28 research outputs found

    Robot Assisted Shoulder Rehabilitation: Biomechanical Modelling, Design and Performance Evaluation

    Get PDF
    The upper limb rehabilitation robots have made it possible to improve the motor recovery in stroke survivors while reducing the burden on physical therapists. Compared to manual arm training, robot-supported training can be more intensive, of longer duration, repetitive and task-oriented. To be aligned with the most biomechanically complex joint of human body, the shoulder, specific considerations have to be made in the design of robotic shoulder exoskeletons. It is important to assist all shoulder degrees-of-freedom (DOFs) when implementing robotic exoskeletons for rehabilitation purposes to increase the range of motion (ROM) and avoid any joint axes misalignments between the robot and human’s shoulder that cause undesirable interaction forces and discomfort to the user. The main objective of this work is to design a safe and a robotic exoskeleton for shoulder rehabilitation with physiologically correct movements, lightweight modules, self-alignment characteristics and large workspace. To achieve this goal a comprehensive review of the existing shoulder rehabilitation exoskeletons is conducted first to outline their main advantages and disadvantages, drawbacks and limitations. The research has then focused on biomechanics of the human shoulder which is studied in detail using robotic analysis techniques, i.e. the human shoulder is modelled as a mechanism. The coupled constrained structure of the robotic exoskeleton connected to a human shoulder is considered as a hybrid human-robot mechanism to solve the problem of joint axes misalignments. Finally, a real-scale prototype of the robotic shoulder rehabilitation exoskeleton was built to test its operation and its ability for shoulder rehabilitation

    A Wearable Control Interface for Tele-operated Robots

    Get PDF
    Department of Mehcanical EngineeringThis thesis presents a wearable control interface for the intuitive control of tele-operated robots, which aim to overcome the limitations of conventional uni-directional control interfaces. The control interface is composed of a haptic control interface and a tele-operated display system. The haptic control interface can measure user???s motion while providing force feedback. Thus, the user can control a tele-operated robot arm by moving his/her arm in desired configurations while feeling the interaction forces between the robot and the environment. Immersive visual feedback is provided to the user with the tele-operated display system and a predictive display algorithm. An exoskeleton structure was designed as a candidate of the control interface structure considering the workspace and anatomy of the human arm to ensure natural movement. The translational motion of human shoulder joint and the singularity problem of exoskeleton structures were addressed by the tilted and vertically translating shoulder joint. The proposed design was analyzed using forward and inverse kinematics methods. Because the shoulder elevation affects all of the joint angles, the angles were calculated by applying an inverse kinematics method in an iterative manner. The proposed design was tested in experiments with a kinematic prototype. Two force-controllable cable-driven actuation mechanisms were developed for the actuation of haptic control interfaces. The mechanisms were designed to have lightweight and compact structures for high haptic transparency. One mechanism is an asymmetric cable-driven mechanism that can simplify the cable routing structure by replacing a tendon to a linear spring, which act as an antagonistic force source to the other tendon. High performance force control was achieved by a rotary series elastic mechanism and a robust controller, which combine a proportional and differential (PD) controller optimized by a linear quadratic (LQ) method with a disturbance observer (DOB) and a zero phase error tracking (ZPET) feedforward filter. The other actuation mechanism is a series elastic tendon-sheath actuation mechanism. Unlike previously developed tendon-sheath actuation systems, the proposed mechanism can deliver desired force even in multi-DOF systems by modeling and feedforwardly compensating the friction. The pretension change, which can be a significant threat in the safety of tendon-sheath actuation systems, is reduced by adopting series elastic elements on the motor side. Prototypes of the haptic control interfaces were developed with the proposed actuation mechanisms, and tested in the interaction with a virtual environment or a tele-operation experiment. Also, a visual feedback system is developed adopting a head mounted display (HMD) to the control interface. Inspired by a kinematic model of a human head-neck complex, a robot neck-camera system was built to capture the field of view in a desired orientation. To reduce the sickness caused by the time-varying bidirectional communication delay and operation delay of the robot neck, a predictive display algorithm was developed based on the kinematic model of the human and robot neck-camera system, and the geometrical model of a camera. The performance of the developed system was tested by experiments with intentional delays.clos

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Development of an exoskeleton robot for upper-limb rehabilitation

