a squared window of 64×64 pixels. There are two
options: resizing with or without keeping the aspect ratio of the region. As
illustrated in Fig. 6.5, not keeping the aspect ratio can cause falsifications in
the appearance of an object, which lead to false matches. Keeping the aspect
ratio can be achieved by using a conventional resize function with bilinear
or bicubic interpolation and transforming the region to a temporary target
image with width and height (w0, h0) = s(w, h, k), which can be calculated
with the following equation:

s(w, h, k) :=
{

(k, bkhw + 0.5c) : w ≥ h
(bkwh + 0.5c, k) : otherwise

(6.1)

where (w, h) denotes the width and height of the region to be normalized,
and k is the side length of the squared destination window. The resulting
temporary image of size (w0, h0) is then copied into the destination image of
size (k, k), which is possible because it is guaranteed that w0, h0 ≤ k.

In the second step, the gradient image is calculated for the normalized win-
dow. This is done for two reasons. First, symmetries which lead to a very
similar projection of an object are less ambiguous in the gradient image, be-
cause there the edges gain more significance for correlation. This circumstance
is shown in Fig. 6.6, where the half ellipse at the top of the cup in the middle
column has more significance. Furthermore, calculating the match on the ba-
sis of the gradients achieves some robustness to varying lighting conditions,

106 6 Stereo-based Object Recognition and Pose Estimation System

Fig. 6.5. Illustration of size normalization. Left: original view. Middle: normaliza-
tion with keeping aspect ratio. Right: normalization without keeping aspect ratio.

which can produce different shading. The second advantage is that some ro-
bustness can be achieved to occlusions, because occluded regions do not lead
to misclassifications as long as the object is segmented properly and its edges
are visible to a sufficient extent.

Fig. 6.6. Illustration of the difference between matching on the grayscale image
and on the gradient image. Left: input region. Middle: correct match. Right: wrong
similar match.

Finally, in order to achieve invariance to constant additive and multiplicative
illumination changes, the mean value is first subtracted from the image, and
then it is divided by the Frobenius norm (see Eqs. (4.34) and (4.35) from
Section 4.3.3):

I ′(u, v) =
∑
u

∑
v

I(u, v)− Ī√∑
u

∑
v

(I(u, v)− Ī)2
. (6.2)

By normalizing the intensity of the gradient image, variations in the embodi-
ment of the edges can be handled effectively.

6.1.2.2 Recognition

Recognition of objects is accomplished by performing pattern matching for the
normalized object views. As done in [Nayar et al., 1996], the normalized views

6.1 Recognition and Pose Estimation based on the Shape 107

are compared to all views of all objects stored in the database. This matching
procedure is speeded up by application of the PCA (see Section 4.5).

The PCA is applied to the set of all views of all objects, resulting in the so-
called universal eigenspace, as introduced in [Murase and Nayar, 1993] (see
Section 2.1.1.1). The best match is determined by computing the nearest
neighbor in the eigenspace. For this purpose, each normalized region must be
transformed with the transformation matrix that was computed by the PCA.
The distance between the transformed region and the nearest neighbor in the
eigenspace serves as a quality measure, and a predefined threshold is used for
deciding whether a candidate region contains an object or not.

6.1.2.3 6D Pose Estimation

Ideally, for appearance-based 6D pose estimation with respect to a rigid object
model, for each object, training views would have to be acquired in the com-
plete six-dimensional space i.e. varying orientation and position. The reason
for this is that not only the orientation influences the projected appearance
of an object, but also the translation does. In other words, an object with
the same orientation appears in a different way if its position changes, as
illustrated in Fig. 6.7.

Fig. 6.7. Illustration of the influence of the position on the appearance. The views
were generated with the same orientation of the object, only the position was mod-
ified.

However, in practice a six-dimensional search space for the pose is too large
for a powerful object recognition and pose estimation system. Therefore, with
the proposed approach, the problem is solved by calculating position and
orientation independently in first place.

The basis for the calculation of the position is the result of stereo triangulation
between the centroids of the matched regions in the left and the right image.
However, the result varies with the view of the object. As illustrated in Fig. 6.8,

108 6 Stereo-based Object Recognition and Pose Estimation System

for each view, a 3D correction vector ct can be defined, which is added to the
triangulation result during the pose estimation process.

As already explained, the projected appearance of an object is influenced by
both the orientation and position of the object. Therefore, the introduced po-
sition correction vector is only accurate if the object is located at the same
position it was recorded with when computing and storing the position cor-
rection vector. In all other cases, the correction can only be an approximation.
An accurate solution to this problem is presented in Section 6.1.4.

Reference
Point

Triangulated
Point

Reference
Point

Triangulated
Point

ct
ct

Fig. 6.8. Illustration of the definition of the position correction vector for two
different views of the same object.

The orientation of an object is calculated on the basis of the rotational infor-
mation that was stored with each view during the acquisition process. How-
ever, assuming that the translation for each stored view was zero in the x-
and y-component – the training views are generated in the center of the left
camera image – causes an error if the object to be localized is not located in
the center of the image. Using the previously computed translation, an orien-
tation correction can be computed, which will be presented in Section 6.1.3.
As a conclusion, in the basic approach presented in this section, for the case
of the object being located in the center of the left camera image, a relatively
accurate pose estimate is calculated by

t = f(pl,pr) + ct (6.3)
R = R0 (6.4)

where pl, pr denote the centroids of the matching regions in the left and
right image, f : R2 × R2 → R3 is the transformation performing the stereo
triangulation for two matching centroids, ct is the position correction vector
illustrated in Fig. 6.8, and R0 is the stored rotation for the recognized view.
Precise correction methods for the general case are introduced in the Sections
6.1.3 and 6.1.4. Note that another way for achieving a high precision without
further corrective calculation is to foveate the object of interest in the left
camera image. By doing this, the pose of only one object at a time could be
estimated accurately, which, however, would be sufficient for grasping a single
object with a robot that has an active head.

6.1 Recognition and Pose Estimation based on the Shape 109

6.1.2.4 Convenient Acquisition of Training Views

The approach that has been proposed in the previous sections is purely
appearance-based i.e. no model is needed for the acquisition of the views
of the object. A suitable hardware setup for the acquisition would consist
of an accurate robot manipulator and a stereo camera system. However, the
hardware effort is quite high and the calibration between the head and the
manipulator has to be known for the generation of accurate data.

Since the intention is to build a vision system suitable for grasp planning and
execution, some kind of 3D model of the objects is needed in any case. For
grasp planning and execution, a model in terms of 3D primitives is sufficient,
as shown in [Kragic et al., 2001]. If in addition having a rather exact 3D model
for each object, it is possible to simulate the training views with a 3D engine
in software, rather than requiring a hardware setup. Accurate 3D models can
either be created by manual design with a CAD program or using an object
modeling center, as presented in [Becher et al., 2006]. Using a 3D model for
the generation of views has several advantages:

• Acquisition of views is more convenient, faster, and more accurate.

• The 3D model can be used for online optimizations.

• By emulating the stereo setup, the simulation can serve as a valuable tool
for the evaluation of the accuracy under perfect conditions.

• The matched view is automatically given in terms of the 3D model that
builds the interface to other applications.

By using an appearance-based approach for a model-based object representa-
tion in the core of the system, it is possible to recognize and estimate the pose
of the objects in a given scene in real-time – which would by far be impossible
with a purely model-based method. Our framework for grasp planning and
execution, incorporating the object recognition and pose estimation systems
developed in this thesis, is described in [Morales et al., 2006].

6.1.3 Orientation Correction

The core idea of the pose estimation procedure is to decouple the determina-
tion of the position and the orientation in first place, in order to make the
problem tractable. However, this decoupling has the effect that the rotation
information stored with each view is only valid if the object is recognized at
the same position in the image it was learned with. The influence of the object
position on its appearance is illustrated in Fig. 6.7.

The error that is caused by a deviating position can be corrected analytically.
Let the position of the training view be tl and the position of the current

110 6 Stereo-based Object Recognition and Pose Estimation System

view be t, both being specified in the camera coordinate system. The idea is
to assume a spherical image sensor and to calculate the rotation Rc that is
necessary to rotate the projection of tl to t, with the origin of the rotation
being the projection center as the center of the image sensor sphere.

An object at the position tl with its orientation being described by the rotation
matrix R0 produces a specific appearance when projected onto the spherical
image sensor. If rotating the object with the rotation matrix Rc, i.e. rotating
its position and orientation, then it produces the exact same appearance at a
different position of the image sphere.

Thus, when retrieving the stored rotation information R0, assuming that the
object producing the current view is located at the position tl, the object
must be rotated around the projection center to its true position t to produce
the same appearance at the actual position of the image sensor. Therefore,
the only thing that has to be done for correcting the rotation is to apply the
corrective rotation Rc to the retrieved rotation R0:

R = RcR0 (6.5)

with Rc being defined by
Rc tl = t . (6.6)

In order to be able to compute the corrective rotation Rc, the vectors tl and t
must have been normalized to the same length beforehand. This normalization
is legitimate, since a differing distance of the object to the projection center
essentially causes a different size of its appearance, when being moved along
the principal axis. Note that many rotation matrices Rc satisfy the condition
of Eq. (6.6), but that rotation matrix Rc is searched that directly transfers
tl to t, without using the undetermined degree of freedom. The matrix Rc is
thus computed by RotationMatrixAxisAngle(tl × t, Angle(tl, t, tl × t)); the
respective functions are explained in Appendix A.4. The effect of the orienta-
tion correction is shown in Fig. 6.9 for an example scene.

For the experiments, the training views were produced so that the object was
located at the center of the left camera image. The world coordinate system
was the camera coordinate system of the left camera. Therefore, the position
of the object was t = (0, 0, z)T throughout the acquisition of the training
views, with z being constant. The origin of the object coordinate system was
set to its center of mass.

6.1.4 Position Correction

As already explained, the position of the object is computed on the basis
of the triangulated centroids of the segmented regions using the calibrated
stereo system. However, the triangulation result is error-prone because of three
reasons:

6.1 Recognition and Pose Estimation based on the Shape 111

Fig. 6.9. Effect of the orientation correction on an example scene. Left: no correc-
tion. Right: with orientation correction.

1. The position of the triangulated 3D point in the object coordinate system
differs depending on the view.

2. The centroids of the 2D regions in general do not originate from projection
of any point on the surface of the object.

3. The projection on a planar image sensor causes a deformed image of the
object.

The problem arising from reason 1 is illustrated in Fig. 6.8. As can be seen,
the position of the triangulated point varies drastically depending on the view;
the relation to a fixed reference point therefore is not constant and is view-
dependant.

Reason (2) effectively leads to the same problem i.e. the relationship between
the triangulated point and the object is unknown. Intuitively one might first
think that triangulating the centroids of the 2D regions results in the compu-
tation of a point on the surface of the object. While this is approximately true
for planar objects, it is not true for 3D objects. Even for the optimal case of a
sphere, the triangulated point does not lie on the surface and varies depending
on the position of the sphere, as illustrated in Fig. 6.10. The experiment with
which the image pair was generated is explained below in detail. For Fig. 6.10,
the center of the sphere was located at (x, y, z) = (0, 0, 450), its radius was
100 mm. Triangulation of the centroids, which are marked by the white dots,
resulted in (x′, y′, z′) ≈ (−0.37 −0.37, 427.68). Thus, the computed point lies
inside the sphere, being significantly closer to the center than to the surface.

The triangulation error for a sphere was measured in a simulated experiment
under perfect conditions. A standard stereo camera system with a baseline of
100 mm was simulated using OpenGL. The cameras were pointing to the same
direction i.e. their principal axes were running parallel. The focal length was
fx = fy = 580 and the principal point was located at (cx, cy) = (320, 240). A
sphere with a radius of 100 mm was moved along the z-axis, its center moving

112 6 Stereo-based Object Recognition and Pose Estimation System

Fig. 6.10. Illustration of the triangulation problem. The white dot marks the cal-
culated centroid of the region. The black dot marks the corresponding point on
the surface of the sphere calculated by intersection of the view ray through the
triangulation result with the sphere. Left: left camera image. Right: right camera
image.

from z = 450 to z = 2000, with x = y = 0. The results of this experiment are
shown in Fig. 6.11.

If the error was constant, then a relationship between a reference point of
the sphere and the triangulation result could be established. However, as can
be seen, the error varies depending on the sphere’s position. From 450 mm
to approx. 900 mm the error is mainly due to the object geometry, since the
size of the projection of the sphere into the image is large enough to allow
reliable subpixel accuracy. From 900 mm on, the problems arising from the 3D
object geometry decrease, but the triangulation result becomes significantly
noisier. The reason is that the projection of the sphere into the image becomes
so small that the centroids cannot be calculated with a sufficient subpixel
accuracy anymore.

Already in the basic approach, a rudimentary position correction is applied, as
explained in Section 6.1.2.3. However, because of the three explained reasons,
it is clear that an accurate position correction depends on the geometry of the
object, the stereo camera setup and the views in both images, and therefore
on the position and orientation of the object. Since the exact position t of
the object is not known, the task is to find a function f that calculates t,
given the position estimate t′ calculated by stereo triangulation as well as the
corrected orientation R (see Section 6.1.3):

f(t′, R) = t . (6.7)

The question now is how to find the function f . Experiments have shown that
the attempt to learn f completely fails, even on perfect simulation data. The
reason is that f depends to a great extent on the object geometry. Therefore,
a learning procedure would have to implicitly learn the full object geometry
based on a set of pairs {(t′(i), R(i)), t(i)}, which is practically impossible.

6.1 Recognition and Pose Estimation based on the Shape 113

0

5

10

15

20

25

30

600 800 1000 1200 1400 1600 1800 2000

E
u
cl

id
ia

n
E

rr
o
r

[m
m

]

z [mm]

Fig. 6.11. Plot of the triangulation error for a sphere. A perfect stereo camera
system was simulated, and a sphere was moved along the z-axis. The plotted error
is the Euclidean distance between the true center of the sphere and the triangulation
result.

The proposed approach is to simulate the present situation at runtime, in-
cluding the stereo camera system, the object geometry, and the object pose
in simulation. By doing this, the position correction vector can be computed
for the actually present conditions. The stereo camera system is simulated by
using the intrinsic and extrinsic camera parameters from the calibrated stereo
camera system that is actually used. Since neither software nor hardware ren-
dering take into account lens distortions, the input images are undistorted
after being captured from the camera i.e. all calculations are performed on
the undistorted images. The 3D-model of the object that was used for produc-
ing the training views (see Section 6.1.2.4) is used for simulating the object
at runtime.

To achieve maximum accuracy, the correction procedure must be performed
iteratively, since the position affects the orientation correction, and the ori-
entation affects the position correction. However, in practice the effect of the
position correction on the orientation correction is so small that at most two
iterations are necessary (see Fig. 9.7 from Section 9.1.1).

The effects of reason 3 are negligible in practice, since the deformations due to
the projection on a planar image sensor are relatively small. Nevertheless, the
resulting errors are handled by the proposed approach as well, since rendering
produces the same deformations – provided that the computed orientation is
correct.

114 6 Stereo-based Object Recognition and Pose Estimation System

Finally, the full pose estimation procedure for a segmented region pair and
a given object representation is summarized in Algorithm 8 in pseudo code.
Here, clandcr denote the centroid of the region in the left and right image,
respectively. The rotation matrix that was stored with the best matching view
is denoted by R0, and model denotes a 3D model of the object of interest.

Algorithm 8 CalculatePoseSegmentable(cl, cr, R0, model) → R, t

1. Calculate the position estimate by stereo triangulation:
t0 ← Calculate3DPoint(cl, cr) {see e.g. [Azad et al., 2008]}.

2. Set t := t0.
3. Perform the steps 4–7 k times:
4. Calculate the corrected orientation R using the Eqs. (6.5) and (6.6).
5. Simulate the current situation by applying R and t to the 3D model of the

object, yielding the simulated camera images I ′l , I
′
r.

6. Perform stereo triangulation with the centroids of the object regions in the
simulated views in I ′l , I

′
r, yielding t′.

7. Compute the position correction by the update t := t0 + t− t′.

The simulated images I ′l and I ′r are understood as binary images, which can be
directly computed by conventional graphics hardware by turning off shading.
The formula t0 + t− t′ from step 7 can be explained as follows. In the simu-
lation procedure, the ground-truth position of the object is t. The computed
triangulation result on the simulated images is t′, thus the position correction
vector is tc = t − t′. Finally, the corrected position for the real setup reads
t0 + tc = t0 + t− t′.

As already mentioned, the accuracy of the proposed pose estimation procedure
can be increased by performing k > 1 iterations. In practice, the second
iteration leads to an observable improvement with immediate convergence, as
is shown in Fig. 9.7 from Section 9.1. The effect of the position correction is
illustrated in Fig. 6.12 on an example scene. Only one iteration, i.e. k = 1,
was used.

6.1.5 Increasing Robustness

The basic recognition approach explained in Section 6.1.2.2 is adopted from
[Nayar et al., 1996]. There, recognition is performed by determining the best
matching view from the set of all views from all objects stored in the database.
A threshold for the distance to the nearest neighbor in the eigenspace decides
whether the candidate region belongs to an object or not. In practice, however,
this approach has two drawbacks:

6.1 Recognition and Pose Estimation based on the Shape 115

Fig. 6.12. Effect of the position correction on an example scene. Left: with orien-
tation correction only. Right: with orientation and position correction.

1. For objects with a non-characteristic shape, a simple threshold for the
correlation quality cannot reliably decide whether a region belongs to an
object or not.

2. Matching the region to a similar view of a wrong object yields a wrong
recognition result.

The distance between points in the eigenspace can be understood as an error
measure for the correlation of the compressed views. For objects with few or
even no texture, however, the pure correlation between regions is not signifi-
cant enough for a robust recognition system. While the approach succeeds to
find the best matching view in most cases for a region actually belonging to
an object, it fails to recognize that a region does not belong to any object.

This circumstance becomes particularly problematic in the case of single-
colored objects. For realistic scenes it is often not possible to define color
models in a way that wrong region candidates do not occur. A typical color
segmentation result for a set of predefined colors is shown in Fig. 6.13. Note
that the color models may also overlap in order to cover different tones of
one color. As can be seen, many segmented regions do not belong to any
object and therefore are wrong hypotheses. The chance that some of these
wrong candidates are recognized as containing an object is quite high – if the
hypotheses are verified by the correlation threshold only.

The second mentioned drawback originates from computing the best matching
view from the set of all views of all objects stored in the database. In some
cases it can happen that the wrong object contains a view that produces a
slightly greater correlation with the segmented object than the true object.
In such cases, the wrong object is recognized – if the similarity threshold is
satisfied.

The solution to problem 1 is to verify each hypothesis by taking into account
all available information of the object, and not only the similarity of the
normalized gradient views. Problem 2 can be solved by treating each stored

116 6 Stereo-based Object Recognition and Pose Estimation System

Fig. 6.13. Segmentation result for a realistic scene. As can be seen, many seg-
mented regions are wrong hypotheses. Left: original image. Right: visualization of
the segmentation result.

object representation separately, rather than determining the best matching
view from the views of all objects. In conjunction this means that for a can-
didate region, first the best view of the first stored object representation is
determined, then this hypothesis is verified, then the same procedure is re-
peated for the second object representation, and so on. Finally, the object
representation is picked that produces the most consistent match.

The similarity of two objects is not only defined by the similarity of their
normalized gradient views, but also by their real size and the similarity of their
silhouettes they produce when having the same pose. Normalization refers to
the normalization of the size of the views, as described in Section 6.1.2.1.
Since the real size of an object, i.e. its volume, cannot be measured with a
stereo camera system, it must be derived from the projection of the object
into the image. The two additional verifications – size and silhouette – can
be efficiently accomplished by using the simulation result from the position
correction procedure (see Section 6.1.4). Using the simulated view for the left
camera image, the size of the real region and the simulated region can be
compared, as well as the direct correlation of the segmentation results.

In the Fig. 6.14 and 6.15, two examples of the input images to the verification
procedure are illustrated. The input was the scene shown in Fig. 6.13. In
Fig. 6.14, the system was forced to match the best view of a measuring cup
to the region containing the blue cup. As can be seen, the contours of the
cup and the measuring cup look quite similar. However, when applying the
calculated pose to the 3D model of the recognized object, it becomes clear
that it is a mismatch. The inputs to the verification procedure in the case of
a match are illustrated in Fig. 6.15.

The reason for the slight position offset in the right image compared to the left
image from Fig. 6.15 is that only one iteration, i.e. k = 1, is used. Therefore
the simulated view uses the non-corrected position calculated by stereo trian-
gulation. However, since the position correction has a negligible effect on the

6.1 Recognition and Pose Estimation based on the Shape 117

Fig. 6.14. Example for the verfication procedure in the case of a mismatch. Left:
segmentation result for the real view. Right: segmentation result for the simulated
view.

Fig. 6.15. Example for the verfication procedure in the case of a match. Left:
segmentation result for the real view. Right: segmentation result for the simulated
view.

scaling of the region, the verification of the size remains practically untouched
by this offset. In order to achieve that the offset does not influence the verifi-
cation by correlation either, not the whole images are correlated, but the cut
out bounding boxes. For this purpose, the size normalization procedure from
Section 6.1.2.1 is used. Since the sizes are verified separately, the information
loss by normalization does not have a negative effect.

6.1.6 Summary of the Algorithm

In this section, the complete algorithm for the shape-based recognition and
pose estimation of globally segmentable objects will be summarized. The pro-
cessing chain for a single region is summarized in Algorithm 9 in pseudo code
notation. Based on this algorithm, a full scene analysis is accomplished with
Algorithm 10. Depending on the application, the object representations to be
verified can be varied. For instance, for a visual servoing task for grasping a
specific object, only the representation of that object must be checked. Fur-

118 6 Stereo-based Object Recognition and Pose Estimation System

thermore, in the case of colored objects, only those regions having the desired
color are of interest.

Algorithm 9 ProcessRegionSegmentable(Il, rl, rr) → id,R, t

1. rmax := 0, cmax := 0, idmax := −1 id := −1
2. (cl, nl) := rl, (cr, nr) := rr

3. Cut out and normalize the region rl from Il:
v ← NormalizeRegion(Il, rl) {see Section 6.1.2.1}

4. For each object oid stored in the database perform the steps 5–10:
5. Determine the best matching view:

R0, error ← FindBestMatch(v, oid) {using PCA}
6. R, t ← CalculatePoseSegmentable(cl, cr, R0, model(oid))
7. Let r′l be the object region in the simulated left image I ′l , and (c′l, n

′
l) := r′l.

8. r :=
min {nl, n

′
l}

max {nl, n′l}
9. c ← CalculateCorrelation(rl, r

′
l)

10. If r + 2 c > rmax + 2 cmax, then:
rmax := r, cmax := c, idmax = oid, Rmax = R, tmax = t.

11. If rmax > tr AND cmax > tc, then:
id := idmax, R := Rmax, t := tmax.

In Algorithm 9, the notation (c, n) := r indicates that c ∈ R2 is the centroid
of the region r, and n is the number of pixels that r contains. The result
v of the function NormalizeRegion is a floating point vector, which is used
directly as input to the PCA transformation. The best match is computed by
the function FindBestMatch, which determines the nearest neighbor in the
eigenspace, checking all views of the object oid. Note that the distance to
the nearest neighbor, which is denoted by error, is not used for determining
the quality of the match. Instead, the formula from step 10 is used. The size
ratio r ∈ [0, 1] describes the similarity of the regions’ sizes. The function
CalculateCorrelation normalizes the input regions to the same size first, and
then computes that SAD (see Section 4.3.2) of the binary regions, with the
result being from the interval [0, 1]. The expression r+2 c computes a quality
measure; any other meaningful measure can be used instead. The constants tr
and tc denote the thresholds for the size ratio and the correlation. Throughout
the experiments, tr = 0.8 and tc = 0.9 were used.

Throughout the experiments, the object views were normalized to a size of
64×64 pixels. These were compressed by application of PCA to 64 dimensions
each. With this, the nearest neighbor in the eigenspace from 10,000 views can
be determined with linear search in approx. 1.3 ms on a 3 GHz single core
CPU. A typical representation of a rotationally non-symmetrical object in
a relevant subspace of possible orientations consists of 10,000 views, using
a resolution of 5o. Together with color segmentation and the online stereo
simulation for the position correction, the total runtime for the recognition

6.2 Recognition and Pose Estimation based on Texture 119

and pose estimation of one object amounts to approx. 20 ms on conventional
hardware. More details are given in Section 9.1.3.

Algorithm 10 AnalyzeSceneSegmentable(Il, Ir) → {idi, Ri, ti}, n
1. n := 0
2. Segment potential regions in the stereo camera images Il, Ir.
3. Match the segmented regions between Il and Ir by using the regions’ properties

and enforcing the epipolar constraint. Let the result of this step be the list of
region pairs {rl,i, rr,i} with i ∈ {1, . . . , n}.

4. For each (rl, rr) ∈ {rl,i, rr,i} perform the steps 5 and 6:
5. id,R, t ← ProcessRegionSegmentable(Il, rl, rr) {Algorithm 9}
6. If id 6= −1, then add id,R, t to {idi, Ri, ti} and n := n+ 1.

6.2 Recognition and Pose Estimation based on Texture

In the recent past, the recognition and pose estimation of objects based on
local point features has become a widely accepted and utilized method. The
most popular features are currently the SIFT features; followed by the more
recent SURF features [Bay et al., 2006], and region-based features such as the
MSER (see Section 2.1.2.4). The commonly used framework for recognition
and 2D localization on the basis of local point features has been presented in
Section 2.1.2.5.

The common approach to 6D pose estimation of objects using local point
features computes the rotation and translation of the object in 3D space on
the basis of 2D-3D point correspondences. The traditional method for this
is the POSIT algorithm (see Section 2.2.1.2). Depending on the appearance
of the object, the calculated pose can be improved by the alignment of the
projected model edges with the image edges in an optimization procedure (see
Section 2.2.1).

Such methods all have in common that the full pose of the object is computed
on the basis of a monocular image. This means that in particular the distance
of the object to the camera, namely the z-coordinate in the camera coordinate
system, is derived from the scaling i.e. the size of the object in the image.
Furthermore, the computation of out-of-plane rotations on the basis of 2D-3D
correspondences is sensitive to small errors in the 2D feature positions.

In order to overcome these problems, an approach was developed that makes
use of the benefits offered by a calibrated stereo system, as presented in
[Azad et al., 2007a]. After having computed the 2D localization result on the
basis of 2D-2D point correspondences, the pose in 3D space is calculated using

120 6 Stereo-based Object Recognition and Pose Estimation System

3D points within the computed 2D area of the object. These 3D points are
computed utilizing the epipolar geometry and a subpixel accurate correlation
method. As will be shown, this two-step approach achieves a considerably
higher accuracy and robustness compared to conventional methods based on
2D-3D point correspondences.

Throughout the performed experiments, the SIFT descriptor was used as fea-
ture representation. Since the SIFT feature point calculation method proved
to be too slow for visual servoing applications, this step was replaced by
an alternative method, while keeping the capability of scale-invariant feature
matching. As will be shown, with the developed features a single object can be
tracked with a processing rate of approx. 23 Hz on a 3 GHz single core CPU.

In the following, the state-of-the-art approach to 6D pose estimation based
on 2D-3D point correspondences will be examined. Subsequently, the devel-
oped approach will be explained in detail, including the developed feature
calculation method, the 2D recognition and localization framework, and the
developed 6D pose estimation method.

6.2.1 Accuracy Considerations

In this section, the theoretically achievable accuracy of pose estimation meth-
ods based on 2D-3D correspondences will be compared to 3D calculations
using stereo triangulation. As an example, values from a real setup on the
humanoid robot ARMAR-III will be used. The task of localizing an object at
a manipulation distance of 75 cm for subsequent grasping will be considered.
Lenses with a focal length of 4 mm are assumed, resulting in approximately
f = fx = fy = 530 (pixels) computed by the calibration procedure. The
stereo system has a baseline of b = 90 mm; the principal axes of the cameras
are assumed to run parallel.

To reduce the projection formula to what is essential for the following calcu-
lations, the standard pinhole camera model is used. Compared to Eq. (4.1),
this means that the principal point is assumed to be the origin of the image
coordinate system: (

u
v

)
=

f

zc

(
xc
yc

)
(6.8)

where the index c indicates camera coordinates. For the following calculations,
only the horizontal dimension is considered for the calculation of zc. Let us
now suppose zc is to be calculated on the basis of an object measurement xc,
which is projected to u pixels in the camera image. This can be achieved by
the following formula:

zc(u) =
f · xc
u

. (6.9)

6.2 Recognition and Pose Estimation based on Texture 121

A pixel error of ∆ pixels thus leads to a relative error in the estimated
zc-coordinate of

zc(u)
zc(u+∆)

− 1 =
∆

u
. (6.10)

This shows that the error depends – in addition to the pixel error – on the
projected size of the object: The greater the projected size u, the smaller the
error. For the calculation of the pose on the basis of feature points, u is related
to the farthest distance of two feature points in the optimal case. For an object
whose feature pair with the farthest distance has a distance of 100 mm, it is
u = f ·xc

zc
≈ 70, assuming the object surface and the image plane are parallel.

A pixel error of ∆ = 1 would already lead to a total error of the zc-coordinate
of 75 cm · 1

70 ≈ 1 cm under in other respects perfect conditions.

In a realistic scenario, however, objects often exhibit out-of-plane rotations,
leading to a skewed image. This skew not only causes a smaller projected size
of the object but also a larger error of the feature point positions. A projected
size of 50 pixels and an effective pixel error of ∆ = 1.5 would already lead to
an error greater than 2 cm. Note that the depth accuracy not only depends
on the pixel errors in the current view, but also in the learned view, since the
depth is estimated relative to the learned view.

In contrast, when exploiting a calibrated stereo system, the depth is computed
on the basis of the current view only. For the estimation of the depth accuracy
of stereo triangulation, the following simplified formula is used:

zc(d) =
f · b
d

(6.11)

where d denotes the disparity between the left and right camera image, b the
baseline, and f is the focal length in pixels. A pixel error of ∆ pixels thus
leads to a relative error in the estimated zc-coordinate of

zc(d)
zc(d+∆)

− 1 =
∆

d
. (6.12)

Eq. (6.12) shows that the error does not depend on the projected size of the
object, as it is the case in Eq. (6.10), but instead depends on the dispar-
ity d: The greater the disparity, the smaller the error. For the specified setup,
Eq. (6.11) yields a measured disparity of d = f ·b

zc
≈ 64. For typical stereo

camera setups, the correspondence between the left and the right camera im-
age for distinctive feature points can be computed with subpixel accuracy. For
this, usually a second order parabola is fit to the measured disparity and those
of the two neighbors (see e.g. [Azad et al., 2008]). In practice, a subpixel ac-
curacy of at least 0.5 pixels is achieved easily by this approach. In accordance
with Eq. (6.12) this leads to a total error of only 75 cm · 0.5

64 ≈ 0.6 cm.

Judging from the presented theoretical calculations, the accuracy that can be
achieved by stereo vision is higher by a factor of approx. 2–3. Although for fine

122 6 Stereo-based Object Recognition and Pose Estimation System

manipulation of objects, e.g. grasping the handle of a cup, the lower estimated
accuracy of methods relying on 2D-3D correspondences is problematic, for
many other applications it might be sufficient.

Fig. 6.16. Example of the 2D and 6D pose estimation result for an optimal sce-
nario. The 6D pose is computed on the basis of 2D-3D point correspondences. Left:
2D localization result. Right: projection of the 3D model, to which the computed
rotation and translation were applied.

However, the real errors arising from pose estimation on the basis of 2D-3D
point correspondences can hardly be expressed by theoretic formulas. The ac-
curacy of such approaches dramatically depends on the spatial distribution
of the feature points and their accuracy. In the following, this circumstance
is illustrated using the example of an object with a planar surface. The 2D
localization and 6D pose estimation results for an optimal setup are visual-
ized in Fig. 6.16. Optimal means in this context that the projected size of the
object is relatively big, the area of interest is focussed, and the out-of-plane
rotation of the object is relatively small. As can be seen, the 6D pose com-
puted with the basic approach on the basis of 2D-3D point correspondences
is accurate in this case. The recognition and 2D localization process is ex-
plained in Section 6.2.3. For the computation of the 6D pose from a set of
2D-3D point correspondences, the algorithm from [Lu et al., 2000] was used,
which can handle coplanar point sets as well (see class CObjectPose from the
IVT).

The contour of the object surface in the training view was determined by
manually marking the four corner points. As will be explained in Section 6.2.3,
the 2D localization result is a homography H that is computed on the basis
of 2D-2D point correspondences. The relation between the learned 2D view
and the 3D model is established by calculating the homography Hm between
the four corner points in the training view and the xy-coordinates of the
corresponding 3D model corner points. Let zm be the z-coordinate of all 3D
model points on the front surface of the object. Then, an image point p ∈ R2

in the current scene is mapped to its corresponding 3D model point by the
function fm : R2 → R3:

6.2 Recognition and Pose Estimation based on Texture 123

fm(p) = (Hm(H(p)), zm) . (6.13)

For the following experiments, three different variants for calculating the 6D
pose based on 2D-3D point correspondences were tested:

1. Directly using the set of 2D-2D point correspondences between the cur-
rent view and the training view for generating the set of 2D-3D point
correspondences.

2. Applying fm to all matched feature points in the current view for gener-
ating the set of 2D-3D point correspondences.

3. Applying fm to the four localized corner points for generating four 2D-3D
point correspondences.

In the first variant, (Hm(p′), zm) is used for computing the corresponding 3D
point, where p′ denotes the 2D position of the matched feature in the training
view. This can be regarded as the basic approach.

The idea of the second variant is to benefit from the iterative least squares es-
timation of the homography to produce point correspondences without noise.
However, throughout the performed experiments no significant difference com-
pared to the results computed by the first variant could be observed. This
implies that not the noise is the limiting factor, but the accuracy of the calcu-
lated 2D localization, as will be seen in the following examples. Throughout
the following experiments, the second variant was used as the representative
for both variants.

The third variant is a modification of the second variant. The only difference
is that only the four corner points are used for establishing four 2D-3D point
correspondences. The significant benefit is that by doing this, the 6D pose is
estimated on the basis of the projection of the complete surface. In contrast,
when using the matched feature points, the 6D pose is estimated on the basis
of the area that is covered by the matched features. The disadvantage is that
the coverage of the object surface is significant for the numerical stability of
any 2D-3D pose estimation algorithm.

In Fig. 6.17, the 2D localization result for a scenario with some out-of-plane
rotation around the x-axis is shown. The matches between the current view
and the training view that are used for the subsequent 6D pose estimation
method are visualized by the lines. The results of the 6D pose estimation
are illustrated in Fig. 6.18 for the variants 2 and 3. As can be seen, despite
the large number of valid feature correspondences, the result of variant 2 is
wrong. Using the four corner points instead, i.e. utilizing the variant 3, leads
to a significantly better result.

A slightly different scenario is shown in the Fig. 6.19 and 6.20. Here, not only
out-of-plane rotation around the x-axis, but also around the y-axis is present.
Furthermore, the object is partially occluded, which is why matches can be

124 6 Stereo-based Object Recognition and Pose Estimation System

Fig. 6.17. Example of the 2D localization result for a scenario with out-of-plane
rotation around the x-axis. Left: current view. Right: training view.

Fig. 6.18. Result of 6D pose estimation using monocular images computed on the
basis of the 2D localization shown in Fig. 6.17. Left: using variant 2. Right: using
variant 3.

determined only on the upper half of the object surface. As can be seen,
compared to Fig. 6.18, this causes an even worse result when using variant 2,
whereas the result computed by variant 3 is correct again.

Fig. 6.19. Example of the 2D localization result for a scenario with out-of-plane
rotation around the x- and y-axis. Left: current view. Right: training view.

6.2 Recognition and Pose Estimation based on Texture 125

Fig. 6.20. Result of 6D pose estimation using monocular images computed on the
basis of the 2D localization shown in Fig. 6.19. Left: using variant 2. Right: using
variant 3.

In the Fig. 6.21 and 6.22, the results for a scene observed by the humanoid
robot ARMAR-III are shown, using a lens with 4 mm focal length. The in-
put images have been undistorted (see Section 4.1.4) beforehand in order to
restore the true geometric conditions (see Sections 4.1.4 and 5.4). Note that
the resolution of the object is quite low and the area of interest is not per-
fectly focussed. As can be seen in Fig. 6.21, the 2D localization result is not
precise; a slight offset at the left side of the object can be observed and one
can imagine that deriving a 3D pose from the calculated 2D mapping would
lead to an error-prone orientation. This is confirmed by the results of the 6D
pose estimation shown in Fig. 6.22; while variant 2 fails again, the result of
variant 3 illustrates the expected deviation.

Fig. 6.21. Example of the 2D localization result for a scenario with out-of-plane
rotations and a low resolution of the object. Left: current view. Right: training view.

A surprising result of the 6D pose estimation for the same input images can be
seen in Fig. 6.24. In contrast to all previously presented examples, here, even
variant 3 completely fails. The only difference throughout the computations
were slightly varied parameters for computing the 2D-2D correspondences.
As can be seen in Fig. 6.23, this leads to only few differing matches, and a

126 6 Stereo-based Object Recognition and Pose Estimation System

Fig. 6.22. Result of 6D pose estimation using monocular images computed on the
basis of the 2D localization shown in Fig. 6.21. Left: using variant 2. Right: using
variant 3.

difference between the 2D localization result compared to Fig. 6.21 is hardly
visible to the eye. Nevertheless, the 6D pose estimation fails, which shows that
the computation on the basis of 2D-3D correspondences becomes unstable
when the accuracy of the 2D feature positions decreases. Trying to increase
the robustness of variant 3 by sampling the complete contour on the basis of
the corner points rather than using the four corner points as input only leads
to the same result.

Fig. 6.23. Result of 2D localization for the same input images used in Fig. 6.21,
using slightly different parameters. Left: current view. Right: training view.

As a conclusion, 2D localization on the basis of 2D-2D correspondences is
robust, but deriving a 6D pose from 2D-3D point correspondences depends
on high-quality feature correspondences. Computing the pose on the basis of
points covering the contour of the object leads to a significant improvement
compared to using the matched feature points. However, even this improved
variant becomes inaccurate and unstable when the 2D localization result is not
precise. In such cases, only an optimization based on the alignment of edges
can lead to a satisfying pose estimation result (see Section 2.2.1). However,
such an optimization strongly depends on visible edges along the contour of the

6.2 Recognition and Pose Estimation based on Texture 127

Fig. 6.24. Result of 6D pose estimation using monocular images computed on the
basis of the 2D localization shown in Fig. 6.23. Left: using variant 2. Right: using
variant 3.

object, which is often not the case, as shown in Fig. 6.25. Furthermore, high
gradients in the proximity of the object can cause the optimization to converge
to a wrong local minimum. Finally, as have shown the theoretic considerations
at the beginning of this section, using stereo triangulation can potentially
achieve a higher depth accuracy compared to approaches relying on monocular
images. The approach to 6D pose estimation using a calibrated stereo system
that has been developed in this thesis is presented in Section 6.2.4.

Fig. 6.25. Edges computed for the image from Fig. 6.22. Left: a Sobel filter was
applied on the corresponding grayscale image in both directions, and the results
were merged with the formula

√
g2

x + g2
y. Right: result of the Canny edge detector.

6.2.2 Feature Calculation

In this section, the developed feature calculation method is presented. As al-
ready stated, the performed experiments proved that the SIFT descriptor is
a very robust and reliable representation for the local neighborhood of an
image point. However, the scale-space analysis required for the calculation of
the SIFT feature point positions is too slow for visual servoing applications

128 6 Stereo-based Object Recognition and Pose Estimation System

(see Section 5.5). As stated in [Bay et al., 2006], the computation of the SIFT
features for an image of size 800×640 takes approx. 1 s. This scales to about
0.6 s for the standard resolution of 640×480, which we deal with on the hu-
manoid robot ARMAR III. The SURF features require approx. 0.24 s on the
same image size. The goal was to find a method that allows feature calculation
in less than 30 ms on an image of size 640×480.

One of the main strengths of the SIFT features is scale-invariance. As ex-
plained in Section 2.1.2.3, this is achieved by analyzing and processing the
images at different scales. For this, a combination of Gaussian smoothing and
a resize operation is used. Between two so-called octaves, the image size is
halved, i.e. resized to half width and half height. The different scales within
an octave are produced by applying a Gaussian smoothing operator, and the
variance of the Gaussian kernel is chosen in a way that the last scale of one
octave and the first scale of the next octave correspond to each other.

Since the scale space analysis performed by the SIFT features for calculating
the feature point positions is the by far most time-consuming part, the idea
was to replace this step by a faster method, namely an appropriate corner
detector. As shown in [Mikolajczyk and Schmid, 2004], the Harris corner de-
tector (see Section 2.1.2.1) is a good starting point for the computation of posi-
tions of scale and affine invariant features. In [Mikolajczyk and Schmid, 2004],
the Harris-Laplace detector, which is based on the Harris corner detector, is
extended to the so-called Harris-Affine detector, which achieves affine invari-
ance.

However, the computational effort for the calculation of the Harris-Laplace or
even more the Harris-Affine features is again too high for visual servoing appli-
cations. Therefore, the goal was to investigate if it is possible to combine the
conventional Harris corner detector with the SIFT descriptor, while keeping
the property of scale-invariance. As the SIFT descriptor achieves invariance
to out-of-plane rotations, i.e. skew in the image, only to some degree, features
from different views of the object are collected in the developed system, as
explained in Section 6.2.6.

As a first step, the scale coverage of the SIFT descriptor computed with a
fixed window size of 16×16 was evaluated. For this, the Harris corner points
for the image from Fig. 6.26 were calculated and stored as a set {xi} with i ∈
{1, . . . , n} and xi ∈ R2. The image was then resized with bilinear interpolation
to different scales s ∈ [0.5, 2]. At each scale s, the stored corner point locations
were scaled, i.e. x(s)

i = sxi, so that ground truth for the correspondences is
given by x(s)

i ∼ xi. For each feature in the scaled image, the best matching
feature in the set {xi} was determined. In Fig. 6.27, the resulting percentages
of correct matches at the different scales are plotted. In order to see the
symmetry of the scale coverage, a 1

s scale was used for the part of the s-axis
left of 1.0.

6.2 Recognition and Pose Estimation based on Texture 129

Fig. 6.26. Image used for evaluation of the scale coverage of the SIFT descriptor.
For this image, 284 feature points were calculated by the Harris corner detector,
using a quality threshold of 0.01. The computed feature points are marked by the
dots.

0

20

40

60

80

100

2.01.51.00.670.5

M
a
tc

h
in

g
P

er
ce

n
ta

g
e

[%
]

Scale s

Fig. 6.27. Plot of the scale coverage of the SIFT descriptor. The evaluation was
performed on image scales computed by resizing with bilinear interpolation.

As can be seen in Fig. 6.27, the matching robustness of the SIFT descriptor is
very high within a range of approx. 10–15 %. Therefore, it must be possible to
close the gap between two scales by exploiting the scale coverage of the SIFT
descriptor only if the scales are close enough to each other. The scale factor
between two consecutive octaves is 0.5 for the conventional SIFT features.

130 6 Stereo-based Object Recognition and Pose Estimation System

The question is now, what is a suitable scale factor ∆s with 0.5 < ∆s < 1
when omitting the scale-space analysis?

In Fig. 6.28, the matching percentages for the same experiment as before are
plotted, this time using SIFT descriptors at multiple predefined scales. Three
scales were used for producing the SIFT descriptors, i.e. (∆s)0, (∆s)1, and
(∆s)2. As before, the Harris corner points were only calculated once for the
original image, and the image locations were scaled for calculating the SIFT
descriptor at the lower scales. Note that this is only done for comparison
purposes; for normal application, the interest points are re-calculated at the
lower scales to avoid the computation of dispensable features. The peaks at
100 % occur when (∆s)i = s, i.e. the features to be matched are computed on
the exact same image.

60

65

70

75

80

85

90

95

100

0.5 0.6 0.7 0.8 0.9 1

M
a
tc

h
in

g
P

er
ce

n
ta

g
e

[%
]

Scale s

∆s = 0.70
∆s = 0.75
∆s = 0.80
∆s = 0.85

Fig. 6.28. Plot of the scale coverage when computing SIFT descriptors at multiple
predefined scales. The evaluation was performed on image scales computed by re-
sizing with bilinear interpolation. Three levels were used; the parameter ∆s denotes
the scale factor between two consecutive levels.

As can be seen, the scale factors ∆s = 0.75 and ∆s = 0.8 essentially achieve
the same performance within the interval [0.6, 1]. For the scales smaller than
0.6, ∆s = 0.75 is superior, as expected. Within the interval [0.8, 1], ∆s = 0.85
achieves the best results. However, the performance decreases rapidly for scales
smaller than 0.7, since only three levels are used. Within the interval [0.7, 1],
∆s = 0.7 achieves the worst results. The strengths become visible for the
smaller scales. However, this can be also achieved by using a larger ∆s and an
additional fourth level if necessary, while the inferior performance of ∆s = 0.7
for the crucial higher scales cannot be improved. Judging from theses results,

6.2 Recognition and Pose Estimation based on Texture 131

∆s = 0.75 is a good tradeoff between a high matching performance and a
high coverage.

We will call the proposed combination of the Harris corner detector and the
SIFT descriptor, including the computation at multiple predefined scales in
order to achieve scale-invariance, Harris-SIFT 1 features. Finally, these Harris-
SIFT features must prove to perform as well when applied on realistic scenes.
The two images used for a first test are shown in Fig. 6.29. The training view
on the very right is the same as shown in Fig. 6.26; it is included again only for
illustrating the scale differences. The features were tested on the image shown
in the middle of Fig. 6.29, which contains the object at a scale of approx. 0.64.
For the tests, this image was resized to scales from [0.5, 1], i.e. the smallest
effective scale of the object was 0.5 · 0.64 = 0.32, compared to the training
view.

Fig. 6.29. Images used for testing the performance of the Harris-SIFT features. The
computed feature points are marked by the dots. Left: view corresponding to a scale
of 0.32 relative to the training view, with 438 computed feature points. Middle: view
corresponding to a scale of 0.64 relative to the training view, with 500 computed
feature points. Right: training view, with 284 computed feature points.

In Fig. 6.30, the total number of successfully matched interest points at each
scale for this experiment is plotted. Note that according to [Lowe, 1999], for
each point, several SIFT descriptors are computed if the calculated orienta-
tion tends to be ambiguous (see Section 2.1.2.3). In order to not falsify the
results by counting several matches for a single interest point, for each interest
point at most one match was counted. By doing this, the resulting plot shows
what counts for recognition and pose estimation: the number of successfully
matched image locations. The plot shows the results for ∆s = 0.75, using 3,

1 The term Harris-SIFT can also be found on the internet within a (apparently
unaccepted) submission to the China Journal of Image and Graphics from 2007
called A High Real-time and Robust Object Recognition and Localization Algo-
rithm. The features that are described in the submitted paper, which can be
downloaded from Ning Xue’s homepage, describe a completely different approach,
essentially sorting out those SIFT features that are not close to detected Harris
corner points.

132 6 Stereo-based Object Recognition and Pose Estimation System

4, and 5 levels, respectively. The maximum number of interest points was re-
stricted to 500, and a quality threshold of 0.01 was used for the Harris corner
detector. For the computation of the SIFT descriptor, a fixed window size of
16×16 was used.

0

20

40

60

80

100

0.35 0.4 0.45 0.5 0.55 0.6

M
a
tc

h
ed

In
te

re
st

P
o
in

ts

Scale s

5 Levels
4 Levels
3 Levels

Fig. 6.30. Illustration of the performance of the Harris-SIFT features for the views
shown in Fig. 6.29. As scale factor, ∆s = 0.75 was used. The plot shows the total
number of successfully matched interest points at each scale s, where s is understood
in relation to the size of the object in the training image.

As can be seen, using four or five levels leads to the same results within the
interval [0.47, 1]. When using three levels, the performance starts to decrease
noticeably at approx. 0.57. For the experiments performed in this thesis, three
levels were used for the training views (see Section 6.2.7), which proved to be
fully sufficient when using images of size 640×480. Note that, in practice, the
limiting factor is the effective resolution of the object in the image and not
the scale invariance of the features.

6.2.3 Recognition and 2D Localization

In this section, the method used for recognition and 2D localization is ex-
plained in detail. The approach is a variant of Lowe’s framework [Lowe, 1999]
(see Section 2.1.2.5); the main differences are the voting formula for the Hough
transform and the final optimization step using a full homography. The strat-
egy used for matching features in the current scene with features stored in the
database is explained in Section 6.2.6.

6.2 Recognition and Pose Estimation based on Texture 133

6.2.3.1 Hough Transform

The feature information used in the following is the position (u, v), the rotation
angle ϕ and the feature vector {fj} consisting of 128 floating point values in
the case of the SIFT descriptor (see Section 2.1.2.3 for the calculation of the
feature vector). These feature vectors are matched with those of the features
stored in the database using a cross correlation. Given a set of n features
{ui, vi, ϕi, {fj}i} with i ∈ {1, . . . , n} and j ∈ {1, . . . , 128} that have been
calculated for an input image, the first task is to recognize which objects are
present in the scene. Simply counting the feature correspondences would not
lead to a robust system, since the number of wrong matches increases with
the number of objects. Therefore, it is necessary to incorporate the spatial
relationships between the feature points into the recognition process.

The state-of-the-art technique for this purpose is the Hough transform. A
two-dimensional Hough space with the parameters u, v is used; the rotational
information ϕ and the scale s are used within the voting formula. In contrast
to [Lowe, 1999], the scale s is not taken from the features but votes are cast at
several scales, since it is not computed by the Harris-SIFT features. A coarse
estimate is given by the scale (∆s)i the matched feature was produced with.
Using one unknown parameter s within the voting formula is the standard
case of the Hough transform and is neither in terms of efficiency nor effectivity
problematic. According to Section 2.2.2.1, this is an underdetermined case of
the Hough transform and the answers to the three design questions are:

1. The object is allowed to undergo the 2D transformations rotation, trans-
lation, and scaling.

2. The translation is to be estimated.

3. The rotation can be derived from a single feature correspondence.

Given a feature in the current scene with u, v, ϕ and a matched feature from
the database with u′, v′, ϕ′, the following bins of the Hough space are incre-
mented: (

uk
vk

)
= r

[(
u
v

)
− sk

(
cos∆ϕ − sin∆ϕ
sin∆ϕ cos∆ϕ

)(
u′

v′

)]
(6.14)

where∆ϕ := ϕ−ϕ′ and sk denotes a fixed number of discrete scales. According
to the results of the Harris-SIFT features for ∆s = 0.75 and using three
levels (see Fig. 6.30), sk := 0.5 + k · 0.1 with k ∈ {0, . . . , 5} was used for the
experiments performed in this thesis. Casting votes at several scales sk in a
two-dimensional Hough space geometrically means voting along a 2D straight
line. Note that the formula calculates a displacement between the current view
and the training view, and not the position in the current view. Therefore, the
Hough space must be extended in each direction to cover the possible range
of votes.

134 6 Stereo-based Object Recognition and Pose Estimation System

The parameter r is a constant factor denoting the resolution of the Hough
space. For the experiments performed in this thesis, r = 0.01 was used, which
means that the Hough space is smaller than the image by a factor of 100
in each direction. The reason for choosing such a coarse resolution is that
the voting procedure does not take into account affine transformations but
only similarity transformations, which causes undesired displacements of the
votes. An alternative to tackle this problem is to take into account neigh-
boring bins when searching for maxima in the Hough space or to perform
an explicit clustering step. However, choosing a coarse resolution is the most
efficient variant and produces good results. A more accurate Hough space
would require a voting scheme taking into account affine transformations, as
it would be possible with features providing affine information, such as the
Harris-Affine features [Mikolajczyk and Schmid, 2004] or the LAF descrip-
tor [Obdrzalek and Matas, 2002] for region-based features. Unfortunately, the
more complex Harris-Affine features are computationally too expensive, as are
region-based features such as the MSER, which are applicable only for higher
image resolutions, as discussed in Section 2.1.2.4.

x´

origin

training view curren
t view

x

 xH´

R x´
s R x´

Fig. 6.31. Illustration of the transformations involved in the voting formula specified
by Eq. (6.14).

The transformations involved in the voting formula specified by Eq. (6.14)
are illustrated in Fig. 6.31. Each matched feature point from the database
is rotated around the origin of the coordinate system so that its orientation
becomes equal to the orientation of its corresponding feature in the current
view. After the subsequent application of the scale factor sk, the displacement
to the feature point in the current view is calculated. Finally, the displacement

6.2 Recognition and Pose Estimation based on Texture 135

is scaled to the resolution of the Hough space and discretized by rounding to
the closest integral number.

After the voting procedure, potential instances of an object in the scene are
represented by maxima in the Hough space. If at most one instance of the
object is present, recognition can be performed by simply determining the bin
with the maximum number of hits. Otherwise, all bins with a locally maximum
number of hits over a certain threshold must be processed. A bin that has
been specified as a maximum is processed by verifying the 2D pose relative
to the training view by estimating an affine transformation or homography,
respectively, as will be explained in Section 6.2.3.2. For this purpose, all feature
correspondences that have contributed to this bin are determined and used as
input to the verification procedure. The coarse resolution of the Hough space
offers the benefit that bins with maximum hits collect votes from many feature
correspondences, and thus valid feature correspondences are hardly missed.
On the other hand, some false correspondences can survive. However, these
are filtered robustly by the homography estimation procedure to be presented
in the following section.

The effect of filtering feature correspondences with the aid of the Hough
transform already achieves a drastic improvement, as shown in the Fig. 6.32
and 6.33. When using a nonrestrictive quality threshold for accepting fea-
ture matches (see Section 6.2.6), many false correspondences are determined.
This circumstance is illustrated in Fig. 6.32 by the example of matching fea-
tures from the current view to object features from a single training view.
The remaining correspondences after application of the Hough transform and
filtering with the aid of the bin with the maximum hits are shown in Fig. 6.33.

Fig. 6.32. Unfiltered feature correspondences between the current view and a train-
ing view. A quality threshold of 0.7 for the cross correlation between two SIFT
descriptors was used.

136 6 Stereo-based Object Recognition and Pose Estimation System

Fig. 6.33. Filtered feature correspondences after application of the Hough trans-
form.

6.2.3.2 Homography Estimation

For the filtered set of feature correspondences {xi,x′i} with i ∈ {1, . . . , n}
resulting from the Hough transform, now the 2D transformation between the
training view and the current view is calculated. Here, the xi denote the fea-
ture points in the current image and the x′i their corresponding feature points
in the training view. This 2D transformation is described by a homography
under the assumption that the object has a planar surface (see Section 4.4).
If the current view and the training view are similar, the planar assumption
holds true to a sufficient extent for non-planar objects as well. It does not
hold true when the two views contain different parts of the object – which
must be handled by several training views anyway.

With n ≥ 3 feature correspondences, the system of linear equations from
Eq. (4.40) (see Section 4.4.2) can be set up. In practice, a greater minimum
number of feature correspondences should be used to assure a robust recog-
nition result. After having determined the parameters of the affine transfor-
mation h1, . . . , h6 with the method of least squares, the mean transformation
error e into the current image is computed:

e =
1
n

n∑
k=1

|H−1(x′k)− xk| (6.15)

where H : R2 → R2 is the estimated transformation specified by the parame-
ters h1, . . . , h6 and H−1 denotes the inverse transformation from the training
view to the current view. Wrong correspondences are now filtered by compar-
ing the transformation error of each correspondence to the mean transforma-
tion error e. Correspondences with an error greater than a certain multiple
tm = 2 of the mean error e are removed. This procedure is performed in an
iterative manner, in each iteration using the set of filtered correspondences of
the previous iteration as input.

6.2 Recognition and Pose Estimation based on Texture 137

As an optimization step, in the final iteration, a full homography is determined
instead of an affine transformation. The parameters h1, . . . , h8 describing the
homography are determined by solving the system of linear equations from
Eq. (4.39), which is set up using the set of feature correspondences resulting
from the previous iteration. Using a homography instead of an affine transfor-
mation throughout the whole iterative procedure would not lead to a robust
system, since the additional two degrees of freedom make the least squares
optimization significantly more sensitive. Only after filtering wrong correspon-
dences by using an affine transformation as described, the computation of the
homography is a suitable optimization for the final iteration.

Fig. 6.34. Difference between 2D localization using an affine transformation (left)
and a homography (right). Here, the estimation of the homography leads to a more
precise result compared to the affine transformation. In both cases, the same fea-
ture correspondences were used for the least squares computation. The used feature
points are marked by the dots.

In Fig. 6.34, an example is shown where the computation of the homography
leads to a more precise result. However, in other cases, the least squares com-
putation of the homography can completely fail, although the computation
of the affine transformation succeeds using the same feature correspondences.
The reason for this problem are numerical instabilities of the least squares
computation of the homography, as explained in Section 4.4.2. Such insta-
bilities especially occur in cases in which the accuracy of the feature point
positions is relatively low due to a low resolution of the object, as shown in
Fig. 6.35. From experience, the only practically applicable method is to com-
pute the least squares solution on the basis of the singular value decomposition
and using the 64 bit data type double.

To prevent potential problems arising from these instabilities, the mean error
produced by the homography is verified. The homography result is rejected
if its mean error is greater than the one of the previously estimated affine
transformation. Judging from experience, in cases in which the computation
of the homography becomes unstable, the 6D pose estimation based on 2D-
3D correspondences fails as well. The developed 6D pose estimation approach

138 6 Stereo-based Object Recognition and Pose Estimation System

explained in Section 6.2.4 rectifies this problem and also succeeds with a non-
precisely estimated homography ore affine transformation, respectively.

Fig. 6.35. Difference between 2D localization using an affine transformation (left)
and a homography (right). Here, the result of the affine transformation is not precise
but robust, and the estimation of the homography fails. In both cases, the same fea-
ture correspondences were used for the least squares computation. The used feature
points are marked by the dots. Multiple feature correspondences for the same image
locations caused by multiple SIFT descriptors were filtered out. In order to illustrate
the problem, single-precision floating point numbers were used.

Before starting the described iterative least squares computation of the ho-
mography, a RANSAC method (see Section 4.7) is applied to remove outliers
and thus increase robustness. In most cases, the iterative estimation will suc-
ceed even without using a RANSAC filtering step, since the estimation of the
affine transformation is comparatively robust to outliers. However, when many
wrong correspondences pass through the Hough transform filtering step, the
first iteration can lead to a wrong local minimum. For instance, this often hap-
pens when two objects of the same kind are present in the scene. Such cases
are handled by the RANSAC algorithm, which determines an affine transfor-
mation with maximum support in terms of consistent feature correspondences.
This is achieved by randomly picking three correspondences in each iteration
of the RANSAC algorithm and determining the affine transformation based
on them. Then, the transformation error of each feature correspondence is cal-
culated, and the number of correspondences producing an error smaller than
a predefined threshold is counted. After a fixed number of iterations, the fea-
ture correspondences belonging to the affine transformation with the biggest
support are used as input to the subsequent iterative homography estimation.

According to the notation from Section 4.7, t = 5 (pixels) for the error tol-
erance and a fixed number of k = 200 iterations are used. As a slight mod-
ification of the conventional RANSAC approach, the affine transformation
with the greatest consensus i.e. support is determined, rather than aborting
the procedure if a model with a sufficient consensus is found. Three 2D-2D
correspondences are needed for computing an affine transformation, i.e. n = 3.

6.2 Recognition and Pose Estimation based on Texture 139

Fig. 6.36. Filtered feature correspondences after iterative computation of the affine
transformation.

If after the complete process of homography estimation, a certain number tn
of feature correspondences are remaining and the mean error is smaller than
a predefined threshold te, an instance of the object is declared as recognized.
The final, filtered set of feature correspondences for the correspondences from
Fig. 6.33 is illustrated in Fig. 6.36. The 2D localization is given by the trans-
formation of the contour in the training view to the current view. In the case
of cuboids, this contour can be specified during acquisition of the training
views by manually marking the four corner points of the front surface of the
object. For objects with a more complex shape, the contour can be defined as
a set of contour points. Throughout the experiments performed in this thesis,
te = 2.5 and tn = 8 were used. Note that tn refers to the number of different
feature point correspondences, not counting multiple feature correspondences
resulting from multiple SIFT descriptors for the same image location. The
complete method for homography estimation is summarized in Algorithm 11.
The number of iterations is denoted by the constant l; throughout the exper-
iments performed within this thesis l = 20 was used.

6.2.4 6D Pose Estimation

As shown in Section 6.2.1, conventional, monocular approaches to 6D pose
estimation, which are based on 2D-3D point correspondences, cannot achieve a
sufficient accuracy and robustness. In particular, they tend to become unstable
when the effective resolution of the object decreases and thereby also the
accuracy of the 2D feature point positions. In this section, the developed
approach is presented, which makes use of the benefits offered by a calibrated
stereo system. As will be shown, this leads to a significantly higher robustness
and accuracy and succeeds also at lower scales of the object.

The idea is to compute a sparse 3D point cloud for the 2D area that is defined
by the transformation of the training view by means of the homography H
computed by Algorithm 11. Given a 3D model of the object, this model can

140 6 Stereo-based Object Recognition and Pose Estimation System

Algorithm 11 EstimateHomography(X) → H,X ′, e

1. {xi,x
′
i} := X, n = |X|

2. X0 ← RANSAC(X, 3) {Algorithm 7}
3. j := 0
4. Perform the steps 5–7 l times
5. j := j + 1
6. Determine affine transformation H for the set of correspondences Xj−1 by solv-

ing Eq. (4.40) and calculate the transformation error e according to Eq. (6.15).
7. Calculate the filtered set of correspondences:

Xj = {(xi,x
′
i) | (xi,x

′
i) ∈ Xj−1 ∧ |H−1(x′i)− x| ≤ tm · e}.

8. Determine homography H ′ for the set of correspondences Xl by solving
Eq. (4.39) and calculate the transformation error e′ according to Eq. (6.15).

9. Calculate the filtered set of correspondences:
X ′ = {(xi,x

′
i) | (xi,x

′
i) ∈ Xl ∧ |H ′−1(x′i)− x| ≤ tm · e}.

10. If e′ < e, then return H ′, X ′, e′, otherwise return H,Xl, e.

be fitted into the calculated point cloud, resulting in a 6D pose. The general
approach is summarized in Algorithm 12, where model denotes a 3D model
of the object of interest..

Algorithm 12 CalculatePoseTextured(Il, Ir, C, model) → R, t

1. Determine the set of interest points within the calculated 2D contour C of the
object in the left camera image Il.

2. For each calculated point, determine a correspondence in the right camera image
Ir by computing the ZNCC (see Section 4.3.3) along the epipolar line.

3. Calculate a 3D point for each correspondence.
4. Fit a 3D object model into the calculated 3D point cloud and return the resulting

rotation R and the translation t.

Essentially, two variants of step 4 in Algorithm 12 are possible: Fit an ana-
lytically formulated 3D representation (or a high-quality mesh) of an object
into the point cloud or perform an alignment based on 3D-3D point corre-
spondences. For applying the first variant, the object or a substantial part
of the object, respectively, must be represented as a geometric 3D model. In
the case of cuboids, as used throughout the comparative experiments from
Section 6.2.1, a 3D plane can be used. Another practically relevant case are
objects that can be described to a great extent by a cylinder, as it is the case
for cups and bottles.

For applying the second variant, 3D points must be calculated for the feature
points from the training view in the same manner as throughout recognition,
i.e. by computing stereo correspondences and applying stereo triangulation.
A set of 3D-3D point correspondences is then automatically given by the
filtered set of 2D-2D point correspondences resulting from the homography

6.2 Recognition and Pose Estimation based on Texture 141

estimation. If applicable, the first variant should be preferred, since it does
not rely on the accuracy of the feature point positions. However, even the
second variant is expected to be more robust and more accurate than the
conventional approach, since it does not suffer from the instabilities that are
typical for pose estimation based on 2D-3D point correspondences.

For both variants, no additional computations have to be performed for the
determination of interest points, since these are already available from the
feature calculation method presented in Section 6.2.2. For each interest point
in the left camera image, matches in the right camera image are determined by
calculating the ZNCC measure along the epipolar line within a desired range
of disparities. This range can be estimated from a pre-specified operation
distance in z-direction [zmin, zmax]. For this purpose, the disparity for a
3D point specified in the world coordinate system at the distance z must
be estimated. This is accomplished by Algorithm 13, with R, t according to
Eq. (5.1) from Section 5.1.

Algorithm 13 EstimateDisparity(z) → d

1. x = −R
T t

2
+ (0, 0, z)T

2. xl ← CalculateImageCoordinates(x) {Algorithm 3, with I,0 (identity)}
3. xr ← CalculateImageCoordinates(x) {Algorithm 3, with R, t}
4. d := |xl − xr|

In Algorithm 13, x = −R
T t
2 is the midpoint between the projection centers

of the two cameras, given in world coordinates. If lenses are used that cause
visible lens distortions, the images should be undistorted beforehand so that
the epipolar geometry becomes valid (see Section 5.4). If the images are undis-
torted, then the undistortion of the 2D coordinates performed at the end of
Algorithm 3 must not be performed. The minimum disparity dmin is defined
by the maximum distance zmax and vice versa:

dmin ← EstimateDisparity(zmax)
dmax ← EstimateDisparity(zmin) .

The correspondence in the right camera image is now determined by finding
that d0 ∈ [dmin, dmax] that maximizes the ZNCC. However, d0 is an integral
value i.e. specifies the correspondence only with pixel accuracy. In order to
achieve subpixel accuracy, a second order parabola is fit through the ZNCC
results at d0 and its two neighbors d0 − 1 and d0 + 1. The disparity with
subpixel accuracy is specified by the apex of the parabola, which is calculated
by (see e.g. [Gockel, 2006])

d = d0 +
y−1 − y+1

2(y−1 − 2y0 + y+1)
(6.16)

142 6 Stereo-based Object Recognition and Pose Estimation System

with y0 := ZNCC(d0), y−1 := ZNCC(d0 − 1), and y+1 := ZNCC(d0 + 1).

In the following, the variant for fitting a 3D plane to objects with a planar
surface will be discussed in greater detail. The general procedure applies anal-
ogously to the fitting of other 3D primitives such as cylinders. Given a set of
n 3D points {xi} with (xi, yi, zi) := x, a plane can be fitted either by solving
the over-determined homogenous linear equation system x1 y1 z1 1

...
...

...
...

xn yn zn 1

nx
ny
nz
c

 =

 0
...
0

 (6.17)

or by solving the following variant, for nz 6= 0 so that w.l.o.g nz = 1 can be
assumed: x1 y1 1

...
...

...
xn yn 1

nx
ny
c

 =

−z1...
−zn

 . (6.18)

In fact, the second variant does not minimize the error in perpendicular di-
rection to the plane but the z-error, which is acceptable but not fully correct
from a theoretical point of view. However, the second variant has only three
free parameters and can be solved more efficiently, since it is not a homoge-
nous equation system and thus does not require computing the SVD (see
Appendix A.3).

Before starting the optimization procedure, a RANSAC method (see Sec-
tion 4.7) is applied in order to filter outliers. This filtering step is crucial,
since the least squares method for calculating the best fit is sensitive to out-
liers, which naturally occur when computing correspondences in stereo images
with the aid of correlation methods. For this, Algorithm 7 is used, with n = 3
and a fixed number of k = 100 iterations. As already applied for the homog-
raphy estimation, the consensus with the maximum number of points is used
as input to the subsequent optimization step. In each iteration, three random
different points are picked from the set {xi} and the 3D plane defined by
them is computed. Then, for each point from {xi}, its distance to this plane
is computed and compared to an error threshold t. A relatively nonrestrictive
threshold of t = 10 mm is used, since the goal is only to filter severe outliers
that potentially lead to a wrong local minimum. The remaining outliers are
handled by the iterative optimization process.

The complete fitting procedure for the example of a plane, including the it-
erative optimization method is summarized in Algorithm 14. As performed
in Algorithm 11 for homography estimation, the points are filtered in each
iteration by comparing their error to a certain multiple tm of the mean error.
We use tm = 2.5 and a fixed number of l = 5 iterations.

6.2 Recognition and Pose Estimation based on Texture 143

Algorithm 14 FitPlane(X) → n, c, e

1. {xi} := X, n = |X|
2. X0 ← RANSAC(X, 3) {Algorithm 7}
3. j := 0
4. Perform the steps 5–8 l times
5. j := j + 1
6. Determine the plane parameters n, c by solving Eq. (6.17) or Eq. (6.18).

7. Calculate the mean error by e =
1

n

n∑
k=1

|nxi + c|
|n| .

8. Calculate the filtered set of points:

Xj = {xi | xi ∈ Xj−1 ∧
|nxi + c|
|n| ≤ tm · e}.

After having estimated the 3D plane or any other geometric 3D primitive,
its intersection with the estimated 2D contour (see Section 6.2.3.2) must be
calculated in order to obtain 3D contour points. In the case of a cuboid, this
can be achieved by intersecting the 3D straight lines through the corner points
and the projection center of the left camera with the computed plane. To offer
the result with the same interface as for the system presented in Section 6.1,
finally a rotation R and a translation t must be computed that transform
the points of a given 3D object model from the object coordinate system to
the world coordinate system. When using 3D-3D point correspondences for
pose estimation without fitting a 3D primitive, this transformation is calcu-
lated automatically. Otherwise, the searched rigid body transformation can
be computed on the basis of 3D-3D point correspondences between the calcu-
lated 3D contour points and the corresponding 3D model points. For this, the
minimization method from [Horn, 1987] is used. In the case of a rectangular
planar surface, it is sufficient to use the four corner points.

The result for the same input as used in the Fig. 6.22 and 6.24 is shown in
Fig. 6.37. As can be seen, the result is significantly more accurate compared to
the approach based on 2D-3D point correspondences. Furthermore, the stabil-
ity of the algorithm is neither affected by inaccuracies of the 2D feature point
positions nor by perspective deviations inferred by the estimated homogra-
phy. As can be seen in Fig. 6.37, the pose estimation result even improves
the pose implied by the homography. The reason is that the proposed method
uses 3D information that is independent from the feature correspondences and
can thereby correct the contour points obtained through intersection to some
degree by using information about the true geometry of the object contour.
The proposed approach succeeds on all example images from Section 6.2.1 and
outperforms the conventional approach. However, without ground-truth infor-
mation this cannot be proved. Therefore, the accuracies of the two approaches
were compared in simulation, presenting the results in Section 9.2.1.

144 6 Stereo-based Object Recognition and Pose Estimation System

Fig. 6.37. Result of 6D pose estimation using the proposed method. Left: 2D local-
ization result. The matched feature points are marked by the dots. Right: projection
of the 3D model, to which the computed rotation and translation were applied.

6.2.5 Occlusions

As all approaches utilizing local features, the proposed approach can naturally
deal with occlusions. An exemplary result for an occluded object is shown in
the Fig. 6.38 and 6.39. As long as the 2D localization result is roughly correct,
the 6D pose estimation succeeds. In contrast, the conventional, monocular
method computes the pose inferred by the 2D localization result, leading to a
wrong result, as can be seen in the left image from Fig. 6.39. In order to deal
with occlusions using the proposed approach, not all interest points within
the projected contour can be used for stereo matching, since some interest
points might belong to a potential occluding object. Therefore, only those
interest points are picked that are near matched feature points. Note that
this approach leads to more interest points than simply picking the filtered
set of matched feature points. In Fig. 6.38, rejected interest points are marked
as black dots.

However, if an object is not occluded, only picking those interest points that
are near matched feature points leads to less points for stereo triangulation.
One possible solution to this problem is to first apply the variant using only
those interest points that are near matched feature points and then include
all 3D points within the contour whose distance to the estimated surface is
below a threshold. This practically is equal to one iteration of the RANSAC
approach with a pre-calculated plane.

6.2.6 Increasing Robustness

So far, it has not been specified how the feature correspondences are estab-
lished. Intuitively, one might want to calculate for each feature in the current
scene the best matching feature from the set of all features from all objects
stored in the database. However, this approach would be disadvantageous for

6.2 Recognition and Pose Estimation based on Texture 145

Fig. 6.38. Result of 2D localization for an occluded object. The interest points used
for stereo triangulation in the right image from Fig. 6.39 are marked by the green
dots; black dots mark interest points that are not close enough to matched feature
points, red dots mark interest points that could not be matched in the right camera
image.

Fig. 6.39. Result of 6D pose estimation for an occluded object. The 2D localiza-
tion result is marked by the blue lines for comparison. Left: using the conventional
method (variant 3). Right: using the proposed method.

three reasons. The main problem is that different objects can have similar
features. Similar features would potentially lead to correct feature correspon-
dences being eliminated by the wrong object so that in the end, fewer correct
correspondences can be used as input to the subsequent computations. The
second disadvantage is that several Hough spaces would have to be kept si-
multaneously, one for each object, leading to a higher memory effort.

The third problem would arise when wanting to use a suitable data structure
for matching, such as a kd-tree (see Section 6.2.7). As soon as an object is
added to or removed from the database, the complete data structure would
have to be re-built.

146 6 Stereo-based Object Recognition and Pose Estimation System

For these reasons, instead of computing the best matching feature from the
set of all features of all objects, the matching procedure is performed for each
object stored in the database separately. This is the same strategy as ap-
plied for matching the global views described in Section 6.1.5. Computing the
matches for each object separately does not lead to a greater computational
effort, since the number of comparisons remains the same. Furthermore, only
one Hough space must be kept at a time and the same Hough space can be
used for all objects. Most importantly, the quality of the result will be the
same as if only one object was stored in the database. Note that for many
objects, a kd-tree containing the features of all objects would result in a more
efficient search due to the logarithmic relationship between the number of
stored features and the search depth.

The only potentially considerable additional effort is caused by the verification
of each hypothesis, one for each object. However, most of these hypotheses
would have been generated by the first mentioned matching strategy as well.
Furthermore, the effort for verifying a wrong hypothesis is negligible, since
the effort of the Hough transform is minimal due to the coarse Hough space,
and a wrong hypothesis will be recognized already after the RANSAC method
or at the latest in one of the first iterations of the homography estimation. In
this context, also see the computation times given in Section 9.2.3.

A variant of the matching strategy used in this thesis is to compute for each
object feature stored in the database the best match in the current view,
i.e. match in the opposite direction. By doing this, objects can be treated
separately as well. The two variants are complementary, since when using
the first variant, correct correspondences might get lost because the training
view contains similar features, and when using the second variant, correct
correspondences might get lost because the current view contains similar fea-
tures. However, when using the second variant, an intelligent data structure
for speeding up the search cannot be used, since the features in the current
view change from frame to frame. Therefore, this option is only suitable when
efficiency is not of importance. For the experiments performed in this thesis,
the first variant was fully sufficient.

More sophisticated methods for feature matching, such as calculating the
second-best match as well and checking the ratio of the two matching scores
are not used. This additional effort for sorting out ambiguous matches can be
saved, since the filtering procedure consisting of RANSAC, Hough transform,
and iterative homography estimation is very robust to outliers.

So far, only a single view of the object was used to produce the feature set.
While this strategy might succeed in many cases, it meets its limits when
severe out-of-plane rotations occur between the current view and the training
view. In particular, training a frontal view (see Fig. 6.26) leads to problems
when facing a typical view of a humanoid robot looking down on a table (see
left image from Fig. 6.21). To nevertheless achieve a robust system, several

6.2 Recognition and Pose Estimation based on Texture 147

views of the same object are used. One possibility to handle these multiple
views would be to treat each view independently, in the same manner as the
objects are treated separately. The result would then be given by the best
matching view i.e. the view producing the smallest error.

An approach that does not produce multiple hypotheses for one object is to
transform all feature points into a single common coordinate system. This can
be achieved by stitching the views together based on their overlap. For this
purpose, the same methods apply as used for 2D recognition and homogra-
phy estimation. For cuboids, the manually marked corner points of the front
surface of the object are already sufficient for calculating the homography be-
tween two views. Using a common coordinate system offers the benefit that
not multiple feature sets for one object must be handled. Furthermore the set
of all features can be analyzed in order to sort out similar features. However,
when wanting to acquire a 360o-representation of an object, storing indepen-
dent views is more suitable. For the experiments performed in this thesis, a
common coordinate system is used for collecting views of the same surface.

Finally, the choice of three crucial parameters is to be discussed: the Harris
quality threshold, the threshold for matching, and the number of iterations
for the homography estimation. Naturally, the more features calculated in the
scene, the more correspondences can be found. Therefore, especially for im-
ages with a low resolution of the object, a very low quality threshold of 0.001
is used for the Harris corner detector. To further increase the number of com-
puted correspondences, a relatively low quality threshold of 0.7 is used for the
cross correlation between two SIFT descriptors. However, this increases the
number of low-quality features and wrong correspondences (see Fig. 6.32) and
therefore requires a robust filtering strategy. Severe outliers are filtered by the
Hough transform and the RANSAC method. To sort out all false correspon-
dences, l = 20 iterations are used for the homography estimation procedure
(see Algorithm 11). In most cases, the algorithm will converge already after
few iterations. This strategy achieves a significantly better performance, i.e.
higher recognition rate and a lower false positive rate, than choosing a more
restrictive quality threshold for feature matching and fewer iterations.

6.2.7 Runtime Considerations

As described in Section 6.2.2 dealing with feature calculation, throughout the
experiments three levels were used with a scale factor of ∆s = 0.75. However,
when assuming that the object never appears larger than the largest training
view – or if, then within the scale coverage of the SIFT descriptor – then
multiple levels are not needed for feature computation on the current view. It
is sufficient to use multiple levels for the training view, so that the object can
be recognized at smaller scales. This strategy significantly reduces the number
of feature comparisons and therefore the runtime of the matching procedure.

148 6 Stereo-based Object Recognition and Pose Estimation System

After feature calculation, the computation of the nearest neighbor for the
purpose of feature matching is the most time-consuming part of the complete
recognition and pose estimation algorithm (see Section 9.2.3). To speedup
the nearest neighbor computation, a kd-tree is used to partition the search
space. As explained in Section 6.2.6, one kd-tree is built for each object. In
order to perform the search efficiently, the Best Bin First (BBF) strategy
[Beis and Lowe, 1997] is used. This algorithm performs a heuristic search and
only visits a fixed number of nl leaves. The result is either the actual near-
est neighbor, or a data point close to it. The parameter nl depends on the
number of data points i.e. SIFT descriptors: The more SIFT descriptors the
kd-tree contains, the greater nl must be to achieve the same reliability. Since
each kd-tree only contains the features of one object, nl can be chosen to be
relatively small. Throughout the experiments, nl = 75 was used for feature
sets consisting of not more than 1,000 features.

6.2.8 Summary of the Algorithm

In this section, the complete algorithm for the recognition and pose estimation
of textured objects is summarized. The framework is independent from the
types of features used; in the case of SIFT descriptors, each feature vector {fj}
has a length of 128. The computations for a scene analysis including all objects
stored in the database is summarized in Algorithm 15. In Fig. 9.18 from
Section 9.2.1, the effect of the parameter nl on the recognition performance
and the runtime is evaluated.

Algorithm 15 AnalyzeSceneTextured(Il, Ir) → {idi, Ri, ti}, n
1. n := 0
2. Calculate the set of features {ui, vi, ϕi, {fj}i} for the left camera image Il.
3. For each object oid stored in the database, perform the steps 4–6:
4. For each feature in the current scene, determine the best matching object feature

by nearest neighbor search with the aid of the kd-tree associated with the object.
All correspondences that produce a matching score of ≥ 0.7 are stored in the
set X = {xi,x

′
i}, xi,x

′
i ∈ R2.

5. H,X ′, e ← EstimateHomography(X) {Algorithm 11}
6. If e ≤ 2.5 and |X ′| ≥ 8, then perform the steps 7–9:
7. Compute the 2D contour C of the object in the current view by transforming

the manually marked contour in the training views with the homography H−1.
8. R, t ← CalculatePoseTextured(Il, Ir, C, model(oid)) {Algorithm 12}
9. Add id,R, t to {idi, Ri, ti} and n := n+ 1.

7

Stereo-based Markerless Human Motion
Capture System

Markerless human motion capture means to capture human motion without
any additional arrangements required, by operating on image sequences only.
Implementing such a system on a humanoid robot and thus giving the robot
the ability to perceive human motion would be valuable for various reasons.
Captured trajectories, which are calculated in joint angle space, can serve as
a valuable source for learning from humans. Another application for the data
computed by such a system is the recognition of actions and activities, serving
as a perception component for human-robot interaction. However, providing
data for learning of movements is the more challenging goal, since reproducing
captured trajectories on the robot sets the highest demands on smoothness
and accuracy.

Commercial human motion capture systems such as the VICON system (see
Section 3.1), which are popular in the film industry as well as in the bio-
logical research field, require reflective markers and time consuming manual
post-processing of captured sequences. In contrast, a real-time human motion
capture system using the image data acquired by the robot’s head would make
one big step toward autonomous online imitation-learning (see Section 5.6).

For application on the active head of a humanoid robot, a number of re-
strictions has to be coped with. In addition to the limitation to two cameras
positioned at approximately eye distance, one has to take into account that
an active head can move. Furthermore, computations have to be performed
in real-time, and most importantly for practical application, the robustness of
the tracking must not depend on a very high frame rate or slow movements,
respectively.

In the following, first the general problem definition will be given, followed
by an introduction to the used particle filtering framework, including con-
ventional likelihood functions used for the purpose of human motion capture.
In the subsequent sections, the proposed approach to stereo-based real-time
markerless human motion capture will be presented. A so-called distance cue

150 7 Stereo-based Markerless Human Motion Capture System

will be introduced, as well as several novel extensions of the standard ap-
proach, dealing with the fusion of cues, automatic model adaption, and the
integration of inverse kinematics. As will be shown, with the proposed ap-
proach, 3D human upper body motion can be captured reliably and accurately
in indeed slightly restricted, but realistic and highly relevant scenarios.

7.1 Problem Definition

The general problem definition is to determine the correct configuration of an
underlying articulated 3D human model for each input stereo image pair. The
main problem is that search space increases exponentially with the number of
degrees of freedom of the model. A realistic model of the human body consists
of at least 25 DoF: 6 DoF for the base transformation, 3 DoF for the neck,
2 · 4 DoF for the arms, and, 2 · 4 DoF for the legs; or 17 DoF if modeling the
upper body only. The large number of degrees of freedom in both cases leads
to a high-dimensional search space. Different approaches to the problem of
markerless human motion capture have been introduced in Chapter 3.

7.2 Human Upper Body Model

7.2.1 Kinematic Model

For the system developed in this thesis, a kinematic model of the human
upper body consisting of 14 DoF was used, not modeling the neck joint. The
shoulder is modeled as a ball joint, and the elbow as a hinge joint. With this
model, rotations around the axis of the forearm cannot be modeled. Capturing
the forearm rotation would require tracking of the hand, which is not subject
to this thesis. The degrees of freedom of the used upper body model are
summarized as follows:

• Base transformation: 6 DoF

• Shoulders: 2 · 3 DoF

• Elbows: 2 · 1 DoF

The shoulder joints are implemented with an axis/angle representation in or-
der to avoid problems with singularities, which can occur when using Euler
angles. The elbows are modeled by the single angle θ for the rotation ma-
trix Rx(θ). The base rotation is modeled by Euler angles to allow a better
imagination so that joint space restrictions can be defined easily.

7.2 Human Upper Body Model 151

7.2.2 Geometric Model

Body sections are often fleshed out by sections of a cone with an elliptic
cross-section. However, using ellipses instead of circles for modeling the arms
causes additional computational effort without leading to considerable practi-
cal benefits for application with image-based human motion capture systems.
In practice, only the torso requires ellipses for being modeled with sufficient
detail. But even with such a model, the torso can hardly be tracked on the
basis of projections to the image i.e. without explicit 3D information. The rea-
son is that the only valuable information that could be measured in the 2D
images is the left and right contour and the shoulder positions. However, the
torso contour is often occluded and changes its appearance depending on the
clothing and the arm configuration, as does the appearance of the shoulders,
making it hard to track the torso on the basis of edge or region information
only.

Fig. 7.1. 3D Visualization of the used human upper body model.

We believe that in order to achieve reliable acquisition of the body rotation,
the upper body must be tracked with an additional approach that makes use
of 3D information on the torso surface, possibly computed by stereo triangula-
tion. Solving this problem is not subject to this thesis; ways of supporting such
a process by the output computed by the proposed approach are mentioned
in Section 10.3.

In the proposed system, all body parts are modeled by sections of a cone with
circular cross-sections. The computation of the projected contour of such a 3D
primitive is described in the following; the calculations for the more general
case with an elliptic cross-section are given in [Azad et al., 2004]. A section of
a cone is defined by the center c of the base, the radius R of the base circle, the
radius r of the top circle, and the direction vector n of the main axis. Given
that all vectors are specified in the camera coordinate system, the position

152 7 Stereo-based Markerless Human Motion Capture System

vectors of the endpoints p1,p2,p3,p4 defining the two projected contour lines
P1P2 and P3P4 can be calculated by

u =
n× c
|n× c|

ct = c+ L · n
|n|

p1,3 = c±R · u
p2,4 = ct ± r · u . (7.1)

All involved measures and vectors are illustrated in Fig. 7.2. The principle
is to calculate the intersection of the cone with the plane that runs through
the main axis of the cone and at the same time is orthogonal to the plane
that goes through the projection center and the main axis. As can be seen,
using this model, only very few computations are necessary for calculating
the projected contour of a body part. This is crucial for the goal of building
a system that can be applied in real-time, since the projection of the body
model given a configuration must be evaluated for each particle.

r

R

c n

Z L

u

p
1

p
3

p
2

p
4

ct

Fig. 7.2. Illustration of the projected contour of a section of a cone. The contour
lines that are visible in the image are P1P2 and P3P4.

7.3 General Particle Filtering Framework for Human
Motion Capture

Particle filtering has become popular for various visual tracking applications.
The benefits of a particle filter compared to a Kalman filter are the ability to

7.3 General Particle Filtering Framework for Human Motion Capture 153

track non-linear movements and to store multiple hypotheses simultaneously.
These benefits are bought at the expense of a higher computational effort. For
methods using a Kalman filter as probabilistic framework, it is typical that
an optimization approach is used in the core. The robustness and accuracy
of the system is improved by using a Kalman filter for predicting the config-
uration in the next frame. This prediction yields a considerably better initial
condition for an optimization approach. However, tracking approaches that
rely on a sufficiently accurate prediction naturally lack the ability to recover
when tracking gets lost.

Approaches relying on particle filtering follow a completely different strat-
egy. Instead of using an optimization method, essentially a statisti-
cally profound search is performed for finding the optimal solution. In
[Deutscher et al., 2000], it was shown that powerful markerless human mo-
tion capture systems operating on images can be built using particle filtering
(see also Section 3.4). However, the proposed system benefits from three cam-
eras distributed around the area of interest. Furthermore, the system has a
processing time of approx. 15 seconds per frame on a 1.5 GHz CPU. Neverthe-
less, the used likelihood functions and the general approach build a valuable
starting point for building a system that can be applied on the active head of
a humanoid robot system.

The core of any approach using particle filtering is the likelihood function
that evaluates how well a given model configuration matches the current ob-
servations. In the following sections, commonly used likelihood functions for
image-based markerless human motion capture are introduced, as well as how
these cues can be fused within a particle filtering framework.

7.3.1 Edge Cue

Given the current observations z and the projected contour of the human
model for a configuration s, the likelihood function p(z | s) for the edge cue
calculates the likelihood that the model matches the observations z, given a
configuration s.

image edge

projected edge
δ

δ

Δ

Fig. 7.3. Illustration of the search for edge pixels.

154 7 Stereo-based Markerless Human Motion Capture System

The basic technique is to traverse the projected edges and search at
fixed distances ∆ for edge pixels in perpendicular direction to the pro-
jected edge within a fixed search distance δ, as illustrated in Fig. 7.3
[Isard and Blake, 1996]. For this purpose, the camera image I, which rep-
resents the observations z, is usually pre-processed to generate a gradient
image Ig using an edge filter. The likelihood is calculated on the basis of the
SSD (see Section 4.3.2). In order to formulate the likelihood function, first for
a given point p ∈ R2 belonging to an edge ep, the set of high-gradient pixels
in perpendicular direction to ep is defined by the function

g(Ig,p) = { x | x ∈ R2 ∧ |x− p| ≤ δ ∧ (x− p) ⊥ ep ∧ Ig(x) ≥ tg } (7.2)

where tg denotes a predefined gradient threshold. Given a set of projected
contour points P := {pi} with pi ∈ R2, i ∈ {1, . . . , |P |}, the evaluation or
error function w(Ig, P) is formulated as

wg(Ig, P) =
|P |∑
i=1

(g∗(Ig,pi)− pi)2 (7.3)

where g∗(Ig,pi) ∈ g(Ig,pi)∪{pi+(µ, 0)T } denotes one element that is picked
according to some cirterion, e.g. minimum distance. The constant µ denotes a
penalty distance that is applied in case no high-gradient pixel could be found
for a contour point pi, i.e. g(Ig,pi) = ∅, which implies g∗(Ig,pi) = pi+(µ, 0)T

and thus (g∗(Ig,pi)−pi)2 = µ2. The notation for the likelihood function now
reads

pg(Ig | s) ∝ exp
{
− 1

2σ2
g

wg(Ig, fg(s))
}
. (7.4)

The point set P is acquired by applying the function fg(s), which computes
the forward kinematics of the human model and projects the contour points
of the model of interest to the image coordinate system. A contour line of
the model is projected to the image by projecting its two endpoints (see
Section 7.2.2). The projection is performed by applying the projection matrix
of the camera. Having projected the two endpoints, the line is sampled in the
image with the discretization ∆.

Another approach for a gradient-based evaluation function is to spread the
gradients in the gradient image Ig by applying a Gaussian filter or any other
suitable operator, and to sum up the gradient values along the projected edge,
as done in [Deutscher et al., 2000]. By doing this, the computational effort is
reduced significantly, compared to performing a search for each pixel of the
projected edge. The computation of the evaluation function is efficient, even
when choosing the highest possible discretization of ∆ = 1 pixel. Assuming
that the spread gradient image has been remapped to the interval [0, 1], the
evaluation function used in [Deutscher et al., 2000] is formulated as

7.3 General Particle Filtering Framework for Human Motion Capture 155

wg(Ig, P) =
1
|P |

|P |∑
i=1

(1− Ig(pi))2 . (7.5)

7.3.2 Region Cue

The second commonly used cue is region-based, for which a foreground seg-
mentation technique has to be applied. The segmentation algorithm is in-
dependent from the likelihood function itself. In the segmentation result Ir,
pixels belonging to the person’s silhouette are set to 1 and background pix-
els are set to 0, i.e. I(u, v) ∈ {0, 1}. According to [Deutscher et al., 2000] the
evaluation function for the region cue is formulated as

wr(Ir, P) =
1
|P |

|P |∑
i=1

(1− Ir(pi))2 = 1− 1
|P |

|P |∑
i=1

Ir(pi) . (7.6)

Compared to the edge cue, the main difference is that points within the pro-
jected contour are sampled instead of sampling points along the contour. This
leads to a considerably higher computational effort, since the points are sam-
pled in a grid rather than along a line. The likelihood function for the region
cue finally reads

pr(Ir | s) ∝ exp
{
− 1

2σ2
r

wr(Ir, fr(s))
}

(7.7)

where the function fr(s) computes the forward kinematics of the human model
and projects the body part points of the model into the image coordinate
system. This is achieved by computing a grid within the area defined by the
four projected contour endpoints p1,p2,p3,p4 (see Section 7.2.2).

7.3.3 Fusion of Multiple Cues

The general approach for fusing the results of multiple cues within a particle
filtering framework is to multiply the likelihood functions of the cues in order
to obtain an overall likelihood function. For the introduced edge cue and region
cue, this would yield:

p(Ig, Ir | s) ∝ exp
{
− 1

2σ2
g

wg(Ig, fg(s))
}
· exp

{
− 1

2σ2
r

wr(Ir, fr(s))
}

= exp
{
−
[

1
2σ2

g

wg(Ig, fg(s)) +
1

2σ2
r

wr(Ir, fr(s))
]}

. (7.8)

Any other cue can be fused within the particle filter with the same rule. One
way of combining the information provided by multiple calibrated cameras is

156 7 Stereo-based Markerless Human Motion Capture System

to incorporate the likelihoods for each image in the exact same manner, as
done in [Deutscher et al., 2000]. In the proposed system, this technique is used
for combining the likelihood functions for the left and right camera image. In
addition, a novel distance cue is introduced and integrated.

However, combining the results of multiple cues in this manner is only the
standard approach. As will be shown, this does not lead to a satisfactory
result for cues with different characteristics. The method used for fusing the
cues in the proposed system is presented in Section 7.8.

7.4 Cues in the proposed System

In this section, the cues the proposed system is based on are presented, as
proposed in [Azad et al., 2006b]. First, the variant of the edge cue used in the
proposed system is introduced in Section 7.4.1. Then, a novel cue in the con-
text of human motion capture using particle filtering – the so-called distance
cue – will be introduced in Section 7.4.2. In Section 7.4.3, the characteristics
of the edge cue, the region cue, and the distance cue will be examined and
compared. The benefits of having a calibrated stereo system at hand are used
in two ways, as will be described in Section 7.4.4.

7.4.1 Edge Cue

The evaluation function of the edge cue, as introduced in Eq. (7.5), prefers
short projected contours. This circumstance is explained by the example of
the similar region cue in Section 7.6. Using such an evaluation function on its
own, i.e. without any other cue, would therefore lead for the base translation
to approach z → ∞ in most cases, since then the projected length of the
contour becomes minimal. However, when combined with the distance cue,
which is introduced in the following section, this problem cannot occur.

Using Eq. (7.5) is convenient, because it allows to apply a constant weight
sg due to the fixed range of [0, 1]. In the proposed system, the squaring in
Eq. (7.5) is omitted, finally leading to

wg(Ig, P) = 1− 1
|P |

|P |∑
i=1

Ig(pi) . (7.9)

In Fig. 7.6, the resulting probability density functions are plotted for a simple
1D example, showing that no essential difference can be observed when omit-
ting squaring. Therefore, Eq. (7.9) is preferred due to its lower computational
effort.

7.4 Cues in the proposed System 157

7.4.2 Distance Cue

The distance cue depends on information that can be computed directly. A
common type of such information is given by points that can be measured
directly in an image or image pair, respectively. The distance cue is defined
as the sum of squared differences between a set of model points and their
corresponding measured points, both given in the same coordinate system.
The evaluation function of the distance cue is formulated as

wd(Id, P) =
|P |∑
i=1

|pi − p′i(Id)|2 (7.10)

where P = {pi} denotes a set of model points and p′i(Id) their measured
positions p′i that have been computed on the basis of the observations Id.
In order to apply this evaluation function for tracking, model points must
be transformed into the coordinate system the measurements are accom-
plished in, yielding the point set P . For this purpose, the transformation
fd,i : Rdim(s) → Rdim(pi) is defined, which maps a certain model point pm,i to
the coordinate system of the corresponding measured point p′i, given a model
configuration s. Analogous to the notation from the Sections 7.3.1 and 7.3.2,
the function fd performs this transformation for each desired model point and
thereby computes the point set P . Finally, the likelihood function pd can is
formulated as

pd(Id | s) ∝ exp
{
− 1

2σ2
d

wd(Id, fd(s))
}
. (7.11)

7.4.3 Cue Comparison

In order to understand which are the benefits and drawbacks of each likeli-
hood function and thus getting a feeling of what a likelihood function can
accomplish and what are its limits, their performance is examined in a simple
one-dimensional example. The simulated experiment used for comparison is
tracking a square of fixed size in 2D, which is simplified furthermore to track-
ing the intersection of a square with a straight line along the straight line i.e.
in one dimension, as illustrated in Fig. 7.4. The model of the square to be
tracked is defined by the midpoint (u, v) and the edge length k, where v and
k are constant and u is the one-dimensional configuration to be estimated. In
the following, the characteristics of the three introduced likelihood functions
are examined: the gradient-based cue pg, the region-based cue pr, and the
distance cue pd.

In the specified simulated example, the point set P consists of a single point,
and p′(Id) denotes the u-coordinate of the center of the square measured
in the current image Id, i.e. p, p′(Id) ∈ R. Furthermore, we have dim(s) =

158 7 Stereo-based Markerless Human Motion Capture System

u-axis

k

p

Fig. 7.4. Illustration of the simulated 1D experiment used for cue comparison. The
evaluated information is located along the dashed line.

dim(p) = 1, and f(s) = s. Obviously, in this simple case, there is no need
to use a particle filter for tracking, since the configuration to be estimated
p can be determined directly. However, the purpose of this experiment is to
show the characteristic properties of the likelihood functions pg, pr, and pd,
in order to understand their contribution to a final likelihood function for the
more complex task of human motion capture. The input images Ir and Ig for
the region cue and the edge cue, respectively, are shown in Fig. 7.5.

Fig. 7.5. Illustration of the input images for the region cue and the edge cue. Left:
binarized image Ir for the region cue. Right: blurred gradient image Ig for the edge
cue.

For a first analysis, the probability density functions of the cues pg, pr, and
pd are examined. In practice, the fractions 1

2σ2
g
, 1

2σ2
r
, and 1

2σ2
d

are implemented
as weighting factors sg, sr, and sd, respectively. These weighting factors can
either be constant or adaptive. Throughout the simulated experiment, sg =
sr = sd = 10 was used. The task was to locate a static square with a side
length of k = 71 (pixels), based on image data at the intersection of the
square with the u-axis (see Fig. 7.4). The center of the square was located
at the position u = 0 so that p′(Id) = 0, which means that ground-truth
information is used for implementing the distance cue. The probability density
functions are plotted for the range u ∈ [−50, 50]. To allow comparison of the
likelihood functions, the results of the evaluation functions wg, wr, and wd

7.4 Cues in the proposed System 159

were independently linearly mapped to the interval [0, 1], before being used
as argument to the exponential function. Since for any probability density
function,

∫∞
−∞ f(x) dx = 1 must hold true, the resulting set of likelihoods is

normalized to the sum 1 for each cue independently. The resulting probability
density functions are plotted in Fig. 7.6.

0

0.1

0.2

0.3

0.4

0.5

-40 -20 0 20 40

L
ik

el
ih

o
o
d

u [pixel]

Distance Cue
Region Cue

Edge Cue
Edge Cue2

Fig. 7.6. Comparison of the probability density functions of the edge cue pg, the
region cue pr, and the distance cue pd for the simulated 1D experiment.

As one can see in Figure 7.6, the gradient-based likelihood function pg pro-
duces the narrowest probability density function and therefore only has a
small range of operation. The probability density functions produced by pr
and pd are significantly broader. What cannot be seen in Fig. 7.6 is that the
distance cue has a range of operation of theoretically infinity, while the range
of operation of the region cue is limited to u ∈ [−k, k].

In Fig. 7.6, the probability density function denoted by Edge Cue is pro-
duced by the evaluation function from Eq. (7.9), while the probability density
function denoted by Edge Cue2 is produced by the evaluation function from
Eq. (7.5). As can be seen, the resulting probability density functions are prac-
tically identical. Throughout this thesis, Eq. (7.9) is used, since it can be
computed considerably faster.

For the following experiment, N = 10 particles were used. In the sampling step
of the particle filter, Gaussian noise was applied only, with an amplification
factor of ω = 3. The experiment was now run as follows. The initial position
of the square, denoted by the offset ∆u0, was varied. The particle filter was
run a fixed number of iterations, and after each iteration the position estimate
u was computed by using Eq. (4.55). Since the true position of the square was

160 7 Stereo-based Markerless Human Motion Capture System

u = 0, the estimated position u is equal to the signed Euclidean error of the
estimate. The progression of the error is plotted in the Fig. 7.7–7.10 for the
initial offsets ∆u0 ∈ {5, 25, 50, 100}.

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90

E
rr

o
r

[p
ix

el
]

Iteration

Distance Cue
Region Cue

Edge Cue

Fig. 7.7. Comparison of the convergence of the different cues for ∆u0 = 5.

As can be seen in Fig. 7.7, all three cues perform essentially the same within
a close distance of the true location. The observable noise of approx. ±1 pixel
is caused by the estimation over all particles, which are spread around the
found position by the Gaussian noise weighted with ω = 3. In Section 7.9, the
application of adaptive noise in sampling is introduced, in order to achieve
more accurate and smoother trajectories.

For ∆u0 = 25 (see Fig. 7.8), the edge cue is already far beyond its range of
operation. At this distance, the edge cue must rely on the applied Gaussian
noise to spread some particles near the true location by chance. As soon as
one particle is near enough to the true location so that pg computes a non-zero
value, the particle filter starts to converge. However, as can be seen, it takes
over twenty iterations until the random search yields such a hit.

The region cue and the distance cue perform the same for ∆u0 = 25 as well
as for ∆u0 = 50. For ∆u0 = 50, the edge cue converges to a (wrong) local
minimum, after performing a random search as it was the case for ∆u0 = 25.
The reason for converging to a local minimum is that for ∆u0 = 50, the right
model edge is nearer to the left image edge than to its matching right image
edge.

For ∆u0 = 100, finally the region cue meets its limits as well. It performs a
random search until after more than 100 iterations some particles are spread

7.4 Cues in the proposed System 161

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90

E
rr

o
r

[p
ix

el
]

Iteration

Distance Cue
Region Cue

Edge Cue

Fig. 7.8. Comparison of the convergence of the different cues for ∆u0 = 25.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

E
rr

o
r

[p
ix

el
]

Iteration

Distance Cue
Region Cue

Edge Cue

Fig. 7.9. Comparison of the convergence of the different cues for ∆u0 = 50.

within its range of operation by chance. As expected, the edge cue again
converges to the same local minimum as before. Note that in this experiment,
the region cue is not in danger of converging to a local minimum. For the
more complex case of human motion capture, however, the region cue can get
stuck in local minima as well.

To conclude the experiment, the number of iterations needed until convergence
is plotted in Fig. 7.11 against the initial position ∆u0 ∈ [0, 100]. Naturally,
the distance cue always converges steadily. A linear relationship between the

162 7 Stereo-based Markerless Human Motion Capture System

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

E
rr

o
r

[p
ix

el
]

Iteration

Distance Cue
Region Cue

Edge Cue

Fig. 7.10. Comparison of the convergence of the different cues for ∆u0 = 100.

initial distance and the number of needed iterations can be observed. The
edge cue starts to become unstable at approx. ∆u0 = 15. The region cue has
a considerably larger range of operation and starts to become unstable at
approx. ∆u0 = 80, which is about ten pixels above the side length k = 71 of
the square.

0

50

100

150

200

0 20 40 60 80 100

It
er

a
ti

o
n
s

N
ee

d
ed

Initial Distance ∆u0

Distance Cue
Region Cue

Edge Cue

Fig. 7.11. Comparison of the number of iterations needed until the particle filter
converges. The number 200 indicates that the target was not found.

7.4 Cues in the proposed System 163

As a conclusion, one can state that whenever possible to determine a distinct
point directly, the use of the distance cue will significantly contribute to the
robustness of the system and increase convergence speed significantly. In par-
ticular, the distance cue can help the tracker to recover when tracking gets
lost, since its range of operation is not limited. The edge cue is a valuable cue
within the vicinity of the true configuration. However, its range of operation
is very narrow and could only be extended by a greater amplification factor
ω in combination with a greater number of particles.

The general problem now is that the higher the dimensionality of search space
is, the larger the gap between the needed number of particles and the actu-
ally available number of particles becomes. Furthermore, the performance of
a particle filter always depends on how well the model fits the actual ob-
servations. In the case of human motion capture with dimensions of 14 and
greater and imperfect clothing, the configurations will never perfectly match
the image observations. To overcome this problem, the hands and the head
of the person of interest are tracked and the computed positions are used as
input to the distance cue, as will be explained in Section 7.4.4. The idea is
that these three distinct model points will force the particle filter to sample
particles within a subspace of the complete search space. In this subspace, the
problem becomes tractable and the edge cue can operate effectively.

Fig. 7.12. Illustration of an ambiguous situation for the region cue. The person’s
left arm produces the same likelihood for the two different configurations. Left: true
configuration. Right: false configuration.

With this strategy, the computationally expensive region cue becomes dispens-
able. Note that in the case of human motion capture, the region cue would
not achieve the same perfect performance as in the 1D example, which is due
to ambiguities. An example of such an ambiguity is illustrated in Fig. 7.12.

In the proposed system, only the edge cue and the distance cue are used.
The implementation of the distance cue, the fusion of both cues, as well as
important extensions necessary for obtaining a robust tracking system are
explained in detail in the remainder of this chapter.

164 7 Stereo-based Markerless Human Motion Capture System

7.4.4 Using a Calibrated Stereo System

As explained in Section 5.1, there exist various ways for benefitting from a
calibrated stereo system. One possibility would be to compute disparity maps
or 3D point clouds, respectively. However, the quality of disparity maps is
in general relatively low and only rather coarse information can be derived
from them in realistic scenarios. Another option in a particle filtering frame-
work is to project the model into both the left and the right images and
evaluate the likelihood function in 2D for both images separately, as done in
[Deutscher et al., 2000] for the case of three cameras in a cross-over setup. Ac-
cording to Section 5.1, this is referred to as implicit stereo. The resulting like-
lihood functions are combined by multiplication, as described in Section 7.3.3.

Another way of using a calibrated stereo system is to calculate 3D positions for
distinct features. In the proposed approach, as features the hands and the head
are used, which are segmented by color and tracked in a pre-processing step.
Thus, the hands and the head can be understood as three natural markers.
The approach to hand/head tracking developed for specifically this purpose
is described in Section 7.6.

There are two alternatives for using the distance cue together with skin color
blobs: apply pd in 2D for each image separately and let the 3D position be
calculated implicitly by the particle filter, or apply pd in 3D to the trian-
gulated 3D positions of the matched skin color blobs. From experience, the
first approach does not lead to a robust estimation of 3D information. This
circumstance is not surprising, since in a high-dimensional search space, the
mismatch between the number of particles and the size of the search space
becomes more drastic. This leads, together with the fact that the estimation
result of the likelihood function pd is noisy within an area of at least ±1 pixels
in an extremely simple 1D experiment (see Fig. 7.7), to a considerable error
of the implicit stereo calculation in the real scenario. In Section 7.6, it will
be shown that already for the relatively simple case of hand tracking, 3D in-
formation computed by implicit stereo only is considerably less accurate than
the result of stereo triangulation.

In the proposed system, implicit stereo is used for the evaluation of the edge
cue, and explicit stereo triangulation is used for the evaluation of the distance
cue. The fusion of the two cues is described in Section 7.8.

7.5 Image Processing Pipeline

The image processing pipeline transforms each input stereo image pair into
a binarized skin color image pair Is,l, Is,r and a gradient image pair Ig,l, Ig,r,
which are used by the likelihood functions presented in Section 7.4. In

7.5 Image Processing Pipeline 165

Fig. 7.13, the input and outputs for a single image are illustrated. In the
proposed system the pipeline is applied twice: once for the left and once for
the right camera image.

segmented shirt color gradient map

segmented skin color

input image

Fig. 7.13. Illustration of the input and outputs of the image processing pipeline.

Commonly, image-based human body pose estimation or human motion cap-
ture systems rely on some kind of foreground segmentation. The most common
approach is background subtraction. However, this segmentation method as-
sumes a static camera setup and is therefore not suitable for application on a
potentially moving robot head. An alternative is given by motion segmenta-
tion techniques, which continuously update a background model on the basis
of the recent history. Again, most of these approaches assume a static camera.
With the aid of extensions of the optical flow algorithm, it is possible to distin-
guish real motion in the scene from ego-motion [Wong and Spetsakis, 2002].
However, in practice, motion segmentation methods in general do not produce
a sufficiently accurate silhouette as input to a region cue. Only those parts
of the image that contain edges or any other kind of texture are segmented,
and the silhouette of segmented moving objects often contains parts of the
background, resulting in a relatively blurred segmentation result.

In the proposed system, the region cue is replaced by the combination of the
edge cue and the distance cue. Therefore, foreground segmentation is only
needed to distinguish edges that belong to the person’s contour from edges
present in the background. As already stated in Section 4.2.3, the segmenta-
tion problem itself is not subject to this thesis. Therefore, an efficient color
segmentation method is used for the purpose of foreground segmentation,
allowing the robot head to move at any time.

166 7 Stereo-based Markerless Human Motion Capture System

Skin color segmentation as well as shirt color segmentation are performed
by applying fixed bounds to the channels of the converted HSV image, as
explained in Section 4.2.3. The binarized skin color segmentation result is
post-processed by a 3×3 morphological open operation. Since the size of the
upper body is considerably larger than the head and the hands, the shirt color
segmentation result can be post-processed with a 5×5 open operation.

For producing a filtered gradient map on the basis of the result of foreground
segmentation, two alternatives are possible:

• Computing the gradient image of the grayscale image and filtering back-
ground pixels with the segmentation result.

• Computing the gradient image of the segmentation result.

While the first alternative potentially preserves more details in the image, the
second alternative computes a more precise contour – provided foreground
segmentation produces a sharp silhouette. Furthermore, in the second case,
gradient computation can be optimized for binarized input images. In the
proposed system, the second variant is used and a simplified edge filter is
applied for the case of binary images. Finally, the resulting contour having
a thickness of one pixel is widened by applying a 3×3 dilate operation. For
this purpose, solutions preserving more details are possible, such as applying
a 5×5 Gaussian smoothing filter with σ = 1 or even greater, as performed in
[Deutscher et al., 2000]. By doing this, the center of the contour gains more
significance than the surrounding pixels. However, from experience, dilation
is fully sufficient, thus not justifying the higher computational effort of more
sophisticated techniques.

The complete image processing pipeline for a single image is illustrated in
Fig. 7.14. As already stated, this pipeline is applied twice, once for each image
of the stereo pair. The computed skin color maps Is,l, Is,r are used as input
to the hand/head tracking system presented in Section 7.6. The resulting
gradient maps Ig,l, Ig,r are used as input to the edge cue.

7.6 Hand/Head Tracking

The performance of the distance cue relies on the accuracy of the 3D mea-
surements. In the proposed system, the head and the hands of the person of
interest are tracked and used as input to the evaluation function (7.10). Con-
sequently, accurate tracking of the head and the hands will allow accurate
estimation of 3D motion in the proposed system. In the following, the devel-
oped hand/head tracking system for this purpose will be presented. It uses
a 3D particle filter for each skin color blob in order to achieve robust track-
ing. The final 3D position of each blob is estimated by applying a correlation

7.6 Hand/Head Tracking 167

Input Image

HSV Image

Segmentation Result
Skin Color

Post-Processed
Skin Color Map

Segmentation Result
Shirt Color

Post-Processed
Shirt Color Map

Gradient Image

Gradient Map

Color Segmentation

Morphological Operation: Open

Gradient Filter

Dilate

RGB→HSV Conversion

Fig. 7.14. Illustration of the image processing pipeline.

method for establishing a correspondence between the left and right camera
image. As will be shown, this approach significantly improves the estimation
of the particle filter and even outperforms the accuracy of conventional blob
matching.

The main drawback of simple blob matching between the left and right camera
image is that the segmentation result must provide a region consisting of
connected pixels for each blob in every frame. If a blob cannot be located in a
frame, its current position would have to be predicted on the basis of a motion
model, for instance by using a Kalman filter. An alternative is to track each
blob by a particle filter. After initialization, the particle filter does not rely
on connected pixels and is therefore robust to imperfect segmentation results.

Since the size of the skin color blobs depends on the distance to the camera,
a particle filter with a 3D position model is used. For the hands, each blob is
modeled as a square with a fixed side length s in 3D; its scaling in the image is
computed by the 3D position. The head is modeled as a rectangle. As input to
the system, the skin color maps Is,l, Is,r are used (see Section 7.5). The first
question is the design of the likelihood function that computes how well a
given 3D position matches the current segmentation result. For this purpose,
first the square defined by the position of its center p and the side length
s in 3D must be sampled. This is achieved by calculating the projection of
its center and estimating the projection of the side length s, as performed in
Algorithm 16. A representative focal length f can be computed by fx+fy

2 .

168 7 Stereo-based Markerless Human Motion Capture System

Algorithm 16 ProjectAndSampleSquare(p, s) → P

1. (x, y, z)T = p
2. (u, v) ← CalculateImageCoordinates(p) {Algorithm 3}
3. k :=

s · f
2z

4. Sample points from [u− k, u+ k]× [v− k, v+ k] and store the 2D positions in
the point set P .

Given the point set P and the segmentation result Is, the task is now to
define a suitable evaluation function ws. If choosing the evaluation function
(7.6) for the region cue, the particle filter would prefer small regions and the
z-coordinate of the estimated position would approach infinity. The reason is
that Eq. (7.6) measures the ratio between the number of foreground pixels
and the total size of the square, which becomes maximal when the projected
square has a size of 1×1 and is located at a foreground pixel. The counterpart
to this evaluation function is obtained by not normalizing by the size of the
point set P :

wr(Ir, P) = vmax −
|P |∑
i=1

Ir(pi) (7.12)

where vmax denotes an estimate of the maximally possible value of the sum
for all particles. Using this evaluation function, the particle filter would prefer
large regions and the z-coordinate of the estimated position would approach
zero. The reason is that Eq. (7.12) essentially counts the number of foreground
pixels within the projected area. Naturally, this number becomes maximal
when the projected region becomes maximal.

One solution to the problem would be to combine the two different likelihood
functions by multiplying their probabilities, as described in Section 7.3.3. How-
ever, calculating a weight for Eq. (7.12) is not trivial, since its range is not
constant and depends on the projected size of the square. One option would
be to first collect the results of Eq. (7.12) for all particles and linearly map
them to the interval [0, 1]. Performing the same normalization for Eq. (7.6)
would allow to equally weight the two likelihood functions.

Another solution is to incorporate the distance z into Eq. (7.6) so that the
preference of small regions is neutralized:

ws(Is, P) = − 1
z · |P |

|P |∑
i=1

Ir(pi) . (7.13)

This evaluation function computes a negative error measure that becomes
minimal when the model configuration matches the segmentation result in
the best way. The division by z achieves that small regions are not blindly
preferred. The resulting likelihoods are mapped linearly to the interval [0, 1],

7.6 Hand/Head Tracking 169

as previously described. This process is performed for both camera images
and the results of the evaluation function ws are combined by addition. As
weighting factor, ss = 10 is used. The computation of the probabilities for all
particles is summarized in Algorithm 17. The input images Is,l, Is,r denote
the skin color maps computed for the stereo image pair (see Section 7.5).

Algorithm 17 ComputeProbabilities(Is,l, Is,r, {pi}) → {πi}
1. N := |{pi}| { number of particles }
2. For each i ∈ {1, . . . , N} perform the steps 3–5:
3. Pl ← ProjectAndSampleSquare(pi, s) {Algorithm 16, left camera}
4. Pr ← ProjectAndSampleSquare(pi, s) {Algorithm 16, right camera}
5. wi := ws(Is,l, Pl) + ws(Is,r, Pr)
6. wmin := min {wi}
7. wmax := max {wi}
8. For each i ∈ {1, . . . , N} calculate the final likelihood by:

πi := exp
{
−ss

wi − wmin

wmax − wmin
)
}

Although this approach results in a stable blob tracker, the particle filter es-
timate of the 3D position is very in accurate, in particular the z-coordinate.
The reason is that the implicit stereo calculation (see Section 5.1) does not
enforce the constraints of precise correspondences, in particular when dealing
with a coarse model of a single blob. The only goal of the likelihood function
is essentially to maximize the percentage of foreground pixels in the projec-
tion of the square for both camera images, which does not require that the
two projected windows precisely cover the same part of the hand or head,
respectively.

Therefore, for calculating an accurate 3D position on the basis of the estimate
of the particle filter, the correspondence in the right image is calculated ex-
plicitly by applying a correlation method. For this purpose, the ZNCC (see
Section 4.3.3) is computed along the epipolar line within a range of dispari-
ties of [−10, 10] with respect to the previously computed disparity. The initial
position for each blob is given by the result of conventional blob matching.
For determining a stable reference point in the left image, for which the cor-
respondence in the right camera image is searched, the centroid within the
estimated square is computed. One run of the proposed blob tracker is sum-
marized in Algorithm 18. The index t indicates the current frame, and t − 1
the previous frame, respectively. The images I ′l , I

′
r denote the grayscale images

corresponding to the color images Il, Ir.

The trajectories of conventional blob matching, the position estimated by
the particle filter and the corrected position computed by the proposed
correlation-based approach are compared in the Fig. 7.15 and 7.16 for a stereo
sequence consisting of 1,000 frames. The sequence was recorded with a stereo

170 7 Stereo-based Markerless Human Motion Capture System

Algorithm 18 TrackBlob(I ′l , I
′
r, Is,l, Is,r) → pt

1. Calculate position estimate (x, y, z)T by running the particle filter, using the
likelihood function described in Algorithm 17.

2. (u, v) ← CalculateImageCoordinates(x, y, z) {Algorithm 3, left camera}
3. k :=

s · f
2z

4. Compute the centroid uc, vc within the square window [u−k, u+k]×[v−k, v+k]
in Is,l.

5. For the pixel (uc, vc) in the image I ′l , compute the correspondence in I ′r with
subpixel accuracy by computing the ZNCC (see Section 4.3.3) within the range
of disparities [dt−1 −∆d, dt−1 +∆d] along the epipolar line.

6. If the correspondence could be calculated successfully, then calculate the final
3D position pt by stereo triangulation of the computed stereo correspondence;
otherwise set p := pt−1. Store the current disparity dt.

camera system with a baseline of 9 cm; an examplary image from the sequence
as well as the corresponding skin color segmentation result can be seen in
Fig. 7.13. The trajectory produced by blob matching can be regarded as a
coarse criterion for the real trajectory. For frames for which blob matching
failed, the position computed for the previous frame was used. As expected,
the trajectory estimated by the particle filter is very inaccurate, in particular
in terms of the z-coordinate.

The proposed approach is naturally more robust than conventional blob
matching. Furthermore, it outperforms blob matching even in terms of ac-
curacy, as can be seen in the Fig. 7.15 and 7.16. Although the trajectories are
similar, the trajectory produced by blob matching is considerably noisier and
exhibits some outliers in the z-coordinate. This can be explained by effects
of the binarized skin color segmentation procedure, which can cause parts to
break away in the segmentation result of one camera image, which are still
visible in the other camera image. Note that the trajectory produced by the
proposed approach is smooth without applying any kind of post-processing.

In the current system, each skin color blob is treated separately. Occlusions
are handled to some degree by using a constant velocity model for particle
sampling (see Section 4.6). The proposed method for accurate 3D hand/head
tracking can be extended to handle occlusions explicitly by utilizing the knowl-
edge of the state of all skin color blobs simultaneously, following the idea pre-
sented in [Argyros and Lourakis, 2004]. Further possible extensions are men-
tioned in Section 10.3.

7.7 Hierarchical Search 171

0

200

400

600

800

1000

0 100 200 300 400 500 600 700 800 900 1000

x
[m

m
]

Frame

Correlation
Blob Matching
Particle Filter

-1200

-1000

-800

-600

-400

-200

0

200

400

600

0 100 200 300 400 500 600 700 800 900 1000

y
[m

m
]

Frame

Correlation
Blob Matching
Particle Filter

Fig. 7.15. Comparison of the x, y-trajectories computed by different approaches to
hand/head tracking for an exemplary sequence consisting of 1,000 frames. As can
be seen, the proposed correlation-based position correction and conventional blob
matching perform essentially the same.

7.7 Hierarchical Search

The most general approach to human motion capture using particle filtering
is to use one particle filter for estimating all degrees of freedom of the model,
as done in [Azad et al., 2006b, Azad et al., 2007c]. The advantage is that by
estimating all degrees of freedom simultaneously, potentially the orientation
of the torso can be estimated as well. In practice, however, the human model
cannot be precise enough to benefit from this potential – in particular when
the sensor system is restricted to a single stereo camera system.

172 7 Stereo-based Markerless Human Motion Capture System

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 100 200 300 400 500 600 700 800 900 1000

z
[m

m
]

Frame

Correlation
Blob Matching
Particle Filter

Fig. 7.16. Comparison of the z-trajectories computed by different approaches to
hand/head tracking for an exemplary sequence consisting of 1,000 frames. As can be
seen, the proposed correlation-based position correction computes the most accurate
and smoothest trajectory.

To reduce the number of particles, a hierarchical search is performed in the fol-
lowing i.e. the search space is partitioned explicitly. Since the head is tracked
for the distance cue anyway, the head position can be used as the root of the
kinematic chain. By doing this, only 3 DoF of the base transformation remain
to be estimated. If not modeling the neck joint, these degrees of freedom de-
scribe the orientation of the torso. Since the torso orientation can hardly be
estimated on the basis of 2D measurements only, as discussed in Section 7.2.2,
it is regarded as a separate problem. In order to achieve robustness to small
changes of the body rotation without actually knowing it, the shoulder posi-
tions are modeled to be adaptive, as will be described in Section 7.10. Ways
of how the proposed system can support the estimation of the body rotation
are mentioned in Section 10.3.

The final estimation problem for the particle filter consists of 2·4 DoF for both
arms; the 3 DoF of the base translation are estimated directly by a separate
particle filter used for head tracking (see Section 7.6). Intuitively, estimating
the 4 DoF of one arm with a separate particle filter sounds simple and one
would assume that this approach would lead to an almost perfect result –
given the restriction of a more or less frontal view of the person. However,
various extensions are necessary to allow smooth and robust tracking of the
arm movements. In the following sections, these extensions will be described in
detail, illustrating the improvements at each stage by exemplary trajectories
for the static case, operating on real image data.

7.8 Fusing the Edge Cue and the Distance Cue 173

7.8 Fusing the Edge Cue and the Distance Cue

In Section 7.3.3, the conventional approach for combining several cues within a
particle filtering framework was presented. The quality and accuracy achieved
by such an approach strongly depends on the cues agreeing on the way toward
the target configuration. In practice, however, different cues have different
characteristics. While the likelihood functions of different cues in general have
their global maximum in the vicinity of the true configuration, i.e. agree on the
final goal, they often exhibit totally different local maxima. This circumstance
often causes the likelihood functions to fight against each other, resulting in
a typically noisy estimation.

In [Triesch and von der Malsburg, 2001], the problem of cue characteristics
varying over time is dealt with by applying adaptive weights to the different
cues for the purpose of multi-cue fusion. However, by applying this method,
the same weights are applied for the whole generation of particles for one
frame. Therefore, this method cannot handle the problem that different con-
figurations within the same particle generation in some cases require different
weighting due to configuration-dependent significance of cues.

Fig. 7.17. Illustration of the effect of fusion with the proposed approach. A differ-
ence can be observed for the person’s left arm; the tracker for the right arm is stuck
in a local minimum in both cases. Left: conventional fusion by multiplication of the
likelihoods. Right: proposed prioritized fusion.

In the case of the proposed system, the edge cue and the distance cue have
to be fused. A typical situation for the described problem when combining
their likelihood functions by multiplication is illustrated in the left image
from Fig. 7.17. In this case, the two cues do not even agree on the final goal:
The edge cue hinders the distance cue to approach the true configuration due
to the effects of clothing.

Since the distance cue is the more reliable cue due to the explicit measure-
ment of the hand position, the idea is to introduce a prioritization scheme: If
the distance error of the hand for the current estimate is above a predefined

174 7 Stereo-based Markerless Human Motion Capture System

threshold, then the error of the edge cue is ignored by assigning the maxi-
mum error of one; otherwise the distance error is set to zero. By doing this,
the particle filter rapidly approaches configurations in which the estimated
hand position is within the predefined minimum radius of the measured hand
position – without being disturbed by the edge cue. All configurations that
satisfy the hand position condition suddenly produce a significantly smaller
error, since the distance error is set to zero, and the edge error is < 1. There-
fore, within the minimum radius, the edge cue can operate without being
disturbed by the distance cue. Applying this fusion approach allows the two
cues to act complementary instead of hindering each other.

Algorithm 19 ComputeLikelihoodArm(Ig,l, Ig,r, ph, s) → π

1. eg :=
wg(Ig,l, fg,l(s)) + wg(Ig,r, fg,r(s))

2
{for wg see Eq. (7.9)}

2. ed := |ph − fd(s)|2
3. If ed < t2d, then set ed := 0 else set eg := 1.

4. ed :=
sd · ed

e
(t−1)
d

5. If ed > 50, then set ed := 50.
6. π := exp {−(ed + sg · eg)}

In addition, the range of the distance error is limited by division by the dis-
tance error e(t−1)

d for the estimated configuration of the previous frame. Oth-
erwise the range of the distance error could become very large, potentially
leading to numerical instabilities when configurations occur that produce a
very large distance error, which often happens throughout the automatic ini-
tialization process. Finally, the argument to the exponential function is cut off
when it exceeds the value 50. The final likelihood function fusing the errors cal-
culated by the edge cue and the distance cue is summarized in Algorithm 19.
The inputs to the algorithm are the gradient map stereo pair Ig,l, Ig,r, the
measured hand position ph, and the configuration s to be evaluated. For the
weighting factors, sg = sd = 10 is used. As the minimum radius, td = 30 mm is
used. The function fd : R4 → R3 computes the position of the hand for a given
joint configuration s by computing the forward kinematics. The interaction
of Algorithm 19 with the whole system is shown in Algorithm 21.

The performance of the proposed prioritized fusion method was compared
to the conventional fusion method for the left arm shown in Fig. 7.17. In
the Fig. 7.18 and 7.19, the results of 100 iterations of the particle filter are
plotted, after the particle filter has already converged. As can be seen, using
prioritized fusion does not only lead to smaller edge and distance errors, but
the variances of the estimated angles are considerably smaller; the greatest
difference can be observed in this example for the angle θ2. The reason is that,
when using conventional fusion, the cues do not agree on the same goal and

7.9 Adaptive Noise 175

0

20

40

60

0 20 40 60 80

D
is

ta
n
ce

E
rr

o
r

[m
m

]

Iteration

0.2

0.4

0.6

0.8

1

0 20 40 60 80

E
d
g
e

E
rr

o
r

Iteration

Fig. 7.18. Illustration of the effect of the proposed fusion method on the edge and
distance error by the example of the person’s left arm shown in Fig. 7.17. The solid
line indicates the result when using the proposed fusion method, the dashed line
using conventional fusion.

thus cannot find the optimal configuration. The trajectories of all four angles
are plotted in Fig. 7.20, using prioritized fusion.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90

A
n
g
le
θ 2

Iteration

Conventional Fusion
Prioritized Fusion

Fig. 7.19. Illustration of the effect of the proposed fusion method on the trajectory
of the angle θ2 for the scene shown in Fig. 7.17. The standard deviation of θ2 amounts
to 0.030 for conventional fusion and 0.013 for prioritized fusion.

7.9 Adaptive Noise

In [Deutscher et al., 2001], the idea was raised to not apply a constant amount
of noise for sampling new particles, but choose the amount to be proportional

176 7 Stereo-based Markerless Human Motion Capture System

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80 90

A
n
g
le

Iteration

Angle θ1
Angle θ2
Angle θ3
Angle θ4

Fig. 7.20. Trajectory for the scene shown in Fig. 7.17 using prioritized fusion. The
standard deviations for the angles θ1, θ2, θ3, θ4 are 0.013, 0.013, 0.0087, 0.015.

to the variance of each parameter. Since the variance of a parameter is not
necessarily related to an error of the parameter itself, in the proposed approach
the amount of noise for all degrees of freedom of an arm is chosen to be
proportional to the current overall edge error of that arm.

Although the evaluation of the edge cue on its own cannot achieve convergence
of the particle filter in many cases due to its limited range of operation, it is
a reliable measure for the correctness of a configuration. For this purpose, the
current estimate s must be used as input to Eq. (7.9), yielding:

e =
wg(Ig,l, fg,l(s))) + wg(Ig,r, fg,r(s)))

2
(7.14)

where the indices l and r denote the left and the right camera image, respec-
tively. For small errors e, the amount of noise is chosen to be proportional to
e, with a proportionality factor ωe. If the error e is larger than a threshold te,
then the maximally appropriate amount of noise ωmax is applied in order to
cover a larger part of the search space:

ω(e) =
{
ωmax if e > te
ωe · e otherwise . (7.15)

In the proposed system, te = 0.5 is used as well as ωe = 0.05, ωmax = 0.1 for
the four shoulder joints, and ωe = ωmax = 10 for the shoulder position (see
Section 7.10). In Fig. 7.21, the errors are plotted for the same example as in
Section 7.8 (Fig. 7.17), comparing the application of adaptive noise to constant
noise. In both cases, prioritized fusion was applied, as explained in Section 7.8.
The estimated trajectory using adaptive noise is plotted in Fig. 7.22, which
is almost perfectly smooth and has a significantly lower standard deviation
compared to Fig 7.20, where a constant amount of noise was applied.

7.10 Adaptive Shoulder Position 177

Note that not only the standard deviation of the estimated trajectory is lower
by a factor of approx. 2–3 – which seems natural when reducing the amount
of noise for sampling new particles – but also the edge error exhibits a lower
magnitude, compared to the application of a constant amount of noise. This
means that the particle filter could find a better goal configuration when
applying adaptive noise. The reason is that when applying a constant amount
of noise, the amount must be chosen to be relatively high in order to cope
with unpredictable motion. In the vicinity of the true configuration, however,
this amount is too high to allow a fine search, whereas adaptive noise allows
to search with a higher resolution in a smaller subspace.

The reason for the slightly higher distance error is that td = 30 mm was
used for the minimum radius in Algorithm 19. This means that the searched
configurations are free to produce any distance error from the interval [0, 30],
From these configurations those are preferred that produce a lower edge error
– the distance error is meaningless at this point. In this example, apparently,
the minimum edge error is achieved for a distance error of approx. 15 mm.
If desired, td could be chosen to be smaller. However, this would lead to less
robustness to the effects of clothing, and in particular to loose sleeves.

0

20

40

60

0 20 40 60 80

D
is

ta
n
ce

E
rr

o
r

[m
m

]

Iteration

0.2

0.4

0.6

0.8

1

0 20 40 60 80

E
d
g
e

E
rr

o
r

Iteration

Fig. 7.21. Illustration of the effect of adaptive noise on the edge and distance error
by the example of the person’s left arm shown in Fig. 7.17. The solid line indicates
the result when using adaptive noise, the dashed line using a constant amount of
noise.

7.10 Adaptive Shoulder Position

In general, one of the main problems that arises when moving from simulation
to real image data is that the model does not perfectly match the observations
anymore. In the case of motion capture of the upper body, the problem often
occurs for the shoulder joint, which is usually approximated by a single ball

178 7 Stereo-based Markerless Human Motion Capture System

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80 90

A
n
g
le

Iteration

Angle θ1
Angle θ2
Angle θ3
Angle θ4

Fig. 7.22. Trajectory for the person’s left arm shown in Fig. 7.17 using adap-
tive noise, in addition to prioritized fusion. The standard deviations for the angles
θ1, θ2, θ3, θ4 are 0.0050, 0.0044, 0.0024, 0.0054.

joint, the glenohumeral joint. In reality, however, the position of this ball joint
depends on two other shoulder joints, namely the acromioclavicular joint and
the sternoclavicular joint. When not modeling these joints, the upper body
model is too stiff to allow proper alignment; a typical situation is shown for
the person’s right arm in Fig. 7.23. Even more problematic situations can
occur, when the arm is moved to the back.

Fig. 7.23. Illustration of the effect of adaptive shoulder positions. The main differ-
ence can be observed for the person’s right arm; the model edges cannot align with
the image edges, since the shoulder position is located too much inside. Left: static
shoulder position. Right: adaptive shoulder position.

In the proposed system, this problem becomes even more severe, since the
shoulder positions are inferred by the head position, assuming a more or less
frontal view. The proposed solution is to estimate the shoulder position within
the particle filter of the arm, i.e. going from 4 DoF to 7 DoF. As it turns out,

7.10 Adaptive Shoulder Position 179

the higher dimensionality does not lead to any practical problems, whereas
the freedom to manipulate the shoulder positions in order to align the model
results in a significantly more powerful system.

The three additional degrees of freedom define a translation in 3D space. The
limits are defined as a cuboid, i.e. by [xmin, xmax]×[ymin, ymax]×[zmin, zmax].
The right image from Fig. 7.23 shows the improvement in terms of a better
alignment of the person’s right arm achieved by the adaptive shoulder position.
As can be seen, the right shoulder has been moved slightly outward in order
to align the contour of the model with the image edges. Furthermore, the
shoulder has been moved downward so that the distance error is within the
minimum radius, allowing the edge cue to operate undisturbedly.

0

20

40

60

0 20 40 60 80

D
is

ta
n
ce

E
rr

o
r

[m
m

]

Iteration

0.2

0.4

0.6

0.8

1

0 20 40 60 80

E
d
g
e

E
rr

o
r

Iteration

Fig. 7.24. Illustration of the effect of adaptive shoulder positions on the edge and
distance error by the example of the person’s right arm shown in Fig. 7.23. The solid
line indicates the result when using an adaptive shoulder position, the dashed line
using a static shoulder position.

In Fig. 7.24, the errors are plotted for the person’s right arm shown in
Fig. 7.23, comparing a static to an adaptive shoulder position. As can be
seen, both errors are significantly lower when modeling the shoulder position
to be adaptive. The reason for the lower distance error is that the shoulder
joint could be move downward so that the hand of the model can approach
the hand in the image. The lower edge error is more important: In the case of
a static shoulder position, the edge error could not be minimized at all, while
the adaptive shoulder position allows practically perfect alignment.

The failed search for a suitable arm configuration in the case of a static shoul-
der position is illustrated by the trajectory plotted in Fig. 7.25. The result
for the same image pair when using an adaptive shoulder position is shown
in Fig. 7.26. The reason for the comparatively high variance of θ2 is that the
arm is almost fully extended, so that the shoulder position has some freedom
within the minimum radius td, which in this case causes small adaptions of
the shoulder angle θ2.

180 7 Stereo-based Markerless Human Motion Capture System

-5

0

5

10

0 10 20 30 40 50 60 70 80 90

A
n
g
le

Iteration

Angle θ1
Angle θ2
Angle θ3
Angle θ4

Fig. 7.25. Trajectory for the person’s right arm shown in Fig. 7.23 using a static
shoulder position, prioritized fusion, and adaptive noise. As can be seen, the true
configuration cannot be found and thus the particle filter does not converge.

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80 90

A
n
g
le

Iteration

Angle θ1
Angle θ2
Angle θ3
Angle θ4

Fig. 7.26. Trajectory for the person’s right arm shown in Fig. 7.23 using an adaptive
shoulder position, prioritized fusion, and adaptive noise. As can be seen, the particle
filter has converged, in contrast to Fig. 7.25. The standard deviations for the angles
θ1, θ2, θ3, θ4 are 0.0043, 0.014, 0.0042, 0.0079.

7.11 Incorporating Inverse Kinematics

The system which has been presented so far performs well and can acquire
smooth and accurate trajectories. The success of the tracker, however, depends
on the speed of the person’s movements with respect to the frame rate of the
camera. This is typical for all pure tracking approaches, since they rely on the
differences between consecutive frames being small. This leads to the main

7.11 Incorporating Inverse Kinematics 181

problem that once tracking has got lost, in general, tracking systems only
recover by chance. The inclusion of the measured head and hand positions in
the proposed system already leads to a considerable improvement, since the
distance cue allows comparatively fast and reliable recovery.

Fig. 7.27. Illustration of the effect of incorporating inverse kinematics. Left: without
inverse kinematics. Right: with inverse kinematics.

One problem that remains are local minima. A typical situation is the auto-
matic initialization of the tracking system. Here, the configuration must be
found without the aid of temporal information. An example of such a local
minimum is shown for the person’s right arm in Fig. 7.27. Another problem-
atic situation occurs when the arm is almost fully extended. In this case, one
of the 3 DoF of the shoulder – namely the rotation around the upper arm –
cannot be measured due to the lack of available information. Problems now
occur when the person starts to bow the elbow, since the system cannot know
at this point, in which direction the elbow will move to. If the guess of the
system is wrong, then the distance between the true configuration and the
state of the particle filter can suddenly become very large and tracking gets
lost.

In order to overcome these problems, the redundant inverse kinematics of the
arm are incorporated into the sampling step of the particle filter. Given a 3D
shoulder position s, a 3D hand position h, the length of the upper arm a,
and the length of the forearm b, the set of all possible arm configurations is
described by a circle on which the elbow can be located. The position of the
elbow on this circle can be described by an angle α. Algorithm 20 analytically
computes for a given angle α the joint angles θ1, θ2, θ3 for the shoulder and
the elbow angle θ4. The rotation matrix Rb denotes the base rotation from
the frame the shoulder position s was measured in. Since the computations
assume that the base rotation is zero, the shoulder position s and the hand
position h are rotated back with the inverse rotation Rb at the beginning.
The underlying geometric relationships are illustrated in Fig. 7.28.

182 7 Stereo-based Markerless Human Motion Capture System

c

S

n

H

a

b

m

Fig. 7.28. Illustration of the geometric relationships for the inverse kinematics
computations.

The general idea of the inverse kinematics method is as follows. The start-
ing point is the calculation of the vector m, which points from the shoulder
position to the center of the circle. Subsequently, for each α a vector n is
calculated that points from the center to the position of the elbow. Then, one
possible rotation matrix Re for the shoulder joint is calculated that moves the
elbow to the computed position. For this rotation matrix, the rotation matrix
Ry(ϕ) for the rotation around the upper arm is calculated that satisfies the
hand constraint. The final rotation matrix R for the shoulder joint satisfying
both the elbow and the hand constraint is composed of the rotations Re and
Ry(ϕ). The elbow angle θ4 is given by γ−π, where γ is the angle between −a
and b (see Fig. 7.28), since θ4 ≤ 0 and for a fully extended arm, it is θ4 = 0.

In order to take into account joint constraints, not all possible vectors n are
considered, but only a suitable subset. For this, the shoulder rotation that
is necessary for bringing the hand to the target position c is reproduced in
a defined way. Since the computation of this rotation is ambiguous and a
defined elbow position is desired, the rotation is decomposed into two single
rotations. The first rotation moves the hand to the proper position in the
sagital plane (yz), the second rotation finally moves the hand to the target
position. By applying the same two rotations to the vector (0, 0, −a sinβ)T ,
which defines n in a canonical way, the vector n0 is calculated as a reference.
For this n0, according to human-like joint constraints, plausible values for the
bounds of α ∈ [αmin, αmax] are αmin = −0.2, αmax = π for the left arm, and
αmin = −π, αmax = 0.2 for the right arm, respectively.

The function Angle(x1, x2, a) computes the angle that is necessary for ro-
tating the vector x1 to the vector x2, using the rotation axis a. The function

7.11 Incorporating Inverse Kinematics 183

Algorithm 20 ComputeInverseKinematics(Rb, s, h, a, b, α) → θ1, θ2, θ3, θ4

1. c := RT
b (h− s)

2. If |c| > 0.95 (a+ b), then set c := 0.95 (a+ b)
c

|c| .

3. If |c| < |a− b|, then set c := |a− b| c|c| .

4. c := |c|

5. β := arccos
a2 + c2 − b2

2ac

6. γ := arccos
a2 + b2 − c2

2ab
7. u1 := (0, c, 0)T

8. u2 := (0, cy, sign(cz)
√
c2x + c2z)T

9. n0 := Rotate((0, 0, −a sinβ)T , (1, 0, 0)T , Angle(u1, u2, (1, 0, 0)T))
10. n0 := Rotate(n0, (0, 1, 0)T , Angle(u2, c, (0, 1, 0)T))
11. n := Rotate(n0, c, α)

12. m :=
c

|c|a cosβ

13. a := m+ n
14. b := c− a
15. u1 := (0, 1, 0)T

16. u2 :=
a

|a|
17. Re := RotationMatrixAxisAngle(u1 × u2, Angle(u1, u2, u1 × u2))
18. ϕ := Angle(Re ·Rx(γ − π) · (0, b, 0)T , b, a)
19. R := Re ·Ry(ϕ)
20. (θ1, θ2, θ3) := GetAxisAngle(R)
21. θ4 := γ − π

RotationMatrixAxisAngle(a, α) calculates the rotation matrix that performs
a rotation around the axis a by the angle α. The formulas of these functions are
given in Appendix A.4. The function RotationAxisAngle(x, a, α) applies the
rotation matrix computed by the function RotationMatrixAxisAngle(a, α) to
the vector x.

Finally, the inverse kinematics method must be incorporated into the sam-
pling step of the particle filter. For this purpose, the general idea of annealed
particle filtering [Deutscher et al., 2000] is exploited, which is running the
particle filter several times on the same frame while adapting the parame-
ters for each run in a suitable way in order to achieve faster convergence. In
[Deutscher et al., 2000], the adapted parameter was the weighting factor for
the evaluation function, with which the broadness of the resulting probability
distribution can be modified.

A naive approach would be to apply the inverse kinematics for sampling all
particles of the first run. Doing this would reset the complete state of the
particle filter, including the elimination of all hypotheses that are stored in the
probability distribution. To keep the characteristics and benefits of a particle

184 7 Stereo-based Markerless Human Motion Capture System

filter, only a certain percentage of the particles is sampled according to the
inverse kinematics; all other particles are sampled in the conventional way.
By doing this, new particles created by the inverse kinematics sampling get
the chance to establish themselves, while particles with high likelihoods from
the last generation, i.e. frame, can survive according to the particle filtering
principle. For each frame, one such mixed run is used, followed by three normal
runs of the particle filter. These additional runs allow the particle filter to sort
out weak particles from the inverse kinematics sampling and to converge to a
representative probability distribution. In the first run, 60% of the particles
are sampled according to the inverse kinematics, while the other 40% are
sampled in the conventional way. The complete algorithm is summarized in
Section 7.12. In Algorithm 20, the hand position h is measured by hand
tracking, and as the shoulder position s, the estimated shoulder position from
the previous frame is used.

0

20

40

60

0 20 40 60 80

D
is

ta
n
ce

E
rr

o
r

[m
m

]

Iteration

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

E
d
g
e

E
rr

o
r

Iteration

Fig. 7.29. Illustration of the effect of inverse kinematics sampling on the edge and
distance error by the example of the person’s right arm shown in Fig. 7.27. The solid
line indicates the result computed with inverse kinematics sampling, the dashed line
without.

In Fig. 7.29, the errors are plotted for the person’s right arm shown in
Fig. 7.27, comparing conventional sampling to sampling taking into account
inverse kinematics. As can be seen, conventional sampling searches for 80
frames within the minimum distance radius until the true configuration is
found. The corresponding joint angle trajectory is shown in Fig. 7.30. In con-
trast, the proposed combined inverse kinematics sampling leads to almost
immediate convergence, as can be seen in the Fig. 7.29 and 7.31. To allow
comparison of the results, the particle filter was run four times in one itera-
tion of the conventional sampling method.

7.12 Summary of the Algorithm 185

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80 90

A
n
g
le

Iteration

Angle θ1
Angle θ2
Angle θ3
Angle θ4

Fig. 7.30. Trajectory for the person’s right arm shown in Fig. 7.27 without using
inverse kinematics. As can be seen, the true configuration is only found by chance
after 80 iterations.

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80 90

A
n
g
le

Iteration

Angle θ1
Angle θ2
Angle θ3
Angle θ4

Fig. 7.31. Trajectory for the person’s right arm shown in Fig. 7.27 using the pro-
posed inverse kinematics approach. As can be seen, the particle filter converges
already after two iterations, in contrast to Fig. 7.30. The standard deviations for
the iterations 3–99 for the angles θ1, θ2, θ3, θ4 are 0.011, 0.0070, 0.0076, 0.015.

7.12 Summary of the Algorithm

In this section, the complete proposed approach to stereo-based markerless
human motion capture is summarized. The system can be divided into three
parts, which are processed sequentially:

1. Image pre-proccessing (see Section 7.5)

2. 3D hand/head tracking (see Section 7.6)

3. Particle filtering (see Sections 7.2–7.4 and 7.7–7.11)

186 7 Stereo-based Markerless Human Motion Capture System

The steps 2 and 3 are performed completely independently in the current
system. Possible ways of how these two processes could mutually support
each other are mentioned in Section 10.3. The computations involved in one
iteration of the proposed human motion capture system are summarized in
Algorithm 21.

Algorithm 21 TrackUpperBodyMotion(Il, Ir) →
tBT , tl, tr,θLS ,θRS , θLE , θRE
1. Compute the grayscale images I ′l , I

′
r for the input images Il, Ir.

2. Compute the binarized skin color maps Is,l, Is,r and the gradient maps Ig,l, Ig,r

for the input images Il, Ir (see Section 7.5).
3. ph ← TrackBlob(I ′l , I

′
r, Is,l, Is,r)) {Algorithm 18, head}

4. ph,l ← TrackBlob(I ′l , I
′
r, Is,l, Is,r)) {Algorithm 18, left hand}

5. ph,r ← TrackBlob(I ′l , I
′
r, Is,l, Is,r)) {Algorithm 18, right hand}

6. Assign the measured 3D head position ph to the base translation tBT of the
kinematic chain of the model and calculate the inferred reference shoulder po-
sitions.

7. In the following, always apply adaptive noise (see Section 7.9), adaptive shoulder
positions (see Section 7.10), and compute the likelihood π for a given configu-
ration s with prioritized fusion (see Section 7.8) by:
πl ← ComputeLikelihoodArm(Ig,l, Ig,r, ph,l, s) {Algorithm 19, left arm}
πr ← ComputeLikelihoodArm(Ig,l, Ig,r, ph,r, s) {Algorithm 19, right arm}

8. For each arm, perform the following steps:
9. Run the particle filter using sampling with the combined inverse kinematics

approach (see Algorithm 20), as described in Section 7.11.
10. Run the particle filter three times using conventional sampling.
11. Compute the particle filter estimate as the weighted mean over all particles,

yielding the shoulder position correction vectors tl, tr, the shoulder joint angles
θLS , θRS and the elbow angles θLE , θRE , for the left and right arm, respectively.

