507 research outputs found

    Adaptive Beamforming for Distributed Relay Networks

    Get PDF
    Tremendous research work has been put into the realm of distributed relay networks, for its distinct advantages in exploiting spatial diversity, reducing the deployment cost and mitigating the effect of fading in wireless transmission without the multi-antenna requirement on the relay nodes. In typical relay networks, data transmission between a source and a destination is assisted by relay nodes with various relaying protocols. In this thesis, we investigate how to adaptively select the relay weights to meet specific interference suppressing requirements of the network. The thesis makes original contributions by proposing a filter-and-forward (FF) relay scheme in cognitive radio networks and an iterative algorithm based transceiver beamforming scheme for multi-pair relay networks. In the firstly proposed scheme, the relay nodes are adapted to deal with the inter-symbol-interference (ISI) that is introduced in the frequency-selective channel environment and the leakage interference introduced to the primary user. Our proposed scheme uses FF relay beamforming at the relay nodes to combat the frequency selective channel, and our scheme also aims to maximize the received SINR at the secondary destination, while suppressing the interference introduced to the primary user (PU). This scheme is further extended to accommodate a relay nodes output power constraint. Under certain criteria, the extended scheme can be transformed into two sub-schemes with lower computational complexity, where their closed-form solutions are derived. The probability that we can perform these transformations is also tested, which reveals under what circumstances our second scheme can be solved more easily. Then, we propose an iterative transceiver beamforming scheme for the multi-pair distributed relay networks. In our scheme, we consider multi-antenna users in one user group communicating with their partners in the other user group via distributed single-antenna relay nodes. We employ transceiver beamformers at the user nodes, and through our proposed iterative algorithm the relay nodes and user nodes can be coordinatively adapted to suppress the inter-pair-interference (IPI) while maximize the desired signal power. We also divide the rather difficult transceiver beamforming problem into three sub-problems, each of which can be solved with sub-optimal solutions. The transmit beamforming vectors, distributed relay coefficients and the receive beamforming vectors are obtained by iteratively solving these three sub-problems, each having a closed-form solution. The tasks of maximizing desired signal power, and reducing inter-pair interference (IPI) and noise are thus allocated to different iteration steps. By this arrangement, the transmit and receiver beamformers of each user are responsible for improving its own performance and the distributed relay nodes can be employed with simple amplify-and-forward(AF) protocols and only forward the received signal with proper scalar. This iterative relay beamforming scheme is further extended by distributing the computation tasks among each user and relay node, through which high computational efficiency can be ensured while extra overhead of bandwidth is need for sharing beamforming vector updates during the iteration steps. Furthermore, with respect to the channel uncertainty, two more relay strategies are proposed considering two different requirements from the communication network: sum relay output power and individual relay output power. At last, the application of the iterative relay beamforming method in cognitive radio networks is studied, where multiple pairs of users are considered as secondary users (SUs), and the designed transmit beamforming vector, relay beamforming vector and receive beamforming vector together guarantee that the inner interference of their transmissions is well suppressed while the interference introduced by them to the PU is restricted under a predefined threshold

    Iterative transceiver beamforming of distributed relay networks in cognitive radio networks

    Get PDF
    This paper investigated the transceiver beamforming problem of multi-pair distributed relay network in a cognitive radio (CR) framework. The goal is to support reliable multi-pair transmissions between secondary users (SU) with assistance of a number of relays, while keeping the total leakage interference on the primary user (PU) under a predefined threshold level. Certain iterative algorithm is proposed to decompose the very difficult original problem into three solvable sub-problems, and after certain number of iteration steps, the obtained transceiver beamformers and relay beamformers can form a group of globally sub-optimal solutions that leads to significant performance enhancement of the secondary network while restricting the leakage interference on PU receiver. Two transmission schemes are considered where the first one only constrain the leakage signal power introduced to PU received, and the second one adds a constraint of the total relay output power. At last, we analyzed the condition, under which the later transmission scheme could be simplified with less computational complexity to solve it

    How to Understand LMMSE Transceiver Design for MIMO Systems From Quadratic Matrix Programming

    Full text link
    In this paper, a unified linear minimum mean-square-error (LMMSE) transceiver design framework is investigated, which is suitable for a wide range of wireless systems. The unified design is based on an elegant and powerful mathematical programming technology termed as quadratic matrix programming (QMP). Based on QMP it can be observed that for different wireless systems, there are certain common characteristics which can be exploited to design LMMSE transceivers e.g., the quadratic forms. It is also discovered that evolving from a point-to-point MIMO system to various advanced wireless systems such as multi-cell coordinated systems, multi-user MIMO systems, MIMO cognitive radio systems, amplify-and-forward MIMO relaying systems and so on, the quadratic nature is always kept and the LMMSE transceiver designs can always be carried out via iteratively solving a number of QMP problems. A comprehensive framework on how to solve QMP problems is also given. The work presented in this paper is likely to be the first shoot for the transceiver design for the future ever-changing wireless systems.Comment: 31 pages, 4 figures, Accepted by IET Communication

    Mathematical optimization and signal processing techniques for cooperative wireless networks

    Get PDF
    The rapid growth of mobile users and emergence of high data rate multimedia and interactive services have resulted in a shortage of the radio spectrum. Novel solutions are therefore required for future generations of wireless networks to enhance capacity and coverage. This thesis aims at addressing this issue through the design and analysis of signal processing algorithms. In particular various resource allocation and spatial diversity techniques have been proposed within the context of wireless peer-to-peer relays and coordinated base station (BS) processing. In order to enhance coverage while providing improvement in capacity, peer-to-peer relays that share the same frequency band have been considered and various techniques for designing relay coefficients and allocating powers optimally are proposed. Both one-way and two-way amplify and forward (AF) relays have been investigated. In order to maintain fairness, a signal-to-interference plus noise ratio (SINR) balancing criterion has been adopted. In order to improve the spectrum utilization further, the relays within the context of cognitive radio network are also considered. In this case, a cognitive peer-to-peer relay network is required to achieve SINR balancing while maintaining the interference leakage to primary receiver below a certain threshold. As the spatial diversity techniques in the form of multiple-input-multipleoutput (MIMO) systems have the potential to enhance capacity significantly, the above work has been extended to peer-to-peer MIMO relay networks. Transceiver and relay beamforming design based on minimum mean-square error (MSE) criterion has been proposed. Establishing uplink downlink MSE duality, an alternating algorithm has been developed. A scenario where multiple users are served by both the BS and a MIMO relay is considered and a joint beamforming technique for the BS and the MIMO relay is proposed. With the motivation of optimising the transmission power at both the BS and the relay, an interference precoding design is presented that takes into account the knowledge of the interference caused by the relay to the users served by the BS. Recognizing joint beamformer design for multiple BSs has the ability to reduce interference in the network significantly, cooperative multi-cell beