690 research outputs found

    Subcarrier and Power Allocation for LDS-OFDM System

    Get PDF
    Low Density Signature-Orthogonal Frequency Division Multiplexing (LDS-OFDM) has been introduced recently as an efficient multiple access technique. In this paper, we focus on the subcarrier and power allocation scheme for uplink LDS-OFDM system. Since the resource allocation problem is not convex due to the discrete nature of subcarrier allocation, the complexity of finding the optimal solutions is extremely high. We propose a heuristic subcarrier and power allocation algorithm to maximize the weighted sum-rate. The simulation results show that the proposed algorithm can significantly increase the spectral efficiency of the system. Furthermore, it is shown that LDS-OFDM system can achieve an outage probability much less than that for OFDMA system

    Radio resource allocation for multicarrier-low density spreading multiple access

    Get PDF
    Multicarrier-low density spreading multiple access (MC-LDSMA) is a promising multiple access technique that enables near optimum multiuser detection. In MC-LDSMA, each user’s symbol spread on a small set of subcarriers, and each subcarrier is shared by multiple users. The unique structure of MC-LDSMA makes the radio resource allocation more challenging comparing to some well-known multiple access techniques. In this paper, we study the radio resource allocation for single-cell MC-LDSMA system. Firstly, we consider the single-user case, and derive the optimal power allocation and subcarriers partitioning schemes. Then, by capitalizing on the optimal power allocation of the Gaussian multiple access channel, we provide an optimal solution for MC-LDSMA that maximizes the users’ weighted sum-rate under relaxed constraints. Due to the prohibitive complexity of the optimal solution, suboptimal algorithms are proposed based on the guidelines inferred by the optimal solution. The performance of the proposed algorithms and the effect of subcarrier loading and spreading are evaluated through Monte Carlo simulations. Numerical results show that the proposed algorithms significantly outperform conventional static resource allocation, and MC-LDSMA can improve the system performance in terms of spectral efficiency and fairness in comparison with OFDMA

    A Combined User-order and Chunk-order Algorithm to Minimize The Average BER for Chunk Allocation in SC-FDMA Systems

    Get PDF
    A Chunk by chunk-based allocation is an emerging subcarrier allocation in Single Carrier Frequency Division Multiple Access (SC-FDMA) due to its low complexity. In this paper, a combined user-order  and chunk-order allocation for solving chunk allocation problem which minimizes the average BER of all users while improving the throughput in SC-FDMA uplink is proposed. The subcarrier grouping into a chunk of all users on both-order allocations are performed by averaging the BER of a contiguous subcarriers within a chunk. The sequence of allocation is according to the average of users’ BER on user-order allocation and the average of chunks’ BER on chunk-order allocation. The best allocation is determined by choosing one of both-order allocations which provides the smaller BER systems. The simulation results showed that the proposed algorithm can outperform the previous algorithms in term of  average BER and throughput without increase the time complexity.

    Message passing resource allocation for the uplink of multicarrier systems

    Full text link
    We propose a novel distributed resource allocation scheme for the up-link of a cellular multi-carrier system based on the message passing (MP) algorithm. In the proposed approach each transmitter iteratively sends and receives information messages to/from the base station with the goal of achieving an optimal resource allocation strategy. The exchanged messages are the solution of small distributed allocation problems. To reduce the computational load, the MP problems at the terminals follow a dynamic programming formulation. The advantage of the proposed scheme is that it distributes the computational effort among all the transmitters in the cell and it does not require the presence of a central controller that takes all the decisions. Numerical results show that the proposed approach is an excellent solution to the resource allocation problem for cellular multi-carrier systems.Comment: 6 pages, 4 figure

    Combined-order Algorithm using Promethee Method Approach and Analytic Hierarchy Decision for Chunk Allocation in LTE Uplink Systems

    Get PDF
    The problem of chunk-based resource allocation for the uplink of Long Term Evolution is investigated. In this paper, a combined order using the promethee method and analytic hierarchy decision for chunk allocation algorithm is proposed. The utility of each order is sorted based on promethee method approach so that the utility of each order could be approximated as the average of all criteria on each order. To decide the best allocation, analytic hierarchy process score is assigned to its order based on their decision criteria weighting factor to find the best allocation. Using a particular weighting factor, the proposed algorithms outperform the previous mean greedy algorithms which use user-order allocation in term of spectral efficiency and data rate fairness without increase the time complexity. It also outperform iterative swapping chunk algorithm in term of  data rate fairness

    Utility greedy discrete bit loading for interference limited multi-cell OFDM system

    No full text
    In this contribution we present the solution of the utility greedy discrete bit loading for interference limited multicell OFDM networks. Setting the utility as the sum of consumed power proportions, the algorithm follows greedy way to achieve the maximum throughput of the system. Simulation has shown that the proposed algorithm has better performance and lower complexity than the traditional optimal algorithm. The discussion of the results is provided
    • 

    corecore