    Get PDF
    To assist or rehabilitate individuals with impaired upper-limb function, we have developed an upper-limb exoskeleton robot, the ETS-MARSE (motion assistive robotic-exoskeleton for superior extremity). The MARSE is comprised of a shoulder motion support part, an elbow and forearm motion support part, and a wrist motion support part. It is designed to be worn on the lateral side of the upper limb in order to provide naturalistic movements of the shoulder (i.e., vertical and horizontal flexion/extension, and internal/external rotation), elbow (i.e., flexion/extension), forearm (i.e., pronation/supination), and wrist joint (i.e., radial/ulnar deviation, and flexion/extension). This thesis focuses on the modeling, design (mechanical and electrical components), development, and control of the developed MARSE. The proposed MARSE was modeled based on the upper-limb biomechanics; it has a relatively low weight, an excellent power/weight ratio, can be easily fitted or removed, and is able to effectively compensate for gravity. Moreover, to avoid complex cable routing that could be found in many exoskeleton systems, a novel power transmission mechanism was introduced for assisting shoulder joint internal/external rotation and for forearm pronation/supination. The exoskeleton was designed for use by typical adults. However, provisions are included for link length adjustments to accommodate a wide range of users. The entire exoskeleton arm was fabricated primarily in aluminum except the high stress joint sections which were fabricated in mild steel to give the exoskeleton structure a relatively light weight. Brushless DC motors (incorporated with Harmonic Drives) were used to actuate the developed MARSE. The kinematic model of the MARSE was developed based on modified Denavit-Hartenberg notations. In dynamic modeling and control, robot parameters such as robot arm link lengths, upper-limb masses, and inertia, are estimated according to the upper limb properties of a typical adult. Though the exoskeleton was developed with the goal of providing different forms of rehab therapy (namely passive arm movements, active-assisted therapy, and resistive therapy), this research concentrated only on passive form of rehabilitation. Passive arm movements and exercises are usually performed slowly compared to the natural speed of arm movement. Therefore, to control the developed MARSE, a computationally inexpensive a PID controller and a PID-based compliance controller were primarily employed. Further, realizing the dynamic modeling of human arm movement which is nonlinear in nature, a nonlinear computed torque control (CTC) and a modified sliding mode exponential reaching law (mSMERL) techniques were employed to control the MARSE. Note that to improve transient tracking performance and to reduce chattering, this thesis proposed the mSMERL, a novel nonlinear control strategy that combined the concept of boundary layer technique and the exponential reaching law. The control architecture was implemented on a field-programmable gate array (FPGA) in conjunction with a RT-PC. In experiments, typical rehabilitation exercises for single and multi joint movements (e.g., reaching) were performed. Experiments were carried out with healthy human subjects where trajectories (i.e., pre-programmed trajectories recommended by therapist/clinician) tracking the form of passive rehabilitation exercises were carried out. This thesis also focused on the development of a 7DoFs upper-limb prototype (lower scaled) ‘master exoskeleton arm’ (mExoArm). Furthermore, experiments were carried out with the mExoArm where subjects (robot users) operate the mExoArm (like a joystick) to maneuver the MARSE to provide passive rehabilitation. Experimental results show that the developed MARSE can effectively perform passive rehabilitation exercises for shoulder, elbow and wrist joint movements. Using mExoArm offers users some flexibility over pre-programmed trajectories selection approach, especially in choosing range of movement and speed of motion. Moreover, the mExoArm could potentially be used to tele-operate the MARSE in providing rehabilitation exercises

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Investigating Ultrasound-Guided Autonomous Assistance during Robotic Minimally Invasive Surgery

    Get PDF
    Despite it being over twenty years since the first introduction of robotic surgical systems in common surgical practice, they are still far from widespread across all healthcare systems, surgical disciplines and procedures. At the same time, the systems that are used act as mere tele-manipulators with motion scaling and have yet to make use of the immense potential of their sensory data in providing autonomous assistance during surgery or perform tasks themselves in a semi-autonomous fashion. Equivalently, the potential of using intracorporeal imaging, particularly Ultrasound (US) during surgery for improved tumour localisation remains largely unused. Aside from the cost factors, this also has to do with the necessity of adequate training for scan interpretation and the difficulty of handling an US probe near the surgical sight. Additionally, the potential for automation that is being explored in extracorporeal US using serial manipulators does not yet translate into ultrasound-enabled autonomous assistance in a surgical robotic setting. Motivated by this research gap, this work explores means to enable autonomous intracorporeal ultrasound in a surgical robotic setting. Based around the the da Vinci Research Kit (dVRK), it first develops a surgical robotics platform that allows for precise evaluation of the robot’s performance using Infrared (IR) tracking technology. Based on this initial work, it then explores the possibility to provide autonomous ultrasound guidance during surgery. Therefore, it develops and assesses means to improve kinematic accuracy despite manipulator backlash as well as enabling adequate probe position with respect to the tissue surface and anatomy. Founded on the acquired anatomical information, this thesis explores the integration of a second robotic arm and its usage for autonomous assistance. Starting with an autonomously acquired tumor scan, the setup is extended and methods devised to enable the autonomous marking of margined tumor boundaries on the tissue surface both in a phantom as well as in an ex-vivo experiment on porcine liver. Moving towards increased autonomy, a novel minimally invasive High Intensity Focused Ultrasound (HIFUS) transducer is integrated into the robotic setup including a sensorised, water-filled membrane for sensing interaction forces with the tissue surface. For this purpose an extensive material characterisation is caried out, exploring different surface material pairings. Finally, the proposed system, including trajectory planning and a hybrid-force position control scheme are evaluated in a benchtop ultrasound phantom trial

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world
    corecore