8

Software and Interfaces

8.1 Integrating Vision Toolkit

8.1.1 Implementation

The Integrating Vision Toolkit (IVT) is an image processing library that has
been developed along with this thesis. It is freely available under the GNU
General Public License (GPL) in source code and can be downloaded from
SourceForge.net. Detailed instructions for the installation of the IVT can be
found on the project webpage1.

The highest goal with the development of the IVT was to lay a clean, object-
oriented architecture as foundation and at the same time to offer efficient
implementations of the algorithms. A core component, by which the IVT
stands out from most image processing libraries – and also from the popular
OpenCV – is the abstraction of image acquisition by an appropriate camera
interface. This enables the development of computer vision systems that are
perfectly independent from the used image source from a software point of
view. Furthermore, a fully integrated generic camera model in combination
with an easy-to-use calibration application allows metric measurements in 3D
with any camera. Thus changing only two lines of code – one for the choice of
the camera module and another for the choice of the camera calibration file –
is sufficient, in order to run an application with another camera.

Throughout the implementation of the IVT, the focus was on avoiding de-
pendencies on libraries and between files of the IVT whenever possible. The
strict separation of the files which contain pure proprietary developments from
those that encapsulate calls to external libraries allows to configure the IVT
in a convenient manner. The core of the IVT is written in pure ANSI C/C++
and can be compiled without any library. Optionally, it is possible to include
1 http://ivt.sourceforge.net

http://ivt.sourceforge.net

188 8 Software and Interfaces

classes or namespaces that encapsulate the libraries OpenGL and OpenCV.
Due to the strict separation, no mutual dependencies exist, so that these li-
braries can be added independently.

In the following sections, a compact summary of the architecture of the IVT
is given. For this, the interfaces of the image sources, graphical user interfaces,
and to the OpenCV and OpenGL are explained.

8.1.2 The Class CByteImage

The class CByteImage forms the core of the IVT and is able to represent an
8 bit grayscale image and a 24 bit color image. It is written in pure ANSI
C++ and is thus platform independent, also supporting 64 bit platforms. In
addition to the pure representation of an image, this class can read and write
bitmap files.

CByteImage

pixels : ref unsigned char
width : int
height : int
type : ImageType
bytesPerPixel : int

Constructor()
Constructor(width : int, height : int, type : ImageType,
 bHeaderOnly : bool)

LoadFromFile(pFileName : ref char) : bool
SaveToFile(pFileName : ref char) : bool

Fig. 8.1. Representation of the public attributes and methods of the class CByteIm-
age in UML.

The public attributes of this class are the integer variables width and height,
which describe the width and height of the image in pixels, the pointer pixel
of type unsigned char*, which points to the beginning of the storage area
of the image, and the variable type, which contains the value eGrayScale
for grayscale images and the value eRGB24 for 24 bit color images. Images of
type eRGB24 can likewise contain a 24 bit HSV color image, since these are
identical in terms of the representation in memory. As an additional attribute,
the variable bytesPerPixel is offered, which contains the value 1 for grayscale
images and the value 3 for color images.

8.1 Integrating Vision Toolkit 189

8.1.3 Implementation of Graphical User Interfaces

The IVT offers a GUI toolkit with a platform-independent interface, which
has been implemented by Florian Hecht. Implementations of the interface are
available for Microsoft Windows using the Windows API and for Mac OS X
using Cocoa. Furthermore, for application on Linux, a Qt implementation is
available.

The interfaces to the GUI toolkit are specified by the classes
CMainWindowInterface, CMainWindowEventInterface, and
CApplicationHandlerInterface. The interface CMainWindowInterface
offers methods for the creation of widgets as well as setting and retrieving
widget contents. Using the interface CMainWindowEventInterface is optional
and allows for receiving events by implementing callback methods.

At runtime, usually an initialization procedure must be carried out at the
beginning of the program and control given briefly to the underlying win-
dow manager in each run of the main loop, in order to allow for handling
inputs and outputs. The encapsulation of these calls is made by the in-
terface CApplicationHandlerInterface, which contains the two pure vir-
tual methods Reset and ProcessEventsAndGetExit. The method Reset
must be called first, before creating and displaying windows. The method
ProcessEventsAndGetExit should be called at the end of each cycle run; the
return value true signals that the user wishes to terminate the application.

<< CApplicationHandlerInterface >>

ProcessEventsAndGetExit() : bool
Reset() : void

Fig. 8.2. Representation of the methods of the interface CApplicationHandlerIn-
terface in UML.

8.1.4 Connection of Image Sources

In the IVT, for each image source, a module is implemented that supplies
images of type CByteImage, using the interface CVideoCaptureInterface.
This interface is defined in such a manner that it can transfer any number of
images with one call, which is necessary with multi-camera systems. Below,
the designation camera module is used synonymously for any image source
module.

190 8 Software and Interfaces

<< CVideoCaptureInterface >>

OpenCamera() : bool
CloseCamera() : bool
CaptureImage(ppImages : ref ref CByteImage) : bool

GetWidth() : int
GetHeight() : int
GetType() : ImageType
GetNumberOfCameras() : int

Fig. 8.3. Representation of the methods of the interface CVideoCaptureInterface
in UML.

A camera module must implement the seven pure virtual methods of the in-
terface. The method OpenCamera accomplishes the necessary initializations,
starts the image recording and returns a boolean value which indicates the
result of the initialization. The parameters that are necessary for the configu-
ration of the module, for example the choice of the resolution or the encoding,
differ from image source to image source and are therefore to be selected
through the constructor of the respective module. The method CloseCamera
terminates the image recording, deletes the objects and frees memory space.
The method CaptureImage possesses the parameter ppImages as input, which
is of type CByteImage**. Thus it is possible to transfer as many images as
desired with one call. The instances of CByteImage must already be allocated
and consistent in size, type and number with the requirements of the camera
module. For this purpose, this information can be retrieved using the meth-
ods GetWidth, GetHeight, GetType and GetNumberOfCameras. In order to
receive valid values, the method OpenCamera must have already been called
successfully.

8.1.5 Integration of OpenCV

The OpenCV2 is a popular image processing library, which is also available on
SourceForge.net as an open source project. It offers a broad spectrum of image
processing algorithms, but, however, does not have an overall object-oriented
architecture and does neither offer a generic camera interface nor offer access
to a generic camera model.

OpenCV support is integrated optionally into the IVT. For this, functions of
the OpenCV are encapsulated and can be used via calls to the IVT, which
usually operate on instances of the class CByteImage. Since the images do not

2 Open Computer Vision Library, http://sourceforge.net/projects/

opencvlibrary

http://sourceforge.net/projects/opencvlibrary
http://sourceforge.net/projects/opencvlibrary

8.1 Integrating Vision Toolkit 191

have to be converted themselves, but only an image header of a few bytes
is created, the calls to the OpenCV are made with virtually no additional
computational effort. Files that encapsulate functions of the OpenCV and
functions depending on such, carry the letters CV as ending, as for example
ImageProcessorCV.h and ImageProcessorCV.cpp.

For the systems developed within thesis, no OpenCV calls are used. However,
the class cvCalibFilter from the OpenCV is used for calibrating the stereo
camera system, as explained in Section 8.1.7.

8.1.6 Integration of OpenGL

OpenGL3 is a specification of a platform-independent programming interface
for the development of 3D computer graphics. An implementation of this
interface runs on all common operating systems, thus also under Windows,
Mac OS X, and Linux.

For some 3D image processing applications, 3D rendering is part of the com-
putations, such as the shape-based object recognition and pose estimation
approach presented in Section 6.1. Furthermore, 3D rendering can be a useful
tool for visualization of calculated 3D results, for instance for verification and
demonstration purposes.

Before 3D rendering can be used, the method InitByCalibration must be
called in order to initialize the OpenGL camera model by a given camera cal-
ibration stored in an object of type CCalibration. This way, OpenGL can
simulate a camera that has been previously calibrated, which is crucial for aug-
mented reality applications as well as for the shape-based object recognition
and pose estimation system presented in Section 6.1. By switching between
the camera models of the two cameras of a stereo setup, a stereo camera sys-
tem can be simulated easily. Such a simulation can serve as a valuable tool for
evaluating the accuracy of pose estimation methods under perfect conditions,
since ground-truth information is available (see Chapter 9).

If contents of the graphics area are to be deleted, then the method Clear must
be called. Below is a description of how the graphics area can be visualized in a
window. As an alternative, it is also possible to write the graphics area directly
into a 24 bit RGB color image of type CByteImage. For this, an image with
the appropriate size – as indicated before in the method InitByCalibration
– must be created and passed as argument to the method GetImage. Note
that OpenGL writes a vertically flipped image to memory, since the camera
is rotated 180 degrees around the x-axis in order to let the z-axis point to the
front in accordance with the camera model. The images can be flipped back
by using the function ImageProcessor::FlipY.

3 Open Graphics Library

192 8 Software and Interfaces

In order to visualize the rendered image, an OpenGL wid-
get can be added to the main window by calling the method
CMainWindowInterface::AddGLWidget. Alternatively, for offline rend-
ing, an OpenGL context without an associated widget can be created by
using the class CGLContext.

8.1.7 Camera Calibration and Camera Model

Whenever wanting to accomplish 3D measurements with a single cam-
era or with multiple cameras, these must be calibrated first. The IVT
offers a convenient application for calibrating a single camera or a
stereo camera system; it is located in IVT/examples/CalibrationApp.
It uses the OpenCV implementation (version 1.0) of the calibration
algorithm proposed in [Zhang, 2000]. A checkerboard pattern is used
for calibration and information about it must be provided in the file
IVT/examples/CalibrationApp/src/Organizer.cpp by setting the defines
NUMBER_OF_ROWS, NUMBER_OF_COLUMNS, and SQUARE_SIZE_IN_MM. The num-
ber of rows must not equal the number of columns. If NUMBER_OF_COLUMNS
is greater than NUMBER_OF_ROWS, then the checkerboard pattern must be pre-
sented more or less horizontally, otherwise vertically. During calibration, the
localized checkerboard is marked with a color code. For a successful calibra-
tion, this color code may not jump i.e. switch its direction throughout the
calibration procedure. If it does, the procedure should be restarted, trying
to present the checkerboard pattern vertically instead of horizontally or vice
versa.

Each accepted view – only every 20th recognized one is taken to avoid
similar views – produces a message on the screen. The default setting for
NUMBER_OF_IMAGES is 20, which is enough by expericence. For an accurate
calibration result, it is important to present differing views by going to the
front, going back, causing skew, and apply rotations up to approx. 45 degrees.
From experience, trying to reach the limits of each degree of freedom produces
better results. Furthermore, it is important to present the checkerboard pat-
tern approximately within the same distance to the camera that will be used
later throughout application. If a stereo camera system is to be calibrated,
then the only difference is that the checkerboard pattern must be visible in
both camera images at the same time.

At the end of the calibration procedure, a file named cameras.txt containing
the camera parameters is written. The file is written by the OpenCV; a de-
scription of the file format is given in Appendix B.1. This calibration file can
be read by instances of the classes CCalibration and CStereoCalibration,
respectively. The camera parameters of one camera are stored in an instance of
the struct CCameraParameters; the camera model has been described in detail
in Section 4.1. After reading the calibration file, the class CCalibration offers

8.2 Master Motor Map 193

convenient access to the camera mapping functions GetCameraCoordinates
(Algorithm 3) and GetWorldCoordinates (Algorithm 4), as well distor-
tion and undistortion by the methods DistortCameraCoordinates (Algo-
rithm 1) and UndistortCameraCoordinates (Algorithm 2), respectively. Ac-
cordingly, the class CStereoCalibration keeps two instances of the class
CCalibration, one for each camera, and offers methods for stereo triangula-
tion (CStereoCalibration::Calculate3DPoint) and for calculation of the
epipolar lines with the aid of the fundamental matrix.

8.2 Master Motor Map

In the recent past, research on visual perception and understanding of human
motion has become of high interest. On the one hand there is a large variety
of approaches on the perception side, resulting in different human motion
capture systems that compute trajectories in terms of different models, being
stored in different formats. On the other hand, many action recognition and
activity recognition systems exist, expecting input data specific to their own
internal representation. Furthermore, any target platform for the reproduction
of human motion, namely 3D models for animation and simulation purposes
as well as humanoid robots, expects human motion capture data in terms
of its own 3D kinematic model. Because of this, it is usually not possible to
exchange single modules in an overall infrastructure for a humanoid robot,
including perception, visualization, reproduction, and recognition of human
motion. Furthermore, having common benchmarks is only feasible when a
common representation for human motion is shared.

In the following, the framework of the Master Motor Map (MMM), as pro-
posed in [Azad et al., 2007b], will be presented, defining a reference 3D kine-
matic human model in its core and presenting the architecture with which all
modules are connected together. Note that this is a low-level representation
for human pose trajectories; higher-level motion or action representations, e.g.
using HMMs, must rely on some kind of kinematic model, if not operating in
task space only.

8.2.1 Specification

To overcome the deficiencies mentioned above, a reference kinematic model is
proposed and fully specified. The strategy is to define the maximum number
of DoF that might be used by any visualization, recognition, or reproduction
module, but not more than that. The H-Anim 1.1 specification [Group, 2008]
defines a joint for each vertebra of the spine, which is not suitable for robotic
applications. Moreover, the H-Anim 1.1 specification defines joint positions in

194 8 Software and Interfaces

terms of a graph only, but not the actual kinematic model including the joint
angle conventions for each joint, which is crucial for any robotic application.
Therefore, a subset of the H-Anim 1.1 specification is defined and joint angle
conventions for each joint are specified.

The joints that build the used subset of H-Anim 1.1 are skullbase,
vc7, vt6, pelvis, HumanoidRoot, l hip/r hip, l knee/r knee, l ankle/r ankle,
l sternoclavicular/r sternoclavicular, l shoulder/r shoulder, l elbow/r elbow,
and l wrist/r wrist. The numbers of DoF and the Euler angle conventions
are listed in Table 8.1, the directions of the axes of the coordinate system are
shown in Fig. 8.4. The kinematic model for the MMM is illustrated in Fig. 8.5.

DoF Euler angles

skullbase 3 RX′Z′Y ′(α, β, γ)

vc7 3 RX′Z′Y ′(α, β, γ)

vt6 3 RX′Z′Y ′(α, β, γ)

pelvis 3 RX′Z′Y ′(α, β, γ)

HumanoidRoot (rotation/translation) 6 RX′Z′Y ′(α, β, γ)

l hip / r hip 3 + 3 RX′Z′Y ′(α, β, γ)

l knee / r knee 1 + 1 RX′Z′Y ′(α, 0, 0)

l ankle / r ankle 3 + 3 RX′Z′Y ′(α, β, γ)

l sternoclavicular / r sternoclavicular 3 + 3 RX′Z′Y ′(α, β, γ)

l shoulder / r shoulder 3 + 3 RX′Z′Y ′(α, β, γ)

l elbow / r elbow 2 + 2 RX′Z′Y ′(α, β, 0)

l wrist / r wrist 2 + 2 RX′Z′Y ′(α, 0, γ)

Total 52

Table 8.1. Number of degrees of freedom and Euler angle conventions for the joints
of the MMM.

x

y
z

x

y
z

Fig. 8.4. Illustration of the base coordinate systems used for the MMM (left) and
the proposed human motion capture system (right). The person is looking from back
to front, i.e. in direction of the z-axis of the left coordinate system.

Note that any kind of representation for a 3D rotation with a minimum num-
ber of parameters is feasible. The singularities resulting from the use of Euler
angles are meaningless for the specified representation, since the transforma-
tion from Euler angles to the corresponding rotation matrix is always unique
– the Euler angles only serve as a compact intermediate representation. The

8.2 Master Motor Map 195

only inherent problem occurs when one degree of freedom cannot be estimated
by a perception module, such as the upper arm rotation when the elbow is
fully extended. In this case, the rotation matrix itself is underdetermined, and
the perception module should recognize this situation and set a constant value
for the undetermined degree of freedom. Alternatively, when reading the data
in the MMM format, such situations can be recognized and handled in a data
preparation process. The use of Euler angles simplifies such a procedure, since
it isolates the upper arm rotation performed by the shoulder joint with the
angle γ.

right left
eyeeye

neck (vc7)

shouldershoulder
right left

lower

upper neck
 (skullbase)

clavicula
leftright

clavicula

elbow
right left

elbow

mid-spine
(vt6)

left
wrist

right
 wrist

pelvis

kneeknee
leftright

right hip left hip

ankle
right left

ankle

Fig. 8.5. Illustration of the MMM kinematic model. Reprinted from
[Azad et al., 2007b], ©2007 IEEE.

The file format is specified as follows. The 52-dimensional configuration vec-
tors are written sequentially to a text file, where each component is a floating
point number formatted as readable text. All components are separated by
whitespace. After one configuration, an additional floating point value speci-

196 8 Software and Interfaces

fies the associated timestamp in milliseconds. Since one configuration contains
a fixed number of 53 numbers (including the timestamp), it is not necessary
to introduce an explicit end of one configuration. For readability, it is recom-
mended to put a line break after each timestamp instead of a space. The order
of the 52 floating point numbers for the configuration vector is

(tRT θRT θSB θVC 7 θP θVT 6 θLSC θLS θLE θLW

θRSC θRS θRE θRW θLH θLK θLA θRH θRK θRA)

where all non-scalar entries are row vectors. Furthermore, RT denotes the
root transformation, SB the skull base joint, P the pelvis joint, LSC/RSC
the sternoclavicular joints, LS/RS the shoulder joints, LE/RE the elbow
joints, LW/RW the wrist joints, LH/RH the hip joints, LK/RK the knee
joints, and LA/RA the ankle joints. The length of each vector is given by the
number of DoF, given in Table 8.1.

8.2.2 Framework and Converter Modules

In the following, the framework for connecting all mentioned modules is pre-
sented, namely modules for data acquisition, visualization, reproduction, and
recognition. In the core of the framework is the MMM, as specified in Sec-
tion 8.2.1. All perception modules must provide an additionally implemented
converter module, which transforms the output data to the MMM format.
Modules for visualization, reproduction, and recognition, which need motion
capture data as input, have to implement a converter module that transforms
the data provided in the MMM format to their internal representation. The
complete framework is illustrated in Fig. 8.6.

The converter modules implement the transformation from one human motion
representation to the MMM, or vice versa. In the case of marker-based human
motion capture systems, this transformation is usually computed on the basis
of adjacent markers. For all other modules, the converter module has to per-
form a transformation between two different kinematic models. There are five
common basic types of adaptations which can occur in such a transformation:

1. Changing the order of values (all modules).

2. Setting zeroes for joint angles that are not captured (perception modules).

3. Ignoring joint angle values which cannot or are not to be used (reproduc-
tion and recognition modules).

4. Transformations between two different rotation representations for a ball
joint (all modules).

5. Adaptations that include more than one joint, in case the target module
does not offer the corresponding degrees of freedom (reproduction and
recognition modules).

8.2 Master Motor Map 197

Markerless
HMC2

Converter
HMC2→MMM

HMCn

Converter
HMCn→MMM

...

Marker-based
HMC1

Converter
HMC1→MMM

3D Marker
Trajectory

Joint Angle
Trajectory

Master Motor Map

3D
Visualization

Converter
MMM→Visualization

Robot1

Converter
MMM→Robot1

Robotn

Converter
MMM→Robotn

Action
Recognizern

Converter
MMM→ARn

Action
Recognizer1

Converter
MMM→AR1

... ...

Fig. 8.6. Illustration of the MMM framework. Reprinted from [Azad et al., 2007b],
©2007 IEEE.

8.2.3 Conversion to the Master Motor Map

In [Azad et al., 2007b], three examples of converter modules are shown, in-
cluding the necessary computations, covering all five mentioned cases. In the
following, the conversion from a configuration acquired by the proposed hu-
man motion capture system from Chapter 7 to the MMM representation is
presented.

In order to convert a configuration to the MMM, it must also be considered
that the base coordinate systems differ according to Fig. 8.4. In general, given
the coordinate transformation 1T2 := (1R2,

1t2) from the source coordinate
system C2 to the target coordinate system C1, a translation t and a rotation
R are transformed from C1 to C2 by

t′ = 1R2 t+ 1t2

R′ = 1R2 R
1R2

T
. (8.1)

Note that the coordinate transformation from the coordinate system C2 to C1

is inverse to the pose of C1 described in the coordinate system C2. According to
Fig. 8.4, it is 1R2 = 1R2

T = Rx(π) and we choose 1t2 = 0. In Algorithm 22,
the computations necessary for conversion are presented. The notation 0i
denotes the zero vector of Ri, and (θ1, θ2, θ3) := θ.

198 8 Software and Interfaces

Algorithm 22 ConvertHMCToMMM(tBT , θBT , θLS , θLE , θRS , θRE) → x

1. tBT := Rx(π) tBT

2. θBT ← ExtractEulerAngles(Rx(π)RX′Z′Y ′(θBT)Rx(π)) {Algorithm 23}
3. RLS ← RotationMatrixAxisAngle(θLS , |θLS |) {Algorithm 24}
4. RRS ← RotationMatrixAxisAngle(θRS , |θRS |) {Algorithm 24}
5. θLS ← ExtractEulerAngles(Rx(π)RLS Rx(π)) {Algorithm 23}
6. θRS ← ExtractEulerAngles(Rx(π)RRS Rx(π)) {Algorithm 23}
7. x := (tTBT , θ

T
BT , 0

T
15, θ

T
LS , θLE , 0

T
6 , θ

T
RS , θRE , 0

T
17)T

The extraction of the Euler angles with respect to the Euler angle convention

RX′Z′Y ′(α, β, γ) = RX(α) ·RZ(β) ·RY (γ)

=

 cβcγ −sβ cβsγ
cαsβcγ + sαsγ cαcβ cαsβsγ − sαcγ
sαsβcγ − cαsγ sαcβ sαsβsγ + cαcγ

 ,

as used by Algorithm 22, is presented in Algorithm 23. In general, two solu-
tions exist for the extraction of Euler angles, which can be switched by the
parameter k. In the case of a singularity, an infinite number of solutions exists.

Algorithm 23 ExtractEulerAngles(R, k = 1) → α, β, γ

{ For the Euler angle convention RX′Z′Y ′(α, β, γ) = Rx(α)Rz(β)Ry(γ) }(
r1 r2 r3
r4 r5 r6
r7 r8 r9

)
:= R

if k = 1 then
{Compute first solution}
α := atan2(r8, r5)

β := atan2(−r2,
√
r23 + r21)

γ := atan2(r3, r1)
else
{Compute second solution}
α := atan2(−r8,−r5)

β := atan2(−r2,−
√
r23 + r21)

γ := atan2(−r3,−r1)
end if

For the conversion to the MMM, the resulting trajectory does not have to
be continuous in terms of the Euler angles; it is sufficient that the trajectory
described by the inferred rotation matrices is continuous. Note that continuity
must be assured for the conversion from the MMM to the target representa-
tion, e.g. the kinematics of the robot used for reproduction. Since this requires

8.3 Interfaces 199

knowledge of the target representation, trying to assure continuity of the Euler
angle trajectories of the MMM would be meaningless.

8.3 Interfaces

In this section, the interfaces to the object recognition and pose estimation
systems presented in Chapter 6 as well as to the markerless human motion
capture system presented in Chapter 7 are presented in terms of the inputs
and outputs.

8.3.1 Object Recognition and Pose Estimation

The inputs of the developed shape-based recognition and pose estimation
system for single-colored objects from Section 6.1 and the system for textured
objects from Section 6.2 are very similar. Both are initialized with a camera
calibration file containing the camera parameters of the stereo camera system
(see Section 8.1.7 and Appendix B.1) and a compact configuration file that
specifies the objects stored in the database and their locations on a storage
medium. In addition, the system for single-colored objects is initialized with a
color parameter file specifying the color models for the colors to be segmented.
This color parameter file can be created in a convenient manner using the
application HSVColorSegmentationApp from the IVT.

Throughout recognition, the only input to the system consists of the current
stereo image pair. Two modes are available: one for the recognition and pose
estimation for a specific object representation, and the other considering all
object representations stored in the database. While the latter mode can have
processing times of over one second, depending on the number of objects
stored in the database, the first mode can achieve processing rates of up to
50 Hz, being useful for tracking and visual servoing applications. The exact
processing times are presented in the Sections 9.1.3 and 9.2.3, respectively.
For using the first mode, the name of the object must be provided, and in the
case of single-colored objects also the color of interest.

The outputs of the two systems are both given as a list of type Object3DList,
containing entries of type Object3DEntry. Both data structures are specified
in the file IVT/src/Structs/ObjectDefinitions.h of the IVT. In an object
entry, the name is stored in the attribute sName, and the object pose in the at-
tribute pose, which contains a translation vector and a rotation matrix. This
pose is at the same time the coordinate transformation from the object coor-
dinate system to the world coordinate system, which is equal to the camera
coordinate system of the left camera according to Section 5.1.

200 8 Software and Interfaces

8.3.2 Human Motion Capture

The human motion capture system presented in Chapter 7 is initialized with
a camera calibration file containing the camera parameters of the stereo cam-
era system (see Section 8.1.7 and Appendix B.1), and a color parameter file
specifying the skin and shirt color models. This color parameter file can be cre-
ated in a convenient manner using the application HSVColorSegmentationApp
from the IVT. In addition, a configuration file containing the measurements
of the body parts must be provided.

Throughout recognition, the only input to the systems consists of the cur-
rent stereo image pair. For each frame, the output is given in terms of a
53-dimensional array of the data type float, specified in the MMM format,
containing the values for the 52 DoF of the MMM model and an additional
time stamp, as specified in Section 8.2.1. The configurations estimated by Al-
gorithm 21 are converted to the MMM format with the aid of Algorithm 22.

9

Evaluation

In this chapter, the performance of the proposed systems is evaluated in terms
of accuracy and runtime. The runtimes were evaluated on a 3 GHz single core
CPU. As it is hardly possible to acquire accurate ground-truth information
for real image data, the accuracy of the developed pose estimation methods
was examined thoroughly in simulation. For this purpose, the stereo camera
system of ARMAR III was simulated in OpenGL with a baseline of 90 mm and
a focal length of 860 pixels for images with a resolution of 640×480, which
is equal to the value measured by calibration for the used 4 mm lenses on
ARMAR III.

With this simulation, it is possible to evaluate the theoretically achievable
absolute accuracy of the developed methods under optimal conditions. When
operating on real image data, the accuracy will differ in the millimeter-range,
in particular due to imperfect camera calibration and unsharp images resulting
from lenses with a fixed focal length. However, evaluation in simulation allows
to examine the strengths and the weaknesses of a method rather than the
behavior of a system with a specific hardware embodiment.

In the context of manipulation tasks, knowledge of the absolute accuracy of
the vision system is meaningless if the accuracy of the hand-eye calibration
is not known. In practice, the hand-eye calibration of many humanoid robot
systems is less accurate than the proposed object pose estimation methods.
When utilizing a visual servoing approach in order to overcome this problem,
a high relative accuracy is already sufficient in most cases, if the pose of
the robot hand is estimated with the same camera system using the same
principles (see Section 5.5). Plots of measured trajectories from experiments
using real image data as well as measurements of the standard deviation for
static scenes are provided for the evaluation of estimation noise and thus – by
taking into account the results of the absolute measurements in simulation –
the relative accuracy.

202 9 Evaluation

Experiments on recognition rates are not given, since these depend in practice
merely on the pose and distance of the object relative to the camera and the
image sharpness in the region of the object, i.e. the focus. Depending on
the choice of the experiment, one could claim a recognition rate of 100% or
more or arbitrary lower values, which would all not be descriptive values for
the real performance. Furthermore, the focus of this thesis was clearly on
accurate pose estimation for object poses that are suitable in terms of the
used features and not the recognition of objects with 360o representations on
the basis of various kinds of features. From experience of numerous real-world
experiments and demonstrations with the proposed object recognition and
pose estimation systems, a recognition rate of practically 100% is achieved
when one would expect the system to succeed. If restricting the maximum
distance of the object to the camera so that the effective resolution of the
object does not become too low, then the false positive rate is practically
zero.

In the case of human motion capture, experiments in simulation would not be
of any significance, since the main problem here are the deviations between the
real image data and the used 3D human model, in particular due to the effects
of clothing. Therefore, exemplary motion trajectories were acquired with the
proposed system in real-world experiments. The trajectories are presented in
Section 9.3.2 without any post-processing, including illustrative snapshots.

9.1 Recognition and Pose Estimation System based on
the Shape

9.1.1 Accuracy

In this section, the system proposed in Chapter 6.1 is evaluated in terms of
accuracy. For this purpose, the results of extensive tests in simulation are
presented. The simulation setup was defined at the beginning of this chapter.
The results of real-world experiments are presented in Section 9.1.2.

The accuracies of two different objects were compared: a cup exhibiting a
rotational symmetry axis – the y-axis – and a measuring cup with a handle. For
the experiments, the object views for training were acquired at a distance of
500 mm, with rotations from [0o, 70o] around the x-axis and from [−45o, 45o]
around the z-axis. In addition, rotations from [−135o, 135o] around the y-
axis were applied for the measuring cup. A positive rotation angle around
the x-axis turns the top of the object toward the camera. Therefore, the used
range of [0o, 70o] contains the relevant views for a robot looking downward
on a table. For the cup, a rotational resolution of 1o was used, leading to
71 · 91 = 6, 461 views. For the measuring cup, a rotational resolution of 5o

9.1 Recognition and Pose Estimation System based on the Shape 203

was used, leading to 15 · 19 · 55 = 15, 675 views. The views were compressed
with PCA to 64 dimensions for each object independently, as described in
Section 6.1.6.

In the experiments for the Fig. 9.1–9.4, the pose of the object was varied in
terms of position and orientation, in each case for a single degree of freedom.
For the measuring cup, rotations around the y-axis from [45o, 135o] were
applied, so that the handle is visible on the left side. For the experiments,
k = 2 iterations of the pose correction procedure (see Sections 6.1.3 and
6.1.4) were applied.

The results for variations of the z-coordinate within a range of [500, 1000]
(mm) are illustrated in Fig. 9.1. As can be seen, the main problem is the
estimation of the rotation angle θy around the main axis of the measuring
cup. A correlation between this θy-error and the z-error can be observed here,
which results from the fact that the position correction formula depends on
the orientation information. Since from a side-view, small variations of the
angle θy naturally result in very similar views, the likelihood that a slightly
wrong view is matched is relatively high, which explains the errors for the
angle θy of up to 10o. The same phenomenon can be observed in Fig. 9.4.
Note that this problem cannot be solved by using more iterations of the pose
correction procedure.

In the case of the cup, pose estimation does not suffer from this problem, since
its rotational symmetry axis is the y-axis. Furthermore, the higher resolution
of the training views leads to smoother trajectories for the estimated angles.
As a summary, the measuring cup produces translational errors of maximally
±12 mm and rotational errors of maximally ±13o. the cup produces trans-
lational errors of maximally ±2 mm and rotational errors of maximally ±6o.
The overall 3D error distributions for random trials are given at the end of
this section.

In the following, a single scalar value was computed for the overall 3D error
instead of presenting the errors of all six degrees of freedom independently.
For this purpose the surface of the object was sampled uniformly with a point
distance of 2 mm, resulting in a dense 3D point cloud. In order to compute
an overall 3D error, the ground truth pose was applied to the point cloud
as well as the computed pose, and the average Euclidean distance between
corresponding points was computed.

The application of PCA for compression of the view sets has been examined
by the example of the measuring cup, which does not exhibit a rotational sym-
metry axis. The effect of the dimensionality of the eigenspace on the accuracy
of the 6D pose estimates is illustrated in Fig. 9.5. The object was located
off the center, exhibiting rotations around all three axes. As can be seen, the
accuracy starts to converge at approx. 60 dimensions. The eigenvalues for the
(gradient) views of a cup and a measuring cup are shown in Fig. 9.6.

204 9 Evaluation

-30

-20

-10

0

10

20

30

600 800 1000

x
-e

rr
o
r

[m
m

]

z-distance [mm]

-30

-20

-10

0

10

20

30

600 800 1000

y
-e

rr
o
r

[m
m

]

z-distance [mm]

-30

-20

-10

0

10

20

30

600 800 1000

z
-e

rr
o
r

[m
m

]

z-distance [mm]

-30

-20

-10

0

10

20

30

600 800 1000

θ x
-e

rr
o
r

[o
]

z-distance [mm]

-30

-20

-10

0

10

20

30

600 800 1000

θ y
-e

rr
o
r

[o
]

z-distance [mm]

-30

-20

-10

0

10

20

30

600 800 1000

θ z
-e

rr
o
r

[o
]

z-distance [mm]

Fig. 9.1. Accuracy of 6D pose estimation depending on the z-coordinate. The solid
line indicates the result for the cup, the dashed line the result for the measuring
cup.

The effect of the pose correction formula (see Sections 6.1.3 and 6.1.4) is
illustrated in Fig. 9.7. As can be seen, the first iteration yields a significant
improvement of the accuracy and a further improvement can be observed for
the second iteration, after which the error converges.

The effect of different rotational resolutions of the training views was evaluated
by the example of a cup with a rotational symmetry axis. The high resolution
view set was acquired with a resolution of 1o, resulting in 6,461 views, as

9.1 Recognition and Pose Estimation System based on the Shape 205

-30

-20

-10

0

10

20

30

0 20 40 60

x
-e

rr
o
r

[m
m

]

x-angle [o]

-30

-20

-10

0

10

20

30

0 20 40 60

y
-e

rr
o
r

[m
m

]

x-angle [o]

-30

-20

-10

0

10

20

30

0 20 40 60

z
-e

rr
o
r

[m
m

]

x-angle [o]

-30

-20

-10

0

10

20

30

0 20 40 60

θ x
-e

rr
o
r

[o
]

x-angle [o]

-30

-20

-10

0

10

20

30

0 20 40 60

θ y
-e

rr
o
r

[o
]

x-angle [o]

-30

-20

-10

0

10

20

30

0 20 40 60

θ z
-e

rr
o
r

[o
]

x-angle [o]

Fig. 9.2. Accuracy of 6D pose estimation depending on the rotation around the
x-axis. The solid line indicates the result for the cup, the dashed line the result for
the measuring cup.

explained at the beginning of this section. The second view set was acquired
with a resolution of 5o resulting in 285 views. As can be seen, the higher
resolution leads to an improvement of approx. 2–3 mm.

Finally, in the Fig. 9.9 and 9.10, the errors for 1,000 random trials were evalu-
ated within a range of [−100, 100]× [−100, 100]× [500, 1000] for the position,
and [0o, 70o]× [45o, 135o]× [−45o, 45o] for the angles around the x-, y-, and
z-axes. The average error refers to the average 3D Euclidean distance of the

206 9 Evaluation

-30

-20

-10

0

10

20

30

60 80 100 120

x
-e

rr
o
r

[m
m

]

y-angle [o]

-30

-20

-10

0

10

20

30

60 80 100 120

y
-e

rr
o
r

[m
m

]

y-angle [o]

-30

-20

-10

0

10

20

30

60 80 100 120

z
-e

rr
o
r

[m
m

]

y-angle [o]

-30

-20

-10

0

10

20

30

60 80 100 120

θ x
-e

rr
o
r

[o
]

y-angle [o]

-30

-20

-10

0

10

20

30

60 80 100 120

θ y
-e

rr
o
r

[o
]

y-angle [o]

-30

-20

-10

0

10

20

30

60 80 100 120

θ z
-e

rr
o
r

[o
]

y-angle [o]

Fig. 9.3. Accuracy of 6D pose estimation depending on the rotation around the
y-axis. The plot shows the result for the measuring cup only, as the y-axis is the
rotational symmetry axis of the cup.

sampled points, after application of the ground-truth pose and the computed
pose, respectively. The maximum error is the maximum distance that occurred
for the set of all sampled points. A deviation between the average error and
the maximum error indicates errors of the orientation estimation.

As can be seen, the measuring cup produces larger errors, with the average
error being below 10 mm and the maximum error below 20 mm for over 95%
of the trials. For the cup, the average error is below 5 mm and the maximum

9.1 Recognition and Pose Estimation System based on the Shape 207

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

x
-e

rr
o
r

[m
m

]

z-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

y
-e

rr
o
r

[m
m

]

z-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

z
-e

rr
o
r

[m
m

]

z-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

θ x
-e

rr
o
r

[o
]

z-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

θ y
-e

rr
o
r

[o
]

z-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

θ z
-e

rr
o
r

[o
]

z-angle [o]

Fig. 9.4. Accuracy of 6D pose estimation depending on the rotation around the
z-axis. The solid line indicates the result for the cup, the dashed line the result for
the measuring cup.

error is below 10 mm for over 95% of the trials, i.e. is more accurate by a factor
of approx. 2. The average error of the pose estimation for the cup is similar
to that of the proposed method for pose estimation of textured objects (see
Fig. 9.22). However, the maximum error is higher, indicating a lower accuracy
of the orientation estimation.

