29 research outputs found

    A Fibrational Approach to Automata Theory

    Get PDF
    For predual categories C and D we establish isomorphisms between opfibrations representing local varieties of languages in C, local pseudovarieties of D-monoids, and finitely generated profinite D-monoids. The global sections of these opfibrations are shown to correspond to varieties of languages in C, pseudovarieties of D-monoids, and profinite equational theories of D-monoids, respectively. As an application, we obtain a new proof of Eilenberg's variety theorem along with several related results, covering varieties of languages and their coalgebraic modifications, Straubing's C-varieties, fully invariant local varieties, etc., within a single framework

    Semantics of Higher-Order Recursion Schemes

    Full text link
    Higher-order recursion schemes are recursive equations defining new operations from given ones called "terminals". Every such recursion scheme is proved to have a least interpreted semantics in every Scott's model of \lambda-calculus in which the terminals are interpreted as continuous operations. For the uninterpreted semantics based on infinite \lambda-terms we follow the idea of Fiore, Plotkin and Turi and work in the category of sets in context, which are presheaves on the category of finite sets. Fiore et al showed how to capture the type of variable binding in \lambda-calculus by an endofunctor H\lambda and they explained simultaneous substitution of \lambda-terms by proving that the presheaf of \lambda-terms is an initial H\lambda-monoid. Here we work with the presheaf of rational infinite \lambda-terms and prove that this is an initial iterative H\lambda-monoid. We conclude that every guarded higher-order recursion scheme has a unique uninterpreted solution in this monoid

    Proper Functors and Fixed Points for Finite Behaviour

    Full text link
    The rational fixed point of a set functor is well-known to capture the behaviour of finite coalgebras. In this paper we consider functors on algebraic categories. For them the rational fixed point may no longer be fully abstract, i.e. a subcoalgebra of the final coalgebra. Inspired by \'Esik and Maletti's notion of a proper semiring, we introduce the notion of a proper functor. We show that for proper functors the rational fixed point is determined as the colimit of all coalgebras with a free finitely generated algebra as carrier and it is a subcoalgebra of the final coalgebra. Moreover, we prove that a functor is proper if and only if that colimit is a subcoalgebra of the final coalgebra. These results serve as technical tools for soundness and completeness proofs for coalgebraic regular expression calculi, e.g. for weighted automata

    Non-Deterministic Kleene Coalgebras

    Get PDF
    In this paper, we present a systematic way of deriving (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of systems. This generalizes both the results of Kleene (on regular languages and deterministic finite automata) and Milner (on regular behaviours and finite labelled transition systems), and includes many other systems such as Mealy and Moore machines
    corecore