208 9 Evaluation

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

3
D

er
ro

r
[m

m
]

Dimensions

Average Error
Average Maximum Error

Fig. 9.5. Accuracy of 6D pose estimation depending on the dimensionality of the
eigenspace.

0

200

400

600

800

1000

20 40 60 80 100 120 140 160 180 200

E
ig

en
va

lu
e

Number

Measuring Cup
Cup

Fig. 9.6. Eigenvalues for different view sets. The view set of the measuring cup
contained 15,675 views with a resolution of 5o, the view set of the cup contained
6,461 views with a resolution of 1o

9.1.2 Real-world Experiments

In this section, results of real-world experiments with the proposed system
are presented. For estimating the accuracy of the system on real image data,
trajectories for a static object and a moving object have been measured. The
trajectories have neither been filtered nor post-processed in any other way.
The standard deviation of the trajectory for a static object thus can serve as
a measure for the smoothness and the relative accuracy of the trajectory. For
a moving object, the standard deviation cannot be measured due to missing
ground-truth data. However, the smoothness of the trajectory is representative

9.1 Recognition and Pose Estimation System based on the Shape 209

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

3
D

er
ro

r
[m

m
]

Iterations

Average Error
Average Maximum Error

Fig. 9.7. Accuracy of 6D pose estimation depending on the number of iterations of
the correction procedure.

0

2

4

6

8

10

-40 -30 -20 -10 0 10 20 30 40

3
D

er
ro

r
[m

m
]

z-angle

1o Resolution
5o Resolution

Fig. 9.8. Accuracy of 6D pose estimation depending on the rotational resolution of
the learned views for a cup.

for the quality and relative accuracy. Finally, the projections of the estimated
model poses for exemplary scenes will given.

In Table 9.1, the standard deviations over 100 frames for experiments with
static objects are given. As can be seen, the noise is very low, except for
the experiment Measuring Cup 1 . The reason is that the handle of the object
model does not match the real handle, which potentially leads to uncertainties
and jumping matches. The left image from Fig. 9.11 was used for the experi-
ment Measuring Cup 1 , the right image for experiment Measuring Cup 2 . As
could be observed in the results of the experiments in simulation, errors in
the estimation of the rotation angles – here θy and θz – cause errors of the z-
coordinate. As already discussed, this correlation is due to the necessary pose

210 9 Evaluation

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800 900 1000

3
D

er
ro

r
[m

m
]

Trial

Average Error
Maximum Error

Fig. 9.9. Accuracy of 6D pose estimation for 1,000 random trials for a measur-
ing cup. The errors were sorted in decreasing order in order to illustrate the error
distribution.

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800 900 1000

3
D

er
ro

r
[m

m
]

Trial

Average Error
Maximum Error

Fig. 9.10. Accuracy of 6D pose estimation for 1,000 random trials for a cup. The
errors were sorted in decreasing order in order to illustrate the error distribution.

x y z θx θy θz

Measuring cup 1 0.30 0.67 3.60 0.18 4.41 2.28

Measuring cup 2 0.028 0.049 0.41 0.0034 0.0023 0.0026

Cup with handle 0.033 0.053 0.0017 0.0034 0.0022 0.0027

Cup 0.045 0.029 0.14 0.0018 - 0.0017

Plate 0.049 0.071 0.37 0.0021 - 0.0017

Table 9.1. Standard deviations for the estimated poses for static single-colored
objects. The standard deviations have been calculated for 100 frames captured at a
frame rate of 30 Hz. The units are [mm] and [o], respectively.

9.1 Recognition and Pose Estimation System based on the Shape 211

Fig. 9.11. Pose estimation results for a measuring cup. Left: Slightly uncertain esti-
mation due to the deviating handle angle in the 3D model. Right: Stable estimation,
since the handle angle is not visible.

correction formula, which has been introduced in the Sections 6.1.3 and 6.1.4.
In the experiment Measuring Cup 2 , an object pose was chosen, for which the
angle of the handle was not visible, thus avoiding the uncertainty. In Fig. 9.12,
the computed trajectory of a plate that was moved by hand is plotted. Finally,
the wireframe model for object poses computed for exemplary scenes has been
overlaid with the original left camera image in Fig. 9.13.

9.1.3 Runtime

In Table 9.2, the runtimes for the different processing stages are given for
the recognition and pose estimation of one single-colored object. The run-
time is proportional to the number of training views of the object. For a full
scene analysis without temporal information, so that a region of interest is not
known, the runtime is also proportional to the number of potential regions ex-
tracted from the image. The processing times are given for the example of the
measuring cup, which was trained with 15,675 views. As already mentioned,
matching 10,000 views, which were compressed to 64 dimensions with PCA,
takes approx. 1.3 ms on a 3 GHz single core CPU.

The computation time of the pose correction procedure depends on the graph-
ics card and the graphics driver, since the stereo setup is simulated online with
the aid of OpenGL for this purpose. The time-critical part is not the rendering
itself, but the transfer from the rendered data to the main memory. With the
use of pixel buffers (see COpenGLVisualizer from the IVT), rendering and
transfer for a 640×480 grayscale image was achieved within approx. 7 ms on a
Windows PC. The pose correction including simulation of the stereo pair thus
takes 14 ms and 28 ms for k = 2 iterations of the pose correction algorithm.
Grasping experiments with the humanoid robot ARMAR-III have proved that
a single iteration is fully sufficient for grasp execution.

212 9 Evaluation

-100

0

100

200

300

20 40 60 80 100

x
[m

m
]

Frame

-100

0

100

200

300

20 40 60 80 100

y
[m

m
]

Frame

400

500

600

700

800

20 40 60 80 100

z
[m

m
]

Frame

0

20

40

60

80

20 40 60 80 100

θ x
[o

]

Frame

-40

-20

0

20

40

20 40 60 80 100

θ z
[o

]

Frame

Fig. 9.12. Exemplary trajectory of a plate acquired with the proposed system. The
rotation around the y-axis is omitted, since the y-axis is the symmetry axis of the
plate.

9.2 Recognition and Pose Estimation System based on
Texture

9.2.1 Accuracy

In this section, the system proposed in Section 6.2 is evaluated in terms of
accuracy. For this purpose, the results of extensive tests in simulation are

9.2 Recognition and Pose Estimation System based on Texture 213

Fig. 9.13. Exemplary results with the proposed object recognition and pose estima-
tion system for single-colored objects. The computed object pose has been applied
to the 3D object model and the wireframe model has been overlaid.

Time [ms]

Color segmentation 4

Matching 2

Pose correction 14

Total 20

Table 9.2. Processing times for the proposed recognition and pose estimation sys-
tem for single-colored objects. One iteration of the pose correction procedure was
used.

presented. The simulation setup was defined at the beginning of this chapter.
The results of real-world experiments are presented in Section 9.2.2. For the
experiments, the object was learned with one frontal view at a distance of
400 mm. For this view, 706 feature descriptors were computed using a Harris
quality threshold of 0.001 and three levels with a scale factor of ∆s = 0.75
(see Section 6.2.2). In the experiments for the Fig. 9.14–9.17, the pose of the
object was varied in terms of position and orientation, in each case for a single
degree of freedom. Throughout recognition, only a single level was used for
feature calculation, as explained in Section 6.2.7. In the following, the pro-
posed stereo-based 6D pose estimation approach is compared to the conven-

214 9 Evaluation

tional, monocular approach based on 2D-3D correspondences. For the latter
approach, the most robust variant 3 was used, as described in Section 6.2.1.

The results for variations of the z-coordinate within a range of [400, 1000]
(mm) are illustrated in Fig. 9.14. As can be seen, the proposed method is not
sensitive to scaling, whereas the monocular approach exhibits a steadily in-
creasing error of the estimation of the z-coordinate. Furthermore, the monoc-
ular approach produces some outliers for the other degrees of freedom for
distances greater than 800 mm. For the Fig. 9.15–9.17, the object was located
at the position (0, 0, 400).

For evaluating the accuracy of the estimated orientation, Euler angles were
used; the angles θx, θy, and θz denote the rotation angles around the respec-
tive axes. In the Fig. 9.15 and 9.16, the errors are plotted as a function of
rotations around the x-axis and the y-axis, respectively. These rotations are
out-of-plane rotations leading to skew in the image. As can be seen, in the
case of rotations around the x-axis, an error of up to ±7 mm can be observed
for the y-coordinate for both approaches. This error thus results from inac-
curacies of the 2D homography estimation as a result of the skew. Again, the
monocular approach produces large errors in the z-coordinate, while the pro-
posed approach only exhibits low noise of up to ±4 mm in the worst case. A
significant error of the monocular approach can be observed for the angle that
was varied, i.e. θx in Fig. 9.15, whereas the error produced by the proposed
approach is near zero. Analogously, in Fig. 9.16, the monocular approach
produces errors in the observed angle θy. However, the error is considerably
smaller compared to Fig. 9.15, as well as the error of the z-coordinate. Both
approaches exhibit a small error of the x-coordinate, resulting from inaccura-
cies of the 2D homography estimation, as it was the case for the y-coordinate
in Fig. 9.15.

In Fig. 9.17, the rotation angle around the z-axis was varied. Since the SIFT
descriptor is fully invariant to in-plane rotations, i.e. rotations around the z-
axis, the error remains practically constant for all pose parameters for both
approaches. The only difference can be observed in the z-coordinate, for which
the monocular approach produces a constantly higher error of approx. 2–3 mm.

In the following, a single scalar value was computed for the overall 3D error
by comparing the ground truth pose and the estimated pose on the basis of
sampled surface points, as explained in Section 9.1.1.

In Fig. 9.18, the performance of the kd-tree is evaluated for an example object
pose. The object was located off the center at a z-distance of 600 mm and
exhibited some skew in both x- and y-direction. As can be seen, the number of
correct matches converges to 50 for approx. nl ≥ 75. At the same time, the 2D
error and the 3D error converge to the same values that would be achieved with
brute-force matching. A linear relationship between the parameter nl and the
computation time can be observed. For nl = 75, a computation time of approx.

9.2 Recognition and Pose Estimation System based on Texture 215

-30

-20

-10

0

10

20

30

400 600 800 1000

x
-e

rr
o
r

[m
m

]

z-distance [mm]

-30

-20

-10

0

10

20

30

400 600 800 1000

y
-e

rr
o
r

[m
m

]

z-distance [mm]

-30

-20

-10

0

10

20

30

400 600 800 1000

z
-e

rr
o
r

[m
m

]

z-distance [mm]

-30

-20

-10

0

10

20

30

400 600 800 1000

θ x
-e

rr
o
r

[o
]

z-distance [mm]

-30

-20

-10

0

10

20

30

400 600 800 1000

θ y
-e

rr
o
r

[o
]

z-distance [mm]

-30

-20

-10

0

10

20

30

400 600 800 1000

θ z
-e

rr
o
r

[o
]

z-distance [mm]

Fig. 9.14. Accuracy of 6D pose estimation depending on the z-coordinate. The
solid line indicates the result of the proposed method, the dashed line the result of
2D-3D pose estimation.

75µs for calculating the best match from a set of 700 features was measured.
Compared to brute-force matching, which took approx. 180µs, a speedup of
approx. factor 2.5 is achieved. The speedup of the kd-tree compared to brute-
force matching increases with an increasing number of features because of
the linear relationship between the number of features and the computation
time of brute-force matching, and the logarithmic relationship when using a
kd-tree.

216 9 Evaluation

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

x
-e

rr
o
r

[m
m

]

x-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

y
-e

rr
o
r

[m
m

]

x-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

z
-e

rr
o
r

[m
m

]

x-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

θ x
-e

rr
o
r

[o
]

x-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

θ y
-e

rr
o
r

[o
]

x-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

θ z
-e

rr
o
r

[o
]

x-angle [o]

Fig. 9.15. Accuracy of 6D pose estimation depending on the rotation around the
x-axis. The solid line indicates the result of the proposed method, the dashed line
the result of 2D-3D pose estimation.

The effect of the Harris quality threshold for feature point calculation is illus-
trated in Fig. 9.19. For the second parameter describing the minimum distance
between two feature points, 5 pixels was used. A rather difficult situation was
chosen in order to illustrate the effects more clearly. The object was located
off the center at a z-distance of 800 mm, exhibiting rotations around all three
axes. As can be seen, the 2D error converges already for 0.18. However, the
number of correct matches remains 15 until approx. 0.05, where the number of

9.2 Recognition and Pose Estimation System based on Texture 217

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

x
-e

rr
o
r

[m
m

]

y-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

y
-e

rr
o
r

[m
m

]

y-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

z
-e

rr
o
r

[m
m

]

y-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

θ x
-e

rr
o
r

[o
]

y-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

θ y
-e

rr
o
r

[o
]

y-angle [o]

-30

-20

-10

0

10

20

30

-40 -20 0 20 40

θ z
-e

rr
o
r

[o
]

y-angle [o]

Fig. 9.16. Accuracy of 6D pose estimation depending on the rotation around the
y-axis. The solid line indicates the result of the proposed method, the dashed line
the result of 2D-3D pose estimation.

matches jumps to the final value 18. As can be seen, at this far distance of the
object, the monocular 6D pose estimation approach is significantly more sen-
sitive to a small number of matches, which lead to imperfect 2D homography
estimates.

In Fig. 9.20, the improvement of the accuracy of 6D pose estimation when
using a homography in the final iteration of the 2D localization procedure,
compared to using an affine transformation only, is shown. As can be seen,

218 9 Evaluation

-30

-20

-10

0

10

20

30

-180 -120 -60 0 60 120 180

x
-e

rr
o
r

[m
m

]

z-angle [o]

-30

-20

-10

0

10

20

30

-180 -120 -60 0 60 120 180

y
-e

rr
o
r

[m
m

]

z-angle [o]

-30

-20

-10

0

10

20

30

-180 -120 -60 0 60 120 180

z
-e

rr
o
r

[m
m

]

z-angle [o]

-30

-20

-10

0

10

20

30

-180 -120 -60 0 60 120 180

θ x
-e

rr
o
r

[o
]

z-angle [o]

-30

-20

-10

0

10

20

30

-180 -120 -60 0 60 120 180

θ y
-e

rr
o
r

[o
]

z-angle [o]

-30

-20

-10

0

10

20

30

-180 -120 -60 0 60 120 180

θ z
-e

rr
o
r

[o
]

z-angle [o]

Fig. 9.17. Accuracy of 6D pose estimation depending on the rotation around the
z-axis. The solid line indicates the result of the proposed method, the dashed line
the result of 2D-3D pose estimation.

computing a full homography is crucial for an acceptable accuracy when us-
ing the monocular approach. However, at a relatively far distance of 800 mm,
the accuracy of the feature point positions is too small, so that the homogra-
phy cannot achieve an improvement. In contrast, the additional two degrees of
freedom cause a greater noise of the 6D pose estimates and larger errors, when
using the monocular approach. The proposed stereo-based approach produces
significantly smaller errors and the homography leads to an improvement at

9.2 Recognition and Pose Estimation System based on Texture 219

0

10

20

30

40

50

60

70

50 100 150 200

m
a
tc

h
es

nl

0

50

100

150

200

250

50 100 150 200

ti
m

e
/

fe
a
tu

re
[µ

s]

nl

0

0.5

1

1.5

2

50 100 150 200

2
D

er
ro

r
[p

ix
el

]

nl

0

5

10

15

20

50 100 150 200

3
D

er
ro

r
[m

m
]

nl

Fig. 9.18. Effect of the parameter nl of the kd-tree. One learned view was used
containing 700 feature descriptors. The computation time refers to comparison of
one feature in the scene to the 700 features stored in the kd-tree. The computation
time for brute-force matching amounted to approx. 180µs.

both tested distances. At a first glance, it might be irritating that the homog-
raphy leads to an improvement for the proposed approach, but causes slightly
less accurate results for the monocular approach at far distances. The reason
is that with the monocular approach, the 6D pose is inferred by the homog-
raphy, whereas the proposed stereo-based approach is not mislead by wrong
inferred poses, but can nevertheless benefit from a more precisely fitted 2D
contour.

Finally, in the Fig. 9.21 and 9.22, the errors for 1,000 random trials were
evaluated, within a range of [−100, 100] × [−100, 100] × [400, 1000] for the
position, and [−45o, 45o]× [−45o, 45o]× [−45o, 45o] for the angles around the
x-,y-, and z-axes. Because of the random combination of the intervals, poses
can result for which a recognition is impossible. Therefore, only those poses
were evaluated that allowed recognition and thus pose estimation. The aver-
age error refers to the average 3D Euclidean distance of the sampled points,
after application of the ground-truth pose and the computed pose, respec-
tively, as described before. The maximum error is the maximum distance that
occurred for the set of all sampled points. A deviation between the average

220 9 Evaluation

0
20
40
60
80

100
120
140
160

0.050.10.150.2

fe
a
tu

re
p

o
in

ts

Harris threshold

0

5

10

15

20

25

0.050.10.150.2

m
a
tc

h
es

Harris threshold

0
0.5

1
1.5

2
2.5

3
3.5

4

0.050.10.150.2

2
D

er
ro

r
[p

ix
el

]

Harris threshold

0
10
20
30
40
50
60
70
80

0.050.10.150.2

3
D

er
ro

r
[m

m
]

Harris threshold

Fig. 9.19. Effect of the Harris quality threshold for an example with a low resolution
of the object. One learned view was used containing 700 feature descriptors. The
computation time of the Harris corner points took 13 ms in all cases. In the plot
of the 3D error, the solid line indicates the result of the proposed pose estimation
method, the dashed line the result of 2D-3D pose estimation.

error and the maximum error indicates errors of the orientation estimation;
similar average and maximum errors are only achieved when the orientation
could be estimated correctly. Also note that only a single training view was
used for the presented simulation experiments.

As can be seen in Fig. 9.21, the monocular approach produces a significant
deviation of the average and maximum error for 20% of the trials, indicating
an incorrect estimation of the orientation. The average error of 80% of the
trials is below 16 mm, the maximum error below 26 mm. The average error
of 50% of the trials is below 7.5 mm, the maximum error below 10.5 mm.
In contrast, the proposed approach produces average errors below 2.7 mm
for 80% of the trials, and maximum errors below 3.4 mm. For 50% of the
trials, the average and maximum errors are below 2 mm. Note the differing
scaling of the vertical axis between the Fig. 9.21 and 9.22. Furthermore, it
can be seen that the proposed stereo-based approach produces similar average
and maximum errors, indicating an accurate estimation of the orientation. In
Fig. 9.22, two settings were tested: Using brute-force matching with a Harris

9.2 Recognition and Pose Estimation System based on Texture 221

0

10

20

30

40

50

-20 -10 0 10 20

3
D

er
ro

r
[m

m
]

x-angle and y-angle [o]

0

10

20

30

40

50

-20 -10 0 10 20

3
D

er
ro

r
[m

m
]

x-angle and y-angle [o]

0

10

20

30

40

50

-20 -10 0 10 20

3
D

er
ro

r
[m

m
]

x-angle and y-angle [o]

0

10

20

30

40

50

-20 -10 0 10 20

3
D

er
ro

r
[m

m
]

x-angle and y-angle [o]

Fig. 9.20. Comparison of the accuracy of 6D pose estimation when using an affine
transformation and a homography for 2D localization. The solid line indicates the re-
sults when using a homography in the final iteration, the dashed line using an affine
transformation only. Left column: using 2D-3D correspondences. Right column: us-
ing the proposed approach. Top row: 600 mm z-distance. Bottom row: 800 mm z-
distance.

quality threshold of 0.001, and using a kd-tree with nl = 75 and a Harris
quality threshold of 0.025. No difference could be observed for the measured
accuracies for the two settings; the errors equal within a range of ±0.1 mm.

9.2.2 Real-world Experiments

In this section, results of real-world experiments with the proposed system are
presented. For these experiments, multiple views of the objects were trained,
according to Section 6.2.6. For estimating the accuracy of the system on real
data, trajectories for a static object and a moving object have been measured.
The trajectories have neither been filtered nor post-processed in any other way.
The standard deviation of the trajectory for a static object thus can serve as
a measure for the smoothness and the relative accuracy of the trajectory. For
a moving object, the standard deviation cannot be measured due to missing

222 9 Evaluation

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000

3
D

er
ro

r
[m

m
]

Trial

Average Error
Maximum Error

Fig. 9.21. Accuracy of 6D pose estimation for 1,000 random trials using 2D-3D
correspondences. The errors were sorted in decreasing order in order to illustrate
the error distribution.

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800 900 1000

3
D

er
ro

r
[m

m
]

Trial

Average Error
Average Error fast

Maximum Error
Maximum Error fast

Fig. 9.22. Accuracy of 6D pose estimation for 1,000 random trials using the pro-
posed method. The denotation ‘fast’ indicates that a kd-tree was used with nl = 75
and a Harris quality threshold of 0.025; the other plots were made with brute-force
matching and a threshold of 0.001. As can be seen, no difference can be observed
between the two variants. The errors were sorted in decreasing order in order to
illustrate the error distribution.

ground-truth data. However, the smoothness of the trajectory is representative
for the quality and relative accuracy. Finally, the projections of the estimated
model poses for exemplary scenes are given.

In Table 9.3, the standard deviations over 100 frames for experiments with
a static object are given. As can be seen, the standard deviation of the z-
coordinate is smaller than a factor of almost four when using the proposed
stereo-based method, in comparison to the conventional, monocular method

9.2 Recognition and Pose Estimation System based on Texture 223

x y z θx θy θz

Proposed method 0.23 0.42 0.39 0.066 0.17 0.10

Conventional method 0.24 0.038 1.52 0.17 0.29 0.13

Table 9.3. Standard deviations for the estimated poses of a static textured object.
The standard deviations have been calculated for 100 frames captured at a frame
rate of 30 Hz. The units are [mm] and [o], respectively.

-200

-100

0

100

200

20 40 60 80 100

x
[m

m
]

Frame

-200

-100

0

100

200

20 40 60 80 100

y
[m

m
]

Frame

400

500

600

700

800

20 40 60 80 100

z
[m

m
]

Frame

-20

0

20

40

60

20 40 60 80 100

θ x
[o

]

Frame

-40

-20

0

20

40

20 40 60 80 100

θ y
[o

]

Frame

-40

-20

0

20

40

20 40 60 80 100

θ z
[o

]

Frame

Fig. 9.23. Exemplary trajectory of a textured object acquired with the proposed
system. The solid line indicates the result of the proposed method, the dashed line
the result of 2D-3D pose estimation.

224 9 Evaluation

using 2D-3D correspondences. In Fig. 9.23, the computed trajectory of a box
that has been moved by hand is plotted. The trajectories of the z-coordinate
as well as the angles θx and θy are considerably noisier and more error-prone
when using the monocular method, although an example was chosen in which
the monocular method does not become unstable due to ambiguities.

Fig. 9.24. Exemplary results with the proposed object recognition and pose esti-
mation system for textured objects. The computed object pose has been applied to
the 3D object model and the wireframe model has been overlaid.

Fig. 9.25. Example for which the conventional method for 6D pose estimation
fails. Left: conventional method based on 2D-3D correspondences. Right: proposed
stereo-based method.

Finally, the wireframe model for computed object poses on exemplary scenes
has been overlaid with the original left camera image in the Fig. 9.24 and 9.25.
Integrated results of the two proposed object recognition and pose estimation
systems are shown in Fig. 9.26.

9.2 Recognition and Pose Estimation System based on Texture 225

Fig. 9.26. Exemplary results with the integrated proposed object recognition and
pose estimation systems. The computed object pose has been applied to the 3D
object model and the wireframe model has been overlaid.

9.2.3 Runtime

In Table 9.4, the runtimes for the different processing stages are given for the
recognition and pose estimation of a single object. The computation time of
the Harris corner detector can be regarded as constant; the computation time
for the SIFT descriptors is proportional to the number of features extracted
in the current image. The computation time of the matching procedure for
one object does not directly depend on the number of learned features, but on
the parameter nl of the kd-tree and on the number of features extracted from
the current scene. The parameter nl must be chosen according to the number
of features stored for one object, but due to the tree structure the relationship
is logarithmic. For feature numbers less than 1,000 for one object, nl = 75 is
sufficient (see also Fig. 9.18).

The computation time of the correlation procedure for the proposed stereo-
based 6D pose estimation method depends on the number of corner points
within the localized 2D area of the object, as well as the depth interval of
interest. The experiments were performed assuming a range of interest of
[500, 1000] (mm) for the z-coordinate; the respective minimum and maxi-
mum disparity values were calculated automatically with Algorithm 13. The

226 9 Evaluation

runtimes are given for the setup described at the beginning of this section and
the object being located at approximately manipulation distance, i.e. z = 600
(mm). The feature set for the object contained 700 features. For the cur-
rent scene, a Harris threshold of 0.025 was used, 230 SIFT descriptors were
computed and matched. For 6D pose estimation, correspondences for 110 cor-
ner points were determined by correlation. The number of iterations for the
RANSAC method and the least squares estimation are given in Section 6.2.
As a conclusion, a single object can be tracked at manipulation distance with
a processing rate of approx. 23 Hz.

Time [ms]

Harris corner detection 13

SIFT descriptor computation 9

Matching 12

Iterative homography estimation 3

6D pose estimation 6

Total 43

Table 9.4. Processing times for the proposed recognition and pose estimation sys-
tem for textured objects.

9.3 Markerless Human Motion Capture System

9.3.1 Automatic Initialization

With the proposed markerless human motion capture system, automatic ini-
tialization is given naturally by automatic initialization of the hand/head
tracker. The hand/head tracker assumes for initialization that at the begin-
ning, the person’s left hand appears on the right side of the right hand in
the image. The head is recognized beforehand on the basis of its size, setting
into relation the size of the blob to its 3D position expressed in the camera
coordinate system. Once the hand/head tracker ist started, the particle filters
for the arms are run, which quickly find the right arm poses with the aid of
the inverse kinematics approach. No specific pose is required at the beginning:
Given the 3D positions of the head and the hands, the arm poses are found
without any other background information than having a frontal view of the
person. In Fig. 9.27, the first six frames of the test sequence are shown. As
can be seen, the system is perfectly initialized after the sixth frame.

9.3 Markerless Human Motion Capture System 227

Fig. 9.27. Example of automatic initialization. The first six frames with the overlaid
estimated model configuration are shown.

9.3.2 Real-world Experiments and Accuracy

In this section, the accuracy of the proposed human motion capture system is
evaluated. For this purpose, an exemplary sequence consisting of 840 frames
captured at a frame rate of 30 Hz was processed and analyzed. The sequence
was processed with the proposed system once on all 840 frames and once
using every second frame only. By doing this, the degradation of the accuracy
with lower frame rates can be measured. As will be seen, the proposed system
operates robustly on lower frame rates as well, which is crucial for robust
online application. The system proved to be applicable for online reproduction
of movements on the humanoid robot ARMAR-III, as will be mentioned in
Chapter 10. The standard deviations for static images have been evaluated
extensively in Chapter 7.

The estimated hand trajectories for the test sequence are plotted in Fig. 9.28.
As can be seen, the estimated trajectories for both frame rates practically
equal, except the right hand around the frames 590–640. The reason for this
deviation is that for these frames, the right hand partly exceeded the left image
border of the left camera image, causing differing unpredictable behavior of
the particle filter.

The estimated trajectories of the left and right arm are plotted in the Fig. 9.29
and Fig. 9.30, respectively. The values θ1, θ2, θ3, θ4 are the direct output of the
particle filter. The values θ1, θ2, θ3 define a vector whose direction represents
the rotation axis and whose magnitude represents the rotation angle. The
angle of the elbow joint is given by θ4. As can be seen, the trajectories acquired
at 15 Hz and 30 Hz mostly equal. The greatest deviations can be observed for
the first 100 frames of the left arm in Fig. 9.29. However, the magnitude of the
deviation is not representative for the actual error. The elbow angle for these

228 9 Evaluation

0

300

600

900

0 200 400 600 800

L
ef

t
h
a
n
d
x

Frame

-900

-600

-300

0

0 200 400 600 800

R
ig

h
t

h
a
n
d
x

Frame

-600

-300

0

300

600

0 200 400 600 800

L
ef

t
h
a
n
d
y

Frame

-600

-300

0

300

600

0 200 400 600 800

R
ig

h
t

h
a
n
d
y

Frame

600

900

1200

1500

1800

0 200 400 600 800

L
ef

t
h
a
n
d
z

Frame

600

900

1200

1500

1800

0 200 400 600 800

R
ig

h
t

h
a
n
d
z

Frame

Fig. 9.28. Acquired hand trajectories used as input to the distance cue. The solid
line indicates the tracking result acquired at the full temporal resolution of 30 Hz;
for the dashed line every second frame was skipped, i.e. 15 Hz.

frames is near zero, so that the different values result from the uncertainty
of the estimation of the upper arm rotation – a natural problem that is not
related to the frame rate. Due to the small elbow angle, the projections of both
trajectories look similar. The deviation for the angle θ2 of the right arm for
the frames 670–840 in Fig. 9.30 is due to the same ambiguity; again, the elbow
angle is near zero. Judging from the visualized model configurations in 2D and
3D, both alternatives are plausible. For stable recognition or reproduction of

9.3 Markerless Human Motion Capture System 229

such configurations with a humanoid robot system, trajectories must be post-
processed in order to ensure continuity and uniqueness of the joint angle
values in the target kinematics model. This post-processing can be performed
online at runtime, as it was applied for the reproduction of movements on the
humanoid robot ARMAR-III (see [Do et al., 2008]).

-4

-2

0

2

4

0 200 400 600 800

L
ef

t
a
rm

θ 1

Frame

-4

-2

0

2

4

0 200 400 600 800
L

ef
t

a
rm

θ 2

Frame

-4

-2

0

2

4

0 200 400 600 800

L
ef

t
a
rm

θ 3

Frame

-2

0

2

0 200 400 600 800

L
ef

t
a
rm

θ 4

Frame

Fig. 9.29. Exemplary arm trajectory for the left arm acquired by the proposed
human motion capture system. The solid line indicates the tracking result acquired
at the full temporal resolution of 30 Hz; for the dashed line every second frame was
skipped, i.e. 15 Hz.

Finally, in Fig. 9.31 snapshots of the state of the tracker are given for the test
sequence. Each snapshot corresponds to a frame 1+k·60 from the Fig. 9.29 and
Fig. 9.30, respectively. Note that not only the projection of the human model
configuration to the left camera image is plausible, but also the estimated 3D
pose illustrated by the 3D visualization of the human model is correct.

230 9 Evaluation

-4

-2

0

2

4

0 200 400 600 800

R
ig

h
t

a
rm

θ 1

Frame

-4

-2

0

2

4

0 200 400 600 800

R
ig

h
t

a
rm

θ 2

Frame

-4

-2

0

2

4

0 200 400 600 800

R
ig

h
t

a
rm

θ 3

Frame

-2

0

2

0 200 400 600 800

R
ig

h
t

a
rm

θ 4

Frame

Fig. 9.30. Exemplary arm trajectory for the left arm acquired by the proposed
human motion capture system. The solid line indicates the tracking result acquired
at the full temporal resolution of 30 Hz; for the dashed line every second frame was
skipped, i.e. 15 Hz.

9.3 Markerless Human Motion Capture System 231

Fig. 9.31. Snapshots of the results computed for a test sequence consisting of 840
frames, which were captured at a frame rate of 30 Hz. Every 60th frame is shown;
the frames are ordered column-wise from top to bottom. The red dots mark the
measured positions computed by the hand/head tracking system. The black dots
mark the corresponding positions according to the estimated model configuration.

232 9 Evaluation

9.3.3 Runtime

In Table 9.3.3, the runtimes for the different processing stages are given for
the proposed stereo-based markerless human motion capture system. The run-
times have been measured for the test sequence from the previous section,
which consisted of 24 bit RGB stereo image pairs at a resolution of 640×480
each. For hand/head tracking, 100 particles with two runs for each frame were
used for each blob. For arm motion tracking, 150 particles with four runs were
used, according to Algorithm 21 from Section 7.12. The total processing time
of 66 ms yields a processing rate of 15 Hz.

Time [ms]

Skin color segmentation 4

Shirt color segmentation 20

Edge image calculation 6

Particle filters for hand/head tracking 6

Particle filters for arm motion tracking 30

Total 66

Table 9.5. Processing times for the proposed stereo-based markerless human motion
capture system.

Starting points for optimizations are the shirt color segmentation and ex-
ploiting multithreading on multicore CPUs. For the experiments, shirt color
segmentation was performed on the complete image. By modeling each body
segment separately as a region of interest, the processing time for shirt color
segmentation could be reduced to 10 ms or less. The two particle filters for the
two arms are predestined for being parallelized on a multicore CPU, since they
operate independently. With these optimizations, processing rates of 20 Hz or
even higher can be achieved with up-to-date computer hardware.

10

Conclusion

10.1 Contribution

In this thesis, novel methods and systems for recognition and accurate pose
estimation of objects as well as tracking of a person’s upper body posture
were developed and evaluated. It could be shown that exploiting the bene-
fits of a calibrated stereo system leads to substantially more powerful sys-
tems in terms of accuracy, robustness, and efficiency. This hypothesis was
proved both by extensive experiments on synthetic data and real-world ex-
periments in relevant realistic scenarios. Furthermore, the developed systems
proved their online applicability for manipulation using visual servoing (see
[Vahrenkamp et al., 2008]), and imitation (see [Do et al., 2008]) in numerous
demonstrations with the humanoid robot ARMAR-III. The scientific contri-
butions of the three developed systems are:

• Object recognition and pose estimation based on the shape: A
novel approach to recognizing and localizing 3D objects based on their
shape was developed. The method requires global segmentation of the
object, which was accomplished in the experiments by color segmentation
using single-colored objects. With the proposed approach, the 6D pose
of an object in 3D space can be estimated accurately – which, to the
author’s best knowledge, has so far not yet been possible for objects whose
only feature is their 3D shape. The initial pose estimate is computed by
combining stereo triangulation and view-based matching, which is refined
to an accurate pose estimate by online projection using a 3D model of
the object. The system can track a single object at a frame rate of 50 Hz
operating on stereo color image pairs with a resolution of 640×480 pixels.

• Object recognition and pose estimation based on texture: A novel
approach to accurate 6D pose estimation of textured objects was devel-
oped. The method builds on top of the state of the art in object recognition
and 2D localization using local point features. For the goal of frame rate

234 10 Conclusion

tracking, the SIFT descriptor was combined with the Harris corner de-
tector, including an effective extension for achieving scale-invariance. The
practical applicability of these scale-invariant Harris-SIFT features was
proved on real-image data. Furthermore, the conventional method for 2D
localization using an affine transformation was extended to a robust and
efficient iterative estimation of a full homography, and the resulting im-
provement of the subsequent 6D pose estimation was evaluated. The main
contribution is the developed stereo-based 6D pose estimation method that
builds on top of the 2D localization result. The most robust and accurate
conventional variant based on 2D-3D correspondences was compared to
the proposed stereo-based method. An extensive experimental evaluation
on synthetic and real image data proves the superior performance of the
proposed approach in terms of robustness and accuracy. The system can
track a single object at frame rates of up to 23 Hz operating on stereo color
image pairs with a resolution of 640×480 pixels.

• Markerless human motion capture: A novel approach to tracking of
real 3D upper body motion of a person was developed. The first main
contribution is the combination of 3D hand/head tracking and edge infor-
mation in the evaluation function of the particle filter. For this purpose,
the distance cue was introduced and combined with the edge cue. The
second main contribution is modeling the shoulder position to be adaptive
in combination with an inverse kinematics method for sampling new par-
ticles, which is performed in the first layer of a simplified annealed particle
filter. In order to improve the accuracy of the tracked positions of the head
and the hands, a particle filtering method was combined with correlation-
based refinement of the estimated 3D position. In order to achieve smooth
and accurate tracking of arm movements, a novel prioritized fusion method
was used for combining the distance cue and the edge cue, and adaptive
noise depending on the current overall arm error of the edge cue was pro-
posed. All improvements were proved by experiments performed on real
image data. As could be shown, the developed system also succeeds at
lower frame rates and was successfully applied for online imitation. To the
author’s best knowledge, the developed system for the first time allows
robust real-time image-based markerless capturing of human upper body
motion in slightly restricted but nevertheless realistic scenarios. The sys-
tem can track the upper body movements of a person at a frame rate of
15 Hz operating on stereo color image pairs with a resolution of 640×480
pixels.

10.2 Example Applications 235

10.2 Example Applications

In the Fig. 10.1–10.4, snapshots of example applications of the developed sys-
tems are shown. Typical situations for scene analysis and grasp execution with
the humanoid robot ARMAR-IIIa in the kitchen scenario of the Collaborative
Research Center SFB-588 ‘Humanoid Robots’ are shown in the Fig. 10.1 and
10.2.

Fig. 10.1. Grasp execution with the humanoid robot ARMAR-IIIa using the de-
veloped object recognition and pose estimation system.

Fig. 10.2. ARMAR-IIIa looking into the fridge for grasp execution. The developed
object recognition and pose estimation system is used for recognizing and localizing
the objects of interest, for subsequent grasp execution.

236 10 Conclusion

In Fig. 10.3, a snapshot of the humanoid robot ARMAR-IIIb imitating the
movements of a person in real-time is shown, using the developed markerless
human motion capture system. A snapshot of integrated application of the
developed systems for human motion capture and object recognition and pose
estimation is shown in Fig. 10.4.

Fig. 10.3. Online imitation with the humanoid robot ARMAR-IIIb using the de-
veloped markerless human motion capture system.

Fig. 10.4. Integrated application of the developed markerless human motion capture
system and object recognition and pose estimation system.

10.3 Discussion and Outlook 237

10.3 Discussion and Outlook

Finally, in this section, some aspects for possible extensions and starting points
for further research is given.

• Object recognition and pose estimation based on the shape: As
already stated, finding solutions to the segmentation problem was not
subject to this thesis. The proposed approach to recognition and pose es-
timation based on the shape was tested and evaluated for single-colored
objects, which were segmented by color segmentation with fixed color mod-
els. These color models could be specified and adapted at runtime on the
basis of a scene analysis. One possible way for automatically determining a
stable color model would be to maximize the recognition quality measure
for a known object, given an initial color model.

Using color blob segmentation for the purpose of global segmentation of
the objects of interest sets constraints to the object material and setup.
In particular, occlusions cannot be handled when relying on such a seg-
mentation technique. In order to overcome this deficiency, more general
segmentation techniques must be applied. A suitable method is the gener-
alized Hough transform, which could be applied to a small set of canonical
contour views. The recognition and localization result of the generalized
Hough transform yields a segmentation candidate, which could be used as
input to the PCA matching procedure. Using only a small subset of all
views of the object would consequently lead to a less accurate segmen-
tation result, compared to color segmentation. However, the accuracy of
pose estimation could be increased by subsequent application of a particle
filter based rigid object tracking method.

• Object recognition and pose estimation based on texture: The
proposed approach was evaluated for the case of objects with a planar rect-
angular surface. However, the approach is applicable for arbitrary shapes
as well. In general, according to Section 6.2.4 two variants are possible:
Estimating the pose on the basis of 3D-3D point correspondences given by
feature matches or fitting an object model to the 3D data in an optimiza-
tion step. For the performed tests, the optimal plane was fitted to the 3D
point cloud within the localized 2D area of the object. Analogously, any
other 3D primitive can be fitted, such as a cylinder for the lower part of a
bottle. As a third variant, the surface of objects of arbitrary shape can be
acquired during view acquisition with dense stereo, allowing the applica-
tion of the Iterative Closest Point (ICP) algorithm operating on 3D point
clouds for refining the initial estimate given by the 3D-3D correspondences.

In the current version of the system, the proposed scale-invariant Harris-
SIFT features are used, allowing processing rates of up to 23 Hz. If pro-
cessing time does not matter, e.g. for a thorough scene analysis, other

238 10 Conclusion

types of features could be integrated into the same feature set. The de-
veloped framework for recognition, 2D localization, and 6D pose estima-
tion is independent from the type of features used and thus naturally
allows combination of different feature types naturally. As stated in Sec-
tion 2.1.2.4, the Maximally Stable Extremal Regions (MSER) are more
suitable for higher image resolutions. With image resolutions of 1024×768
or higher, the combination of such region-based features with the proposed
corner-based features could lead to a more powerful system. In general, in-
corporating several kinds of features into the framework could relax the
requirement of objects with strong texture.

The accuracy of the developed system can only be improved with a greater
image quality in terms of image sharpness and the effective resolution of
the objects of interest. In this context, exploiting cameras with variable
zoom and focus will play an important role in the future.

• Markerless human motion capture: In the developed approach,
hand/head tracking and upper body pose tracking are performed com-
pletely separately. The 3D positions of the head and the hands are com-
puted with the developed tracking method and used as input to the dis-
tance cue of the particle filters for the arms. By combining the informa-
tion of both processes, ambiguities of the correspondence between skin
color blobs and body parts could be resolved: For example, for the two
possible matching combinations between two skin color blobs and the two
hands, the plausible one will produce the smaller edge error. This way,
are tracking would not get lost when hand/head tracking fails due to oc-
clusions. Furthermore, taking into account the state of all blob trackers
simultaneously allows more robust tracking through occlusions, as shown
in [Argyros and Lourakis, 2004].

One challenging and still open problem remains the robust estimation
of the upper body pose using only the information provided by a stereo
system with a small baseline (70-100 mm). In the proposed approach, the
shoulder positions automatically adapt to deviations between the assumed
and the real body pose, as well as to inaccuracies that arise from the 3 DoF
approximation of the shoulder joint. The estimated shoulder positions can
only serve as a coarse hint for the true shoulder positions in terms of depth
information. However, the projected 2D positions can serve as a starting
point for computing an estimate of the 3D shoulder position on the basis of
correlation and stereo triangulation. With only few other 3D points on the
torso of the person, an approximate model could be fitted, which would
yield an estimate for the orientation of the torso.

A

Mathematics

In this section, mathematic relationships and formulas that are necessary in
the context of this thesis are briefly presented. Since the definitions operating
on complex numbers are not of interest, only real-valued matrices and vectors
will be assumed.

A.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) of a matrix A ∈ Rm×n is defined
as the product

A = U Σ V T (A.1)

with U ∈ Rm×m,Σ ∈ Rm×n, V ∈ Rn×n. The matrices U and V are orthogonal
matrices. The matrix Σ contains non-zero values – the singular values – on the
diagonal and zeroes off the diagonal. For the systems developed in this thesis,
the IVT method LinearAlgebra::SVD was used, which has been extracted
from the OpenCV.

A.2 Pseudoinverse

The pseudoinverse A+ ∈ Rn×m of a matrix A ∈ Rm×n is the generalization
of the inverse matrix, thus also called generalized inverse. In practice, the
term the pseudoinverse commonly means the Moore-Penrose pseudoinverse; a
mathematical definition can be found e.g. in [Ben-Israel and Greville, 2003].
There are several ways for computing the Moore-Penrose pseudoinverse; two
commonly used methods are presented in the following.

240 A Mathematics

A.2.1 Using the Regular Inverse

If the matrix A has full rank, then the pseudoinverse can be computed by
using the regular inverse. If m > n, then it is:

A+ = (ATA)−1AT (A.2)

otherwise for m < n:
A+ = AT (AAT)−1 . (A.3)

As can be easily shown, for the special case m = n, the regular inverse A−1

is computed by Eq. (A.2) as well as by Eq. (A.3).

A.2.2 Using the Singular Value Decomposition

A numerically more stable method for computing the pseudoinverse, which
also succeeds when the matrix A does not have full rank, is based on the singu-
lar value decomposition. Given the singular value decomposition A = U Σ V T

(see Section A.1), the pseudoinverse is calculated by:

A+ = V Σ+ UT (A.4)

where the matrix Σ+ ∈ Rn×m is derived from the transposed matrix ΣT by
inverting all non-zero values on the diagonal, and leaving all zeroes in place.
In practice, the condition that a value is not zero is verified by comparing the
absolute value to a predefined epsilon.

A.3 Linear Least Squares

Given the over-determined system of linear equations

Ax = b (A.5)

with A ∈ Rm×n, b ∈ Rm, and m > n, the task is to find an optimal solution
x∗ ∈ Rn, so that the sum of squared differences ‖Ax∗−b‖22 becomes minimal.
In the following, the three commonly used approaches for solving this problem
are presented.

A.3.1 Using the Normal Equation

The normal equation is acquired by left-sided multiplication of AT :

A.3 Linear Least Squares 241

ATAx = AT b . (A.6)

If the matrix A has full rank, i.e. its rank is n, this system of linear equations
can be solved by using the regular inverse of ATA, which is equal to the
computation of the pseudoinverse with the method presented in Section A.2.1.
The optimal solution x∗ is thus computed by:

x∗ = (ATA)−1AT b (A.7)

A.3.2 Using the QR Decomposition

A numerically more stable, but also computationally more expensive method,
is based on the QR decomposition of the matrix A:

A = QR (A.8)

where Q ∈ Rm×m is a orthogonal matrix and R ∈ Rm×n is an upper triangular
matrix. The matrix Rn ∈ Rn×n is defined as the upper square part of the
matrix R, i.e. it is:

R =
(
Rn
O

)
(A.9)

where O is a (m−n)×n-matrix containing zeroes only. The optimal solution
x∗ can then be computed by solving the following system of linear equations:

Rn x
∗ = (QT b)n (A.10)

where (QT b)n denotes the upper n values of the vector QT b. This system of
linear equations can be efficiently solved by utilizing the fact that Rn is an
upper triangular matrix. An algorithm for computing the QR decomposition
of a matrix A is described in [Press et al., 2007].

A.3.3 Using the Singular Value Decomposition

The numerically most stable but also computationally most expensive method
is based on the singular value decomposition. For this purpose, the pseudoin-
verse A+ has to be computed by using the method presented in Section A.2.2,
yielding the optimal solution x∗ = A+b.

A.3.4 Homogeneous Systems

In the case of a homogeneous system of linear equations, i.e. b = 0, all pre-
viously presented methods fail, since multiplication with b results in the zero
vector. In this case, the singular value decomposition A = U Σ V T can be used
to directly compute the optimal solution x∗, which is given by the last column
of the matrix V , provided that the singular values are sorted in decreasing
order.

242 A Mathematics

A.4 Functions for Rotations

In this section, some useful functions for calculating rotation matrices and
rotation angles based on a given rotation axis are presented. Given a rotation
axis a and a rotation angle α, the rotation matrix R performing this rotation
can be computed by Algorithm 24.

Algorithm 24 RotationMatrixAxisAngle(a, α) → R

1. (x, y, z) :=
a

|a|
2. s := sinα
3. c := cosα
4. t := 1− c

5. R :=

(
tx2 + c txy − sz txz + sy
txy + sz ty2 + c tyz − sx
txz − sy tyz + sx tz2 + c

)

The reverse direction, i.e. extracting the axis a and the rotation angle α for
a given rotation matrix R, is computed by Algorithm 25. Note that −a,−α
results in the same rotation; apart from this, the solution is unique.

Algorithm 25 ExtractAxisAngle(R) → a, α

1.

(
r1 r2 r3
r4 r5 r6
r7 r8 r9

)
:= R

2. x := r8 − r6
3. y := r3 − r7
4. z := r4 − r2
5. r :=

√
x2 + y2 + z2

6. t := r1 + r5 + r9
7. α := atan2(r, t− 1)
8. a := (x, y, z)T

The function atan2 is provided by most higher programming languages and
is defined as follows:

atan2(x, y) :=

arctan x
y if y > 0

π + arctan x
y if y < 0, x ≥ 0

−π + arctan x
y if y < 0, x < 0

π
2 if y = 0, x > 0
−π2 if y = 0, x < 0
0 if y = 0, x = 0

(A.11)

A.4 Functions for Rotations 243

Finally, a function is presented that calculates the rotation angle α that is
necessary for rotating a given vector x1 to another vector x2, with |x1| = |x2|,
around a given rotation axis a. To compute the rotation angle α, the vectors
x1 and x2 are parallel projected onto the rotation plane defined by the rotation
axis a. The sign of the rotation angle is determined by verifying the resulting
two alternatives.

Algorithm 26 Angle(x1, x2, a) → α

1. n :=
a

|a|
2. u1 := x1 − (nx1)n

3. u1 :=
u1

|u1|
4. u2 := x2 − (nx2)n

5. u2 :=
u2

|u2|
6. α :=

u1 u2

|u1| |u2|
7. R ← RotationMatrixAxisAngle(n, α)
8. d1 := |Ru1 − u2|
9. d2 := |RTu1 − u2|

10. If d2 < d1, then set α := −α.

B

File Formats

B.1 Camera Parameters

In the following, the file format of the OpenCV (version 1.0) for the intrin-
sic and extrinsic camera parameters of a single camera or a stereo camera
system, respectively, is described; the same file format is used by the IVT.
The process of camera calibration for computing such a calibration file is de-
scribed in Section 8.1.7. Given a calibration file, the classes CCalibration
and CStereoCalibration, respectively, provide all camera parameters, cam-
era mapping functions, and functions necessary for 3D computations.

In the following specification of the file format, the first row of each double
row contains the parameters of the first, i.e. left, camera, and the second row
the parameters of the right camera, respectively. The parameter n ∈ {1, 2}
denotes the number of cameras.

n

w h fx 0 cx 0 fy cy 0 0 1 d1 d2 d3 d4 r1 r2 r3 r4 r5 r6 r7 r8 r9 t1 t2 t3
w h fx 0 cx 0 fy cy 0 0 1 d1 d2 d3 d4 r1 r2 r3 r4 r5 r6 r7 r8 r9 t1 t2 t3

u1 v1 u2 v2 u3 v3 u4 v4
u1 v1 u2 v2 u3 v3 u4 v4

a1 a2 a3 a4 a5 a6 a7 a8 a9

a1 a2 a3 a4 a5 a6 a7 a8 a9

For each camera, the parameters w and h denote the width and height, re-
spectively. The next nine parameters define the calibration matrix according
to Eq. (4.2). The parameters d1–d4 denote the distortion parameters of the

246 B File Formats

distortion model according to Section 4.1.4. The extrinsic parameters r1–r9
define the rotation matrix R and t1–t3 the translation vector t, according
to Eq. (4.7). In the case of a stereo camera system, these parameters fully
describe the epipolar geometry.

The parameters (u1, v1), . . . , (u4, v4) define the corner points of the destination
quadrangle after rectification. These parameters are not needed for most ap-
plications and are therefore not read by the classes offered by the IVT. Finally,
the rectification parameters a1–a9 specify a homography matrix A ∈ R3×3 ac-
cording to Eq. (4.37). This homography computes the image coordinates in
the original image for given image coordinates in the rectified images, and can
thus be directly used to compute a lookup table for the mapping. Using the
IVT, rectification can be performed by using the class CRectification.

List of Figures

2.1 Examples of rectangle features . 11
2.2 Illustration of the integral image . 12
2.3 Illustration of a cascade according to [Viola and Jones, 2001] . . . 13
2.4 Test image and result from [Chang and Krumm, 1999] 15
2.5 Illustration of pose estimation from [Ekvall et al., 2003] 16
2.6 Calculated Harris feature points on a test image 18
2.7 Example of a view set for one image patch 19
2.8 Computation of the DoG images . 21
2.9 Computation of the SIFT descriptor . 22
2.10 Calculated MSER on a test image . 24
2.11 Recognition result using SIFT features . 27
2.12 Examples of simple 3D models suitable for model-based tracking 29
2.13 Perpendicular distances, {li}, used to estimate the model pose . 29
2.14 Illustration of l′ in the RAPiD algorithm . 31
2.15 Illustration of the vectors involved in the generalized Hough

transform . 37
2.16 Example of a scene analysis with the system proposed in

[Lowe, 1987] . 42
2.17 Tracking result with the system proposed in [Lepetit et al., 2003] 44
2.18 Examples of spin images . 46

3.1 Illustration of a typical marker setup for the VICON system . . . 52
3.2 A VICON camera . 53
3.3 Example screenshots of the system proposed in

[Gavrila and Davis, 1996] . 54
3.4 Example screenshots of the system proposed in

[Ogawara et al., 2007] . 58
3.5 Example screenshots of the system proposed in

[Demirdjian et al., 2003] . 59
3.6 Example screenshots of the system proposed in

[Bregler and Malik, 1998] . 60

248 List of Figures

3.7 Example screenshots of the system proposed in
[Deutscher et al., 2000] . 63

3.8 Example screenshots of the system proposed in [Sidenbladh, 2001] 64
3.9 Example screenshots of the system proposed in

[Agarwal and Triggs, 2006] . 67

4.1 Illustration of the coordinate systems of the camera model 70
4.2 Example of the undistortion of a camera image 74
4.3 Example of a color segmentation . 79

6.1 Different views of a measuring cup . 102
6.2 Illustration of a 3D model of a can . 103
6.3 Example of an optimal input image pair of a measuring cup . . . 104
6.4 Example of an optimal segmented image pair of a measuring cup104
6.5 Illustration of size normalization for segmented objects 106
6.6 Illustration of different matching variants . 106
6.7 Illustration of the influence of the position on the appearance . . 107
6.8 Illustration of the position correction vector 108
6.9 Effect of the orientation correction . 111
6.10 Illustration of the triangulation problem . 112
6.11 Plot of the triangulation error for a sphere 113
6.12 Effect of the position correction . 115
6.13 Segmentation result for a realistic scene . 116
6.14 Example for the verfication procedure in the case of a mismatch 117
6.15 Example for the verfication procedure in the case of a match . . . 117
6.16 Example of the 2D localization and 6D pose estimation result

for an optimal scenario using monocular images 122
6.17 Example of the 2D localization result for a scenario with

out-of-plane rotation around the x-axis . 124
6.18 Result of 6D pose estimation using monocular images

computed on the basis of the 2D localization shown in Fig. 6.17 124
6.19 Example of the 2D localization result for a scenario with

out-of-plane rotation around the x- and y-axis 124
6.20 Result of 6D pose estimation using monocular images

computed on the basis of the 2D localization shown in Fig. 6.19 125
6.21 Example of the 2D localization result for a scenario with

out-of-plane rotations and a low resolution of the object 125
6.22 Result of 6D pose estimation result using monocular images

computed on the basis of the 2D localization shown in Fig. 6.21 126
6.23 Result of 2D localization for the same input images used in

Fig. 6.21 . 126
6.24 Result of 6D pose estimation using monocular images

computed on the basis of the 2D localization shown in Fig. 6.23 127
6.25 Edges computed for the image from Fig. 6.22 127

List of Figures 249

6.26 Image used for evaluation of the scale coverage of the SIFT
descriptor . 129

6.27 Plot of the scale coverage of the SIFT descriptor 129
6.28 Plot of the scale coverage of multi-scale SIFT descriptors 130
6.29 Images used for testing the performance of the Harris-SIFT

features . 131
6.30 Illustration of the performance of the Harris-SIFT features in

a realistic scenario . 132
6.31 Illustration of the transformations involved in the voting

formula specified by Eq. (6.14) . 134
6.32 Unfiltered feature correspondences between the current view

and a training view . 135
6.33 Filtered feature correspondences after application of the

Hough transform . 136
6.34 Difference between 2D localization using an affine

transformation and a homography in the case of success 137
6.35 Difference between 2D localization using an affine

transformation and a homography in the case of failure 138
6.36 Filtered feature correspondences after iterative computation

of the affine transformation . 139
6.37 Result of 6D pose estimation using the proposed method 144
6.38 Result of 2D localization for an occluded object 145
6.39 Result of 6D pose estimation for an occluded object 145

7.1 3D Visualization of the used human upper body model 151
7.2 Illustration of the projection of the contour of a section of a cone152
7.3 Illustration of the search for edge pixels . 153
7.4 Illustration of the simulated 1D experiment used for cue

comparison . 158
7.5 Illustration of the input images for the region cue and the

edge cue . 158
7.6 Comparison of the probability density functions of the

different cues . 159
7.7 Comparison of the convergence of the cues for ∆u0 = 5 160
7.8 Comparison of the convergence of the cues for ∆u0 = 25 161
7.9 Comparison of the convergence of the cues for ∆u0 = 50 161
7.10 Comparison of the convergence of the cues for ∆u0 = 100 162
7.11 Comparison of the number of iterations needed until convergence162
7.12 Illustration of an ambiguous situation for the region cue 163
7.13 Illustration of the input and outputs of the image processing

pipeline . 165
7.14 Illustration of the image processing pipeline 167
7.15 Comparison of the x, y-trajectories computed by different

approaches to hand/head tracking . 171

250 List of Figures

7.16 Comparison of the z-trajectories computed by different
approaches to hand/head tracking . 172

7.17 Illustration of the effect of cue fusion with the proposed
approach . 173

7.18 Illustration of the effect of the proposed fusion method on the
edge and distance error . 175

7.19 Illustration of the effect of the proposed fusion method on the
trajectory . 175

7.20 Trajectory for the scene shown in Fig. 7.17 using prioritized
fusion . 176

7.21 Illustration of the effect of adaptive noise on the edge and
distance error . 177

7.22 Trajectory for the person’s left arm shown in Fig. 7.17 using
adaptive noise . 178

7.23 Illustration of the effect of adaptive shoulder positions 178
7.24 Illustration of the effect of adaptive shoulder positions on the

edge and distance error . 179
7.25 Trajectory for the person’s right arm shown in Fig. 7.23 using

a static shoulder position . 180
7.26 Trajectory for the person’s right arm shown in Fig. 7.23 using

an adaptive shoulder position . 180
7.27 Illustration of the effect of adaptive shoulder positions 181
7.28 Illustration of the geometric relationships for the inverse

kinematics computations . 182
7.29 Illustration of the effect of inverse kinematics sampling on the

edge and distance error . 184
7.30 Trajectory for the person’s right arm shown in Fig. 7.27

without using inverse kinematics . 185
7.31 Trajectory for the person’s right arm shown in Fig. 7.27 using

the proposed inverse kinematics approach 185

8.1 Representation of the public attributes and methods of the
class CByteImage in UML . 188

8.2 Representation of the methods of the interface
CApplicationHandlerInterface in UML . 189

8.3 Representation of the methods of the interface
CVideoCaptureInterface in UML . 190

8.4 Illustration of the base coordinate systems used for the MMM
and the human motion capture system . 194

8.5 Illustration of the MMM kinematic model 195
8.6 Illustration of the MMM framework . 197

9.1 Accuracy of 6D pose estimation depending on the z-coordinate . 204
9.2 Accuracy of 6D pose estimation depending on the rotation

around the x-axis . 205

List of Figures 251

9.3 Accuracy of 6D pose estimation depending on the rotation
around the y-axis . 206

9.4 Accuracy of 6D pose estimation depending on the rotation
around the z-axis . 207

9.5 Accuracy of 6D pose estimation depending on the
dimensionality of the eigenspace . 208

9.6 Eigenvalues for different view sets . 208
9.7 Accuracy of 6D pose estimation depending on the number of

iterations of the correction procedure . 209
9.8 Accuracy of 6D pose estimation depending on the rotational

resolution of the learned views . 209
9.9 Accuracy of 6D pose estimation for 1,000 random trials for a

measuring cup . 210
9.10 Accuracy of 6D pose estimation for 1,000 random trials for a cup210
9.11 Pose estimation results for a measuring cup 211
9.12 Exemplary trajectory of a plate acquired with the proposed

system . 212
9.13 Exemplary results with the proposed object recognition and

pose estimation system for single-colored objects 213
9.14 Accuracy of 6D pose estimation depending on the z-coordinate . 215
9.15 Accuracy of 6D pose estimation depending on the rotation

around the x-axis . 216
9.16 Accuracy of 6D pose estimation depending on the rotation

around the y-axis . 217
9.17 Accuracy of 6D pose estimation depending on the rotation

around the z-axis . 218
9.18 Effect of the parameter nl of the kd-tree . 219
9.19 Effect of the Harris quality threshold . 220
9.20 Comparison of the accuracy when using an affine

transformation and a homography . 221
9.21 Accuracy of 6D pose estimation for 1,000 random trials using

2D-3D correspondences . 222
9.22 Accuracy of 6D pose estimation for 1,000 random trials using

the proposed method . 222
9.23 Exemplary trajectory of a textured object acquired with the

proposed system . 223
9.24 Exemplary results with the proposed object recognition and

pose estimation system for textured objects 224
9.25 Example for which the conventional method for 6D pose

estimation fails . 224
9.26 Exemplary results with the integrated proposed object

recognition and pose estimation systems . 225
9.27 Example of automatic initialization . 227
9.28 Acquired hand trajectories used as input to the distance cue . . . 228

252 List of Figures

9.29 Exemplary arm trajectory for the left arm acquired by the
proposed human motion capture system . 229

9.30 Exemplary arm trajectory for the right arm acquired by the
proposed human motion capture system . 230

9.31 Snapshots of the results computed for a test sequence 231

10.1 Grasp execution using the developed object recognition and
pose estimation system . 235

10.2 ARMAR-IIIa looking into the fridge for grasp execution 235
10.3 Online imitation using the developed markerless human

motion capture system . 236
10.4 Integrated application of human motion capture and object

recognition and pose estimation . 236

List of Tables

2.1 Comparison of 2D object recognition and localization methods . 48
2.2 Comparison of 6D pose estimation methods 49
2.3 Comparison of the developed object recognition and pose

estimation methods . 49

3.1 Comparison of camera-based approaches to markerless human
motion capture . 68

8.1 Degrees of freedom and Euler angle conventions for MMM joints194

9.1 Standard deviations for the estimated poses for static
single-colored objects . 210

9.2 Processing times for the proposed recognition and pose
estimation system for single-colored objects 213

9.3 Standard deviations for the estimated poses of a static
textured object . 223

9.4 Processing times for the proposed recognition and pose
estimation system for textured objects . 226

9.5 Processing times for the proposed stereo-based markerless
human motion capture system . 232

List of Algorithms

1 DistortImageCoordinates(u, v) → ud, vd . 74
2 UndistortImageCoordinates(ud, vd) → u, v 75
3 CalculateImageCoordinates(x) → ud, vd . 76
4 CalculateWorldCoordinates(ud, vd, s) → x 76
5 SegmentColorHSV(I, hmin, hmax, smin, smax, vmin, vmax) → I ′ . . 79
6 ParticleFilter(Xt−1, zt) → Xt . 90
7 RANSAC(P, n) → M,S∗ . 92
8 CalculatePoseSegmentable(cl, cr, R0, model) → R, t 114
9 ProcessRegionSegmentable(Il, rl, rr) → id,R, t 118
10 AnalyzeSceneSegmentable(Il, Ir) → {idi, Ri, ti}, n 119
11 EstimateHomography(X) → H,X ′, e . 140
12 CalculatePoseTextured(Il, Ir, C, model) → R, t 140
13 EstimateDisparity(z) → d . 141
14 FitPlane(X) → n, c, e . 143
15 AnalyzeSceneTextured(Il, Ir) → {idi, Ri, ti}, n 148
16 ProjectAndSampleSquare(p, s) → P . 168
17 ComputeProbabilities(Is,l, Is,r, {pi}) → {πi} 169
18 TrackBlob(I ′l , I

′
r, Is,l, Is,r) → pt . 170

19 ComputeLikelihoodArm(Ig,l, Ig,r, ph, s) → π 174
20 ComputeInverseKinematics(Rb, s, h, a, b, α) → θ1, θ2, θ3, θ4 . . . 183
21 TrackUpperBodyMotion(Il, Ir) →

tBT , tl, tr,θLS ,θRS , θLE , θRE . 186
22 ConvertHMCToMMM(tBT , θBT , θLS , θLE , θRS , θRE) → x . . . 198
23 ExtractEulerAngles(R, k = 1) → α, β, γ . 198
24 RotationMatrixAxisAngle(a, α) → R . 242
25 ExtractAxisAngle(R) → a, α . 242
26 Angle(x1, x2, a) → α . 243

References

Agarwal and Triggs, 2004. Agarwal, A. and Triggs, B. (2004). 3D Human Pose
from Silhouettes by Relevance Vector Regression. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 882–
888, Washington, DC, USA.

Agarwal and Triggs, 2006. Agarwal, A. and Triggs, B. (2006). Recovering 3D Hu-
man Pose from Monocular Images. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 28(1):44–58.

Alt, 1962. Alt, F. L. (1962). Digital Pattern Recognition by Moments. Journal of
the ACM (JACM), 9(2):240–258.

Argyros and Lourakis, 2004. Argyros, A. A. and Lourakis, M. I.A. (2004). Real-
Time Tracking of Multiple Skin-Colored Objects with a Possibly Moving Camera.
In European Conference on Computer Vision (ECCV), volume 3, pages 368–379,
Prague, Czech Republic.

Armstrong and Zisserman, 1995. Armstrong, M. and Zisserman, A. (1995). Robust
Object Tracking. In Asian Conference on Computer Vision (ACCV), volume 1,
pages 58–61, Singapore.

Asfour et al., 2008. Asfour, T., Azad, P., Gyarfas, F., and Dillmann, R. (2008).
Imitation Learning of Dual-Arm Manipulation Tasks in Humanoid Robots. Inter-
national Journal of Humanoid Robotics (IJHR).

Asfour et al., 2006. Asfour, T., Regenstein, K., Azad, P., Schröder, J., Vahrenkamp,
N., and Dillmann, R. (2006). ARMAR-III: An Integrated Humanoid Platform for
Sensory-Motor Control. In IEEE/RAS International Conference on Humanoid
Robots (Humanoids), pages 169–175, Genova, Italy.

Atkeson and Schaal, 1997. Atkeson, C. G. and Schaal, S. (1997). Robot Learning
From Demonstration. In International Conference on Machine Learning (ICML),
pages 12–20, Nashville, USA.

Azad et al., 2006a. Azad, P., Asfour, T., and Dillmann, R. (2006a). Combining
Apperance-based and Model-based Methods for Real-Time Object Recognition
and 6D Localization. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5339–5344, Beijing, China.

Azad et al., 2007a. Azad, P., Asfour, T., and Dillmann, R. (2007a). Stereo-based 6D
Object Localization for Grasping with Humanoid Robot Systems. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 919–
924, San Diego, USA.

258 References

Azad et al., 2007b. Azad, P., Asfour, T., and Dillmann, R. (2007b). Toward an
Unified Representation for Imitation of Human Motion on Humanoids. In IEEE
International Conference on Robotics and Automation (ICRA), pages 2558–2563,
Roma, Italy.

Azad et al., 2008. Azad, P., Gockel, T., and Dillmann, R. (2008). Computer Vision
– Principles and Practice. Elektor International Media BV, Netherlands.

Azad et al., 2006b. Azad, P., Ude, A., Asfour, T., Cheng, G., and Dillmann, R.
(2006b). Image-based Markerless 3D Human Motion Capture using Multiple Cues.
In International Workshop on Vision Based Human-Robot Interaction, Palermo,
Italy.

Azad et al., 2007c. Azad, P., Ude, A., Asfour, T., and Dillmann, R. (2007c). Stereo-
based Markerless Human Motion Capture for Humanoid Robot Systems. In IEEE
International Conference on Robotics and Automation (ICRA), pages 3951–3956,
Roma, Italy.

Azad et al., 2004. Azad, P., Ude, A., Dillmann, R., and Cheng, G. (2004). A Full
Body Human Motion Capture System using Particle Filtering and On-The-Fly
Edge Detection. In IEEE/RAS International Conference on Humanoid Robots
(Humanoids), pages 941–959, Santa Monica, USA.

Ballard, 1981. Ballard, D. H. (1981). Generalizing the Hough Transform to Detect
Arbitrary Shapes. Pattern Recognition, 13(2):111–122.

Bando et al., 2004. Bando, T., Shibata, T., Doya, K., and Ishii, S. (2004). Switching
Particle Filter for Efficient Real-Time Visual Tracking. In International Confer-
ence on Pattern Recognition (ICPR), pages 720–723, Cambridge, UK.

Baumberg, 2000. Baumberg, A. (2000). Reliable Feature Matching Across Widely
Separated Views. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1774–1781, Hilton Head, USA.

Bay et al., 2006. Bay, H., Tuytelaars, T., and Gool, L. Van (2006). SURF: Speeded
Up Robust Features. In European Conference on Computer Vision (ECCV), pages
404–417, Graz, Austria.

Becher et al., 2006. Becher, R., Steinhaus, P., Zöllner, R., and Dillmann, R. (2006).
Design and Implementation of an Interactive Object Modelling System. In
Robotik/ISR, Munich, Germany.

Beis and Lowe, 1997. Beis, J. S. and Lowe, D. G. (1997). Shape Indexing Using Ap-
proximate Nearest-Neighbour Search in High-Dimensional Spaces. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1000–1006, San Juan, Puerto Rico.

Belongie et al., 2001. Belongie, S., Malik, J., and Puzicha, J. (2001). Matching
Shapes. In IEEE International Conference on Computer Vision (ICCV), pages
454–463, Vancouver, Canada.

Belongie et al., 2002. Belongie, S., Malik, J., and Puzicha, J. (2002). Shape Match-
ing and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 24(4):509–522.

Ben-Israel and Greville, 2003. Ben-Israel, A. and Greville, T. N. E. (2003). Gener-
alized Inverses. Springer, 2nd edition.

Besl and McKay, 1992. Besl, P. J. and McKay, N. D. (1992). A Method for Reg-
istration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 14(2):239–256.

Beth et al., 2003. Beth, T., Boesnach, I., Haimerl, M., Moldenhauer, J., Bös, K.,
and Wank, V. (2003). Characteristics in Human Motion – From Acquisition

References 259

to Analysis. In IEEE/RAS International Conference on Humanoid Robots (Hu-
manoids), Karlsruhe/Munich, Germany.

Billard et al., 2004. Billard, A., Epars, Y., Calinon, S., Schaal, S., and Cheng, G.
(2004). Discovering optimal imitation strategies. Robotics and Autonomous Sys-
tems, 47(2–3):69–77.

Billard and Siegwart, 2004. Billard, A. and Siegwart, R. (2004). Robot Learning
from Demonstration. Robotics and Autonomous Systems, 47(2–3):65–67.

Björkman and Kragic, 2004. Björkman, M. and Kragic, D. (2004). Combination
of Foveal and Peripheral Vision for Object Recognition and Pose Estimation. In
IEEE International Conference on Robotics and Automation (ICRA), volume 5,
pages 5135–5140, New Orleans, USA.

Bouthemy, 1989. Bouthemy, P. (1989). A Maximum Likelihood Framework for De-
termining Moving Edges. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 11(5):499–511.

Bregler and Malik, 1998. Bregler, C. and Malik, J. (1998). Tracking People with
Twists and Exponential Maps. In IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 8–15, Santa Barbara, USA.

Calinon et al., 2005. Calinon, S., Guenter, F., and Billard, A. (2005). Goal-Directed
Imitation in a Humanoid Robot. In IEEE International Conference on Robotics
and Automation (ICRA), pages 299–304, Barcelona, Spain.

Casella and Robert, 1996. Casella, G. and Robert, C. P. (1996). Rao-
Blackwellisation of Sampling Schemes. Biometrika, 83(1):81–94.

Cham and Rehg, 1999. Cham, T.-J. and Rehg, J. M. (1999). A Multiple Hypothesis
Approach to Figure Tracking. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), volume 2, pages 2239–2245, Fort Collins,
USA.

Chang and Krumm, 1999. Chang, P. and Krumm, J. (1999). Object Recognition
with Color Cooccurrence Histograms. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), volume 2, pages 2498–2504,
Fort Collins, USA.

Cohen and Li, 2003. Cohen, I. and Li, H. (2003). Inference of Human Postures by
Classification of 3D Human Body Shape. In International Conference on Analysis
and Modeling of Faces and Gestures (AMFG), pages 74–81, Nice, France.

Curio and Giese, 2005. Curio, C. and Giese, M. A. (2005). Combining View-Based
and Model-Based Tracking of Articulated Human Movements. In Workshop on
Motion and Video Computing (WMVC), pages 261–268, Breckenridge, USA.

de Campos et al., 2006. de Campos, T. E., Tordoff, B. J., and Murray, D. W. (2006).
Recovering Articulated Pose: A Comparison of Two Pre and Postimposed Con-
straint Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 28(1):163–168.

DeMenthon and Davis, 1992. DeMenthon, D. F. and Davis, L. S. (1992). Model-
Based Object Pose in 25 Lines of Code. In European Conference on Computer
Vision (ECCV), pages 123–141, Santa Margherita Ligure, Italy.

DeMenthon and Davis, 1995. DeMenthon, D. F. and Davis, L. S. (1995). Model-
Based Object Pose in 25 Lines of Code. International Journal of Computer Vision
(IJCV), 15(1-2):335–343.

Demirdjian et al., 2003. Demirdjian, D., Ko, T., and Darrell, T. (2003). Constrain-
ing Human Body Tracking. In IEEE International Conference on Computer Vision
(ICCV), pages 1071–1078, Nice, France.

260 References

Dempster et al., 1977. Dempster, A. P., Laird, N. M., and Rubing, D. B. (1977).
Maximum Likelihood from Incomplete Data via the EM algorithm. Journal of the
Royal Statistical Society, 39:1–38.

Denton et al., 2004. Denton, T., Demirci, M. F., Abrahamson, J., Shokoufandeh,
A., and Dickinson, S. (2004). Selecting Canonical Views for View-based 3-D Object
Recognition. In International Conference on Pattern Recognition (ICPR), pages
273–276, Cambridge, UK.

Deutscher et al., 2000. Deutscher, J., Blake, A., and Reid, I. (2000). Articulated
Body Motion Capture by Annealed Particle Filtering. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2126–
2133, Hilton Head, USA.

Deutscher et al., 2001. Deutscher, J., Davison, A., and Reid, I. (2001). Automatic
Partitioning of High Dimensional Search Spaces associated with Articulated Body
Motion Capture. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 669–676, Kauai, USA.

Deutscher et al., 1999. Deutscher, J., North, B., Bascle, B., and Blake, A. (1999).
Tracking through singularities and discontinuities by random sampling. In IEEE
International Conference on Computer Vision (ICCV), pages 1144–1149, Kerkyra,
Greece.

Dillmann, 2004. Dillmann, R. (2004). Teaching and Learning of Robot Tasks via
Observation of Human Performance. Robotics and Autonomous Systems, 47(2–
3):109–116.

Do et al., 2008. Do, M., Azad, P., Asfour, T., and Dillmann, R. (2008). Imita-
tion of Human Motion on a Humanoid Robot using Nonlinear Optimization. In
IEEE/RAS International Conference on Humanoid Robots (Humanoids), Daejeon,
Korea.

Doucet et al., 2000. Doucet, A., de Freitas, N., Murphy, K. P., and Russell, S. J.
(2000). Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. In
Conference on Uncertainty in Artificial Intelligence (UAI), pages 176–183, Stan-
ford, USA.

Duda and Hart, 1973. Duda, R. O. and Hart, P. E. (1973). Pattern Classification
and Scene Analysis. John Wiley & Sons.

Ekvall et al., 2003. Ekvall, S., Hoffmann, F., and Kragic, D. (2003). Object Recog-
nition and Pose Estimation for Robotic Manipulation using Color Cooccurrence
Histograms. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 2, pages 1284–1289, Las Vegas, USA.

Evans, 1990. Evans, R. (1990). Filtering of Pose Estimates generated by the RAPiD
Tracker in Applications. In British Machine Vision Conference (BMVC), pages
79–84, Oxford, UK.

Faugeras et al., 1993. Faugeras, O., Hotz, B., Mathieu, H., Viéville, T., Zhang, Z.,
Fua, P., Théron, E., Moll, L., Berry, G., Vuillemin, J., Bertin, P., and Proy, C.
(1993). Real-time Correlation-based Stereo : Algorithm, Implementations and
Applications. Technical Report 2013, INRIA.

Fischler and Bolles, 1981. Fischler, M. A. and Bolles, R. C. (1981). Random Sample
Consensus: A Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartography. Communications of the ACM, 24:381–395.

Fontmarty et al., 2007. Fontmarty, M., Lerasle, F., and Danes, P. (2007). Data Fu-
sion within a modified Annealed Particle Filter dedicated to Human Motion Cap-
ture. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3391–3396, San Diego, USA.

References 261

Freeman and Adelson, 1991. Freeman, W. and Adelson, E. (1991). The Design and
Use of Steerable Filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 13(9):891–906.

Freund and Schapire, 1995. Freund, Y. and Schapire, R. E. (1995). A Decision-
Theoretic Generalization of On-Line Learning and an Application to Boosting.
In European Conference on Computational Learning Theory (EuroCOLT), pages
23–37, Barcelona, Spain.

Gavrila and Davis, 1996. Gavrila, D. and Davis, L. (1996). 3-D Model-based track-
ing of humans in action: a multi-view approach. In IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 73–80, San
Francisco, USA.

Gockel, 2006. Gockel, T. (2006). Interaktive 3D-Modellerfassung mittels One-Shot-
Musterprojektion und Schneller Registrierung. PhD thesis, University of Karlsruhe
(TH), Karlsruhe, Germany.

Gool et al., 1996. Gool, L. Van, Moons, T., and Ungureanu, D. (1996). Affine /
Photometric Invariants for Planar Intensity Patterns. In European Conference on
Computer Vision (ECCV), volume 1, pages 642–651, Cambridge, UK.

Grest et al., 2005. Grest, D., , Woetzel, J., and Koch, R. (2005). Nonlinear
Body Pose Estimation from Depth Images. Lecture Notes in Computer Science,
3663:285–292.

Grest et al., 2006. Grest, D., Herzog, D., and Koch, R. (2006). Monocular Body
Pose Estimation by Color Histograms and Point Tracking. In DAGM-Symposium,
pages 576–586, Berlin, Germany.

Group, 2008. Group, Humanoid Animation Working (2008). H-anim 1.1 specifica-
tion. http://h-anim.org.

Harris, 1992. Harris, C. G. (1992). Tracking with Rigid Models. Active Vision,
pages 59–73.

Harris and Stennett, 1990. Harris, C. G. and Stennett, C. (1990). 3D object track-
ing at video rate – RAPiD. In British Machine Vision Conference (BMVC), pages
73–78, Oxford, UK.

Harris and Stephens, 1988. Harris, C. G. and Stephens, M. J. (1988). A Combined
Corner and Edge Detector. In Alvey Vision Conference, pages 147–151, Manch-
ester, UK.

Hartley and Zisserman, 2004. Hartley, R. and Zisserman, A. (2004). Multiple View
Geometry in Computer Vision. Cambridge University Press, 2nd edition.

Horn, 1987. Horn, B. K. P. (1987). Closed-form Solution of Absolute Orientation
using Unit Quaternions. Journal of the Optical Society of America, 4(4):629–642.

Hough, 1962. Hough, P. (1962). Methods and means for recognising complex pat-
terns. United States Patent 3 069 654.

Hu, 1962. Hu, M. K. (1962). Visual Pattern Recognition. IEEE Transactions on
Information Theory, 8(2):179–187.

Huber, 1981. Huber, P. (1981). Robust Statistics. John Wiley & Sons.
Isard and Blake, 1996. Isard, M. and Blake, A. (1996). Contour Tracking by

Stochastic Propagation of Conditional Density. In European Conference on Com-
puter Vision (ECCV), pages 343–356, Cambridge, UK.

Isard and Blake, 1998. Isard, M. and Blake, A. (1998). Condensation – Conditional
Density Propagation for Visual Tracking. International Journal of Computer Vi-
sion (IJCV), 29(1):5–28.

http://h-anim.org

262 References

Johnson, 1997. Johnson, A. E. (1997). Spin-Images: A Representation for 3-D Sur-
face Matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pitts-
burgh, USA.

Johnson and Hebert, 1998a. Johnson, A. E. and Hebert, M. (1998a). Control of
Polygonal Mesh Resolution for 3-D Computer Vision. Graphical Models and Image
Processing, 60(4):261–285.

Johnson and Hebert, 1998b. Johnson, A. E. and Hebert, M. (1998b). Efficient Mul-
tiple Model Recognition in Cluttered 3-D Scenes. In IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 671–677,
Santa Barbara, USA.

Johnson and Hebert, 1999. Johnson, A. E. and Hebert, M. (1999). Using Spin Im-
ages for Efficient Object Recognition in Cluttered 3D Scenes. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 21(5):433–449.

Julier, 2002. Julier, S. J. (2002). The Scaled Unscented Transformation. In Amer-
ican Control Conference (ACC), volume 6, pages 4555–4559, Anchorage, USA.

Julier and Uhlmann, 1997. Julier, S. J. and Uhlmann, J. K. (1997). A New Exten-
sion of the Kalman Filter to Nonlinear Systems. In International Symposium on
Aerospace/Defense Sensing, Simulation and Controls, Orlando, Florida.

Kehl et al., 2005. Kehl, R., Bray, M., and Gool, L. J. Van (2005). Full Body Track-
ing from Multiple Views Using Stochastic Sampling. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition (CVPR), volume 2,
pages 129–136, San Diego, USA.

Khotanzad and Hong, 1990. Khotanzad, A. and Hong, Y. H. (1990). Invariant Im-
age Recognition by Zernike Moments. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 12(5):489–497.

Klein and Murray, 2006. Klein, G. and Murray, D. (2006). Full-3D Edge Tracking
with a Particle Filter. In British Machine Vision Conference (BMVC), volume 3,
pages 1119–1128, Edinburgh, UK.

Knoop et al., 2005. Knoop, S., Vacek, S., and Dillmann, R. (2005). Modeling Joint
Constraints for an Articulated 3D Human Body Model with Artificial Correspon-
dences in ICP. In IEEE/RAS International Conference on Humanoid Robots
(Humanoids), Tsukuba, Japan.

Knoop et al., 2006. Knoop, S., Vacek, S., and Dillmann, R. (2006). Sensor Fusion
for 3D Human Body Tracking with an Articulated 3D Body Model. In IEEE
International Conference on Robotics and Automation (ICRA), pages 1686–1691,
Orlando, USA.

Koenderink and van Doorn, 1987. Koenderink, J. J. and van Doorn, A. J. (1987).
Representation of Local Geometry in the Visual System. Biological Cybernetics,
55:367–375.

Kragic et al., 2001. Kragic, D., Miller, A. T., and Allen, P. K. (2001). Real-time
Tracking meets Online Grasp Planning. In IEEE International Conference on
Robotics and Automation (ICRA), pages 2460–2465, Seoul, Republic of Korea.

Kuniyoshi et al., 1994. Kuniyoshi, Y., Inaba, M., and Inoue, H. (1994). Learning
By Watching: Extracting Reusable Task Knowledge From Visual Observation Of
Human Performance. IEEE Transactions on Robotics and Automation, 10(6):799–
822.

Laganiere et al., 2006. Laganiere, R., Gilbert, S., and Roth, G. (2006). Robust
Object Pose Estimation from Feature-Based Stereo. IEEE Transactions on In-
strumentation and Measurement, 55(4):1270–1280.

References 263

Lamdan et al., 1988. Lamdan, Y., Schwartz, J. T., and Wolfson, J. H. (1988). Ob-
ject Recognition by Affine Invariant Matching. In IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 335–344, Ann
Arbor, USA.

Lamdan et al., 1990. Lamdan, Y., Schwartz, J. T., and Wolfson, J. H. (1990). Affine
Invariant Model-based Object Recognition. IEEE Transactions on Robotics and
Automation, 6(5):578–589.

Lamdan and Wolfson, 1988. Lamdan, Y. and Wolfson, J. H. (1988). Geometric
Hashing: A General and Efficient Model-based Recognition Scheme. In IEEE
International Conference on Computer Vision (ICCV), pages 238–249, Tampa,
USA.

Laurentini, 1994. Laurentini, A. (1994). The Visual Hull Concept for Silhouette-
Based Image Understanding. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 16(2):150–162.

Lepetit and Fua, 2005. Lepetit, V. and Fua, P. (2005). Monocular-Based 3D Track-
ing of Rigid Objects. now publishers Inc.

Lepetit et al., 2004. Lepetit, V., Pilet, J., and Fua, P. (2004). Point Matching
as a Classification Problem for Fast and Robust Object Pose Estimation. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), volume 2, pages 244–250, Washington, DC, USA.

Lepetit et al., 2003. Lepetit, V., Vacchetti, L., Thalmann, D., and Fua, P. (2003).
Fully Automated and Stable Registration for Augmented Reality Applications.
In International Symposium on Mixed and Augmented Reality (ISMAR), pages
93–102, Tokyo, Japan.

Lowe, 1985. Lowe, D. G. (1985). Perceptual Organization and Visual Recogntion.
Kluwer Academic Publishers.

Lowe, 1987. Lowe, D. G. (1987). Three-Dimensional Object Recognition from Single
Two-Dimensional Images. Artificial Intelligence, 31(3):355–395.

Lowe, 1992. Lowe, D. G. (1992). Robust Model-based Motion Tracking through the
Integration of Search and Estimation. International Journal of Computer Vision
(IJCV), 8(2):113–122.

Lowe, 1999. Lowe, D. G. (1999). Object Recognition from Local Scale-Invariant
Features. In IEEE International Conference on Computer Vision (ICCV), pages
1150–1517, Kerkyra, Greece.

Lowe, 2004. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant
Keypoints. International Journal of Computer Vision (IJCV), 60(2):91–110.

Lu et al., 2000. Lu, C.-P., Hager, G. D., and Mjolsness, E. (2000). Fast and Globally
Convergent Pose Estimation from Video Images. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 22(6):610–622.

Lucas and Kanade, 1981. Lucas, B. D. and Kanade, T. (1981). An Iterative Image
Registration Technique with an Application to Stereo Vision. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 674–679, Vancouver,
Canada.

MacCormick, 2000. MacCormick, J. (2000). Probabilistic models and stochastic al-
gorithms for visual tracking. PhD thesis, University of Oxford, UK.

MacCormick and Isard, 2000. MacCormick, J. and Isard, M. (2000). Partitioned
sampling, articulated objects, and interface-quality hand tracking. In European
Conference on Computer Vision (ECCV), pages 3–19, Dublin, Ireland.

264 References

Marchand et al., 1999. Marchand, E., Bouthemy, P., Chaumette, F., and Moreau,
V. (1999). Robust Real-Time Visual Tracking using a 2D-3D Model-based Ap-
proach. In IEEE International Conference on Computer Vision (ICCV), pages
262–268, Kerkyra, Greece.

Mashor et al., 2004. Mashor, M. Y., Osman, M. K., and Arshad, M. R. (2004).
3D Object Recognition Using 2D Moments and HMLP Network. In International
Conference on Computer Graphics, Imaging and Visualization (CGIV), pages 126–
130, Penang, Malaysia.

Matas et al., 2002. Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Ro-
bust Wide Baseline Stereo from Maximally Stable Extremal Regions. In British
Machine Vision Conference (BMVC), volume 1, pages 384–393, London, UK.

Mesa Imaging, 2008. Mesa Imaging (2008). SwissRanger.
http://www.mesa-imaging.ch.

Mian et al., 2006. Mian, A. S., Bennamoun, M., and Owens, R. (2006). Three-
Dimensional Model-Based Object Recognition and Segmentation in Cluttered
Scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
28(10):1584–1601.

Mikolajczyk and Schmid, 2003. Mikolajczyk, K. and Schmid, C. (2003). A Perfor-
mance Evaluation of Local Descriptors. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), volume 2, pages 257–263,
Madison, USA.

Mikolajczyk and Schmid, 2004. Mikolajczyk, K. and Schmid, C. (2004). Scale &
Affine Invariant Interest Point Detectors. International Journal of Computer Vi-
sion (IJCV), 60(1):63–86.

Moeslund and Granum, 2001. Moeslund, T. B. and Granum, E. (2001). A Survey
of Computer Vision-Based Human Motion Capture. Computer Vision and Image
Understanding, 81(3):231–268.

Moeslund et al., 2006. Moeslund, T. B., Hilton, A., and Krüger, V. (2006). A Sur-
vey of of Advancaes in Vision-Based Human Motion Capture and Analysis. Com-
puter Vision and Image Understanding, 104(2):90–126.

Morales et al., 2006. Morales, A., Asfour, T., Azad, P., Knoop, S., and Dillmann,
R. (2006). Integrated Grasp Planning and Visual Object Localization For a Hu-
manoid Robot with Five-Fingered Hands. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5663–5668, Beijing, China.

Mori and Malik, 2002. Mori, G. and Malik, J. (2002). Estimating Human Body
Configurations using Shape Context Matching. In European Conference on Com-
puter Vision (ECCV), pages 666–680, Copenhagen, Denmark.

Mori and Malik, 2006. Mori, G. and Malik, J. (2006). Recovering 3D Human Body
Configurations using Shape Contexts. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 28(7):1052–1062.

Mulligan, 2005. Mulligan, J. (2005). Upper Body Pose Estimation from Stereo and
Hand-face Tracking. In Canadian Conference on Computer and Robot Vision
(CRV), pages 413–420, Victoria, BC, Canada.

Murase and Nayar, 1993. Murase, H. and Nayar, S. K. (1993). Learning and Recog-
nition of 3D Objects from Appearance. In Workshop on Qualitative Vision, pages
39–50, New York City, USA.

Murphy-Chutorian and Triesch, 2005. Murphy-Chutorian, E. and Triesch, J.
(2005). Shared features for Scalable Appearance-based Object Recognition. In
Workshop on Applications of Computer Vision (WACV), pages 16–21, Brecken-
ridge, USA.

References 265

Nayar et al., 1996. Nayar, S. K., Nene, S. A., and Murase, H. (1996). Real-time 100
Object Recognition System. In IEEE International Conference on Robotics and
Automation (ICRA), volume 3, pages 2321–2325, Minneapolis, USA.

Nene and Nayar, 1996. Nene, S. A. and Nayar, S. K. (1996). Closest Point Search
in High Dimensions. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), pages 859–865, San Francisco, USA.

Obdrzalek and Matas, 2002. Obdrzalek, S. and Matas, J. (2002). Object Recog-
nition using Local Affine Frames on Distinguished Regions. In British Machine
Vision Conference (BMVC), volume 1, pages 113–122, Cardiff, UK.

Oberkampf et al., 1993. Oberkampf, D., DeMenthon, D. F., and Davis, L. S. (1993).
Iterative Pose Estimation Using Coplanar Points. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 626–
627, New York City, USA.

Oberkampf et al., 1996. Oberkampf, D., DeMenthon, D. F., and Davis, L. S. (1996).
Iterative Pose Estimation Using Coplanar Points. Computer Vision and Image
Understanding, 63:495–511.

Odobez and Bouthemy, 1995. Odobez, J.-M. and Bouthemy, P. (1995). Robust
Multiresolution Estimation of Parametric Motion Models. Journal of Visual Com-
munication and Image Representation, 6(4):348–365.

Ogawara et al., 2003. Ogawara, K., Takamatsu, J., Hashimoto, K., and Ikeuchi, K.
(2003). Grasp Recognition using a 3D articulated model and infrared images. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Las Vegas, USA.

Ogawara et al., 2007. Ogawara, K., Xiaolu, L., and Ikeuchi, K. (2007). Marker-less
Human Motion Estimation using Articulated Deformable Model. In IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 46–51, Roma,
Italy.

Palmer et al., 1981. Palmer, S. E., Rosch, E., and Chase, P. (1981). Canonical
Perspective and the Perception of Objects. In Attention and Performance IX,
pages 135–151.

Piccardi, 2004. Piccardi, M. (2004). Background Subtraction Techniques: A Review.
In IEEE International Conference on Systems, Man and Cybernetics (SMC), pages
3099–3104, The Hague, Netherlands.

Pitt and Shepard, 1999. Pitt, M. K. and Shepard, N. (1999). Filtering via Simula-
tion: Auxiliary Particle Filters. Journal of the American Statistical Association,
94(446):590–599.

Press et al., 2007. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery,
B. P. (2007). Numerical Recipes. Cambridge University Press, 3rd edition.

Rockett, 2003. Rockett, P. I. (2003). Performance Assessment of Feature Detec-
tion Algorithms: A Methodology and Case Study on Corner Detectors. IEEE
Transactions on Image Processing, 12(12):1668–1676.

Rohr, 1997. Rohr, K. (1997). Human Movement Analysis based on Explicit Motion
Models. Motion-Based Recognition, pages 171–198.

Schaal, 1999. Schaal, S. (1999). Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences, 3(6):233–242.

Schaal et al., 2003. Schaal, S., Ijspeert, A., and Billard, A. (2003). Computational
Approaches to Motor Learning by Imitation. Philosophical Transactions of the
Royal Society of London: Series B, Biological Science, 358(1431):537–547.

266 References

Schaffalitzky and Zisserman, 2002. Schaffalitzky, F. and Zisserman, A. (2002).
Multi-view matching for unordered image sets. In European Conference on Com-
puter Vision (ECCV), pages 414–431, Copenhagen, Denmark.

Schiffenbauer, 2001. Schiffenbauer, R. D. (2001). A Survey of Aspect Graphs. Tech-
nical Report TR-CIS-2001-01, Polytechnic University, New York City, USA.

Schmid and Mohr, 1997. Schmid, C. and Mohr, R. (1997). Local Grayvalue Invari-
ants for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 19(5):530–535.

Schmid et al., 1998. Schmid, C., Mohr, R., and Bauckhage, C. (1998). Comparing
and Evaluating Interest Points. In IEEE International Conference on Computer
Vision (ICCV), pages 230–235, Bombay, India.

Sedgewick, 1988. Sedgewick, R. (1988). Algorithms. Addison-Wesley, 2nd edition.
Shi and Tomasi, 1994. Shi, J. and Tomasi, C. (1994). Good Features to Track. In

IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 593–600, Seattle, USA.

Sidenbladh, 2001. Sidenbladh, H. (2001). Probabilistic Tracking and Reconstruction
of 3D Human Motion in Monocular Video Sequences. PhD thesis, Royal Institute
of Technology, Stockholm, Sweden.

Sidenbladh et al., 2002. Sidenbladh, H., Black, M. J., and Sigal, L. (2002). Implicit
Probabilistic Mdoels of Human Motion for Synthesis and Tracking. In European
Conference on Computer Vision (ECCV), pages 784–800, Copenhagen, Denmark.

Smith, 2002. Smith, L. I. (2002). A Tutorial on Principal Component Analysis.
Soechting and Flanders, 1989a. Soechting, J. F. and Flanders, M. (1989a). Errors in

Pointing are Due to Approximations in Targets in Sensorimotor Transformations.
Journal of Neurophysiology, 62(2):595–608.

Soechting and Flanders, 1989b. Soechting, J. F. and Flanders, M. (1989b). Sen-
sorimotor Representations for Pointing to Targets in Three-Dimensional Space.
Journal of Neurophysiology, 62(2):582–594.

Sullivan and Carlsson, 2002. Sullivan, J. and Carlsson, S. (2002). Recognizing and
Tracking Human Action. In European Conference on Computer Vision (ECCV),
pages 629–644, Copenhagen, Denmark.

Swain and Ballard, 1991. Swain, M. J. and Ballard, D. H. (1991). Color Indexing.
International Journal of Computer Vision (IJCV), 7(1):11–32.

Taylor, 2000. Taylor, C. J. (2000). Reconstruction of Articulated Objects from
Point Correspondences in a Single Uncalibrated Image. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 677–684,
Hilton Head, USA.

Taylor, 2004. Taylor, G. (2004). Robust Perception and Control for Humanoid
Robots in Unstructured Environments Using Vision. PhD thesis, Monash Uni-
versity, Clayton, Australia.

Taylor and Kleeman, 2003. Taylor, G. and Kleeman, L. (2003). Fusion of Multi-
modal Visual Cues for Model-Based Object Tracking. In Australasian Conference
on Robotics and Automation (ACRA), Brisbane, Australia.

Tomasi and Kanade, 1991a. Tomasi, C. and Kanade, T. (1991a). Detection and
Tracking of Point Features. Technical Report CMU-CS-91-132, Carnegie Mellon
University, Pittsburgh, USA.

Tomasi and Kanade, 1991b. Tomasi, C. and Kanade, T. (1991b). Detection and
Tracking of Point Features. Technical Report CMU-CS-91-132, Carnegie Mellon
University, Pittsburgh, USA.

References 267

Triesch and von der Malsburg, 2001. Triesch, J. and von der Malsburg, C. (2001).
Democratic Integration: Self-Organized Integration of Adaptive Cues. Neural
Computation, 13(9):2049–2074.

Turk and Pentland, 1991. Turk, M. A. and Pentland, A. P. (1991). Face Recognition
using Eigenfaces. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 586–591, Maui, USA.

Tuytelaars and Gool, 2000. Tuytelaars, T. and Gool, L. Van (2000). Wide Baseline
Stereo Matching based on Local, Affinely Invariant Regions. In British Machine
Vision Conference (BMVC), Bristol, UK.

Ude et al., 2006. Ude, A., Gaskett, C., and Cheng, G. (2006). Foveated Vision
Systems with two Cameras per Eye. In IEEE International Conference on Robotics
and Automation (ICRA), pages 3457–3462, Orlando, USA.

Vahrenkamp et al., 2008. Vahrenkamp, N., Wieland, S., Azad, P., Gonzalez, D., As-
four, T., and Dillmann, R. (2008). Visual Servoing for Humanoid Grasping and
Manipulation Tasks. In IEEE/RAS International Conference on Humanoid Robots
(Humanoids), Daejeon, Korea.

Viola and Jones, 2001. Viola, P. and Jones, M. (2001). Robust Real-time Object
Detection. In International Workshop on Statistical and Computational Theories
of Vision – Modeling, Learning, Computing, and Sampling, Vancouver, Canada.

Wachter and Nagel, 1999. Wachter, S. and Nagel, H.-H. (1999). Tracking Persons
in Monocular Image Sequences. Computer Vision and Image Understanding,
74(3):174–192.

Weinshall and Werman, 1997. Weinshall, D. and Werman, M. (1997). On View
Likelihood and Stability. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 19(2):97–108.

Wheeler and Ikeuchi, 1995. Wheeler, M. D. and Ikeuchi, K. (1995). Sensor Mod-
eling, Probabilistic Hypothesis Generation, and Robust Localization for Object
Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 17(3):252–265.

Wolfson and Rigoutsos, 1997. Wolfson, H. J. and Rigoutsos, I. (1997). Geometric
Hashing: An Overview. IEEE Computational Science and Engineering, 4(4):10–21.

Wong and Spetsakis, 2002. Wong, K. and Spetsakis, M. (2002). Motion Segmenta-
tion and Tracking. In International Conference on Vision Interface, pages 80–87,
Calgary, Canada.

Yang et al., 2002. Yang, M.-H., Kriegman, D.J., and Ahuja, N. (2002). Detecting
Facese in Images: A Survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 24(1):34–58.

Zernike, 1934. Zernike, F. (1934). Physica. 1:689.
Zhang, 2000. Zhang, Z. (2000). A Flexible New Technique for Camera Calibra-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
22(11):1330–1334.

Ziegler et al., 2006. Ziegler, J., Nickel, K., and Stiefelhagen, R. (2006). Track-
ing of the Articulated Upper Body on Multi-View Stereo Image Sequences. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 774–781, New York City, USA.

Index

Symbols
3D point cloud . 44
3D primitives . 28
6D pose estimation 2

A
Accuracy

human motion capture 226
shape-based object recognition . . . 202
texture-based object recognition . 212

AdaBoost . 12
Adaptive noise . 174
Adaptive shoulder position 178
Affine transformation.85
Appearance-based approaches

global . 8
local . 16

Appearance-based object recognition . 8
Appearance-based object tracking 8
Auto-calibration. .95
Automatic calibration 95

B
Background subtraction 77
Basis transformation 39
Basis vector . 40
bi-tangent . 25
Bottom-up segmentation 8

C
Calibration matrix 71
Camera calibration 192

distortion parameters 72
extrinsic parameters 72

intrinsic parameters 71
Camera coordinate system.70
Camera mapping functions 75
Camera model . 69
Camera module . 189
CCH . 14
Classes

CByteImage . 188
Color coocurrence histogram 14
Color segmentation.78
Comparison

2D recognition and localization. . . .48
6D pose estimation.49
human motion capture 67

Condensation algorithm 89, 90
Control point . 29
Coordinate systems

camera coordinate system 70
image coordinate system 70
world coordinate system 70

Cornerness matrix17
Correlation . 80
Correlation functions

non-normalized 81
normalized . 81

Covariance matrix 87
Cross-correlation . 81

D
Degree of freedom . 2
Descriptor. .16
Difference of Gaussians 20
Disparity map. 93

270 Index

Distance cue . 156
Distortion model . 73
Distortion parameters 72
DoF. 2
DoG . 20

E
Eager learning methods 66
Edge cue . 153, 156
Edge-based object recognition 36
Edge-based object tracking 28
Eigenspace . 9, 87
Eigenvalue decomposition 87
Error measure . 80
Extrinsic camera parameters 72
Eye movements . 94

F
Feature descriptor 16
Feature matching.17
Feature point calculation 16
Features

Good Features to Track 16
Harris. .16
MSER . 23
Shi-Tomasi .16
SIFT . 20
SURF. .18

Focal length . 71
Frobenius norm . 82

G
Gabor jet . 19
Generalized Hough transform.36
Generalized inverse239
Geometric hashing 39
GHT . 36
Global approaches . 8
Grasp execution . 97
Grayscale correlation 8

H
Hand/head tracking 167
Harris corner detector 16
Homogeneous system. 241
Homography . 84

Least squares computation 85
Hough transform 36, 132
Human motion capture

2D-3D minimization 60
3D-3D minimization 57
adaptive noise 174
adaptive shoulder position 178
basic fusion . 155
distance cue . 156
edge cue . 153, 156
geometric model 151
hand/head tracking 167
ICP. .57
image processing 164
inverse kinematics 179
kinematic model 150
particle filtering 62
particle filtering framework 152
prioritized fusion.172
region cue . 155

Human pose extraction
silhouettes . 64

I
ICP . 57
Image coordinate system 70
Imitation learning 98
Implicit stereo. .94
Integral image .11
Integrating Vision Toolkit 187
Interest point matching 17
Interfaces

human motion capture 200
object recognition and pose

estimation . 199
Intrinsic camera parameters 71
Inverse kinematics.179
Iterative Closest Point.57
IVT. .187

camera calibration 192
camera model . 192
GUI toolkit . 189
implementation of GUIs 189
integration of image sources 189
integration of OpenCV. 190
integration of OpenGL 191

IVT Interfaces
CApplicationHandlerInterface 189
CMainWindowEventInterface 189
CMainWindowInterface 189
CVideoCaptureInterface 189

Index 271

L
LAF . 24
Lazy learning methods 66
Lens distortion . 72

radial . 73
tangential . 73

Linear least squares 240
Local Affine Frames 24
Local approaches . 16

M
Master Motor Map 193
Matching features 17
Maximally Stable Extremal Regions . 23
Minimization method

articulated objects 54
rigid objects . 29

MMM. .193
Model-based

object recognition 28
object tracking . 28

Moments . 9
Moore-Penrose pseudoinverse239
MSER . 23

N
Normal equation 240

O
Object eigenspace . 9
Object recognition

3D point cloud . 44
appearance-based 8
edge-based . 36
hybrid approaches.47
local features. .25
model-based . 28

Object tracking
appearance-based 8
edge-based . 28
model-based . 28
particle filtering 36

octave. .21
Optical tracking system 52

P
Particle filtering . 89

basic fusion . 155
PCA . 86

Perceptual organization 42
Point basis . 40
Pose estimation

2D-3D point correspondences 33
3D point cloud . 44
edge-based tracking 28
local features 25, 43

POSIT . 33
Principal component analysis 86
Principal point . 71
Prioritized fusion.172
Projection matrix 72

inverse . 72
Pseudoinverse . 239

Q
QR decomposition 241

R
R-table. .37
Radial lens distortion.72
RANSAC . 91
RAPiD tracker . 29
Rectangle feature.11
Rectification . 95
Region cue . 155
Rigid object model 28
Runtime

human motion capture 232
shape-based object recognition . . . 211
texture-based object recognition . 224

S
SAD . 81
Scale Invariant Feature Transform . . . 20
Scale space . 20
Scale space analysis 20
Segmentation . 76

background subtraction 77
color . 78
thresholding . 77

Shape context . 65
Shi-Tomasi features 16
SIFT. 20

descriptor . 22
keypoint calculation.20

Similarity measure 80
Similarity transformation 40
Single-colored objects

272 Index

orientation correction 109
pose estimation algorithm. 114
position correction 110
robustness . 114

Singular value decomposition 239
Sparse depth maps 93
Spin image . 44
SSD. 81
Stereo camera system 93
Stereo triangulation 93
Sum of Absolute Differences 81
Sum of Squared Differences.81
Summed area table 11
SURF . 18
SVD . 239

T
Tangential lens distortion.72
Textured objects

feature calculation 127
homography estimation 136
Hough transform.132

Thresholding . 77

U
Undistortion . 74, 96
Universal eigenspace9

V

VICON . 52

View set . 20

Viola-Jones object detector 10

Visual servoing . 97

W

World coordinate system 70

Z

ZCC . 82

Zero mean . 82

Cross Correlation 82

Normalized Cross Correlation 83

Normalized Sum of Absolute
Differences . 83

Normalized Sum of Squared
Differences . 83

Sum of Absolute Differences.82

Sum of Squared Differences 82

ZNCC. .83

ZNSAD . 83

ZNSSD. .83

ZSAD . 82

ZSSD . 82

	Introduction
	Motivation and Objective
	Contribution
	Outline

	State of the Art in Object Recognition and Pose Estimation
	Appearance-based Methods
	Global Approaches
	Grayscale Correlation
	Moments
	The Viola-Jones Object Detector
	Color Coocurrence Histograms

	Local Approaches
	Calculation of Feature Points
	Matching Interest Points
	Scale Invariant Feature Transform (SIFT)
	Maximally Stable Extremal Regions
	Object Recognition and Pose Estimation Frameworks using Local Features

	Model-based Methods
	Edge-based Object Tracking
	RAPiD tracker
	POSIT
	2D-3D Tracking
	Tracking using Particle Filtering

	Edge-based Object Recognition
	Generalized Hough Transform
	Geometric Hashing
	Recognition based on Perceptual Organization

	Pose Estimation based on Matched Feature Points
	Object Recognition based on 3D Point Clouds
	Hybrid Approaches

	Comparison

	State of the Art in Human Motion Capture
	VICON
	Systems using a Search Method
	Systems using a Minimization Method
	Minimization Method for Articulated Objects
	Systems using a 3D-3D Minimization Method
	Systems using a 2D-3D Minimization Method

	Systems based on Particle Filtering
	Pose Estimation based on Silhouettes
	Comparison

	Fundamentals of Image Processing
	Camera Model
	Coordinate Systems
	Intrinsic Camera Parameters of the Linear Mapping
	Extrinsic Camera Parameters
	Distortion Parameters
	Overview

	Segmentation
	Thresholding
	Background Subtraction
	Color Segmentation

	Correlation Methods
	General Definition
	Non-normalized Correlation Functions
	Normalized Correlation Functions

	Homography
	General Definition
	Least Squares Computation of Homography Parameters

	Principal Component Analysis
	Mathematical Definition
	Eigenspace
	Application

	Particle Filtering
	RANSAC

	Guiding Principles
	Ways of using Calibrated Stereo Camera Systems
	Eye Movements
	Rectification of Stereo Image Pairs
	Undistortion of Images
	Grasp Execution
	Imitiation Learning

	Stereo-based Object Recognition and Pose Estimation System
	Recognition and Pose Estimation based on the Shape
	Problem Definition
	Basic Approach
	Region Processing Pipeline
	Recognition
	6D Pose Estimation
	Convenient Acquisition of Training Views

	Orientation Correction
	Position Correction
	Increasing Robustness
	Summary of the Algorithm

	Recognition and Pose Estimation based on Texture
	Accuracy Considerations
	Feature Calculation
	Recognition and 2D Localization
	Hough Transform
	Homography Estimation

	6D Pose Estimation
	Occlusions
	Increasing Robustness
	Runtime Considerations
	Summary of the Algorithm

	Stereo-based Markerless Human Motion Capture System
	Problem Definition
	Human Upper Body Model
	Kinematic Model
	Geometric Model

	General Particle Filtering Framework for Human Motion Capture
	Edge Cue
	Region Cue
	Fusion of Multiple Cues

	Cues in the proposed System
	Edge Cue
	Distance Cue
	Cue Comparison
	Using a Calibrated Stereo System

	Image Processing Pipeline
	Hand/Head Tracking
	Hierarchical Search
	Fusing the Edge Cue and the Distance Cue
	Adaptive Noise
	Adaptive Shoulder Position
	Incorporating Inverse Kinematics
	Summary of the Algorithm

	Software and Interfaces
	Integrating Vision Toolkit
	Implementation
	The Class CByteImage
	Implementation of Graphical User Interfaces
	Connection of Image Sources
	Integration of OpenCV
	Integration of OpenGL
	Camera Calibration and Camera Model

	Master Motor Map
	Specification
	Framework and Converter Modules
	Conversion to the Master Motor Map

	Interfaces
	Object Recognition and Pose Estimation
	Human Motion Capture

	Evaluation
	Recognition and Pose Estimation System based on the Shape
	Accuracy
	Real-world Experiments
	Runtime

	Recognition and Pose Estimation System based on Texture
	Accuracy
	Real-world Experiments
	Runtime

	Markerless Human Motion Capture System
	Automatic Initialization
	Real-world Experiments and Accuracy
	Runtime

	Conclusion
	Contribution
	Example Applications
	Discussion and Outlook

	Mathematics
	Singular Value Decomposition
	Pseudoinverse
	Using the Regular Inverse
	Using the Singular Value Decomposition

	Linear Least Squares
	Using the Normal Equation
	Using the QR Decomposition
	Using the Singular Value Decomposition
	Homogeneous Systems

	Functions for Rotations

	File Formats
	Camera Parameters

	List of Figures
	List of Tables
	List of Algorithms
	References
	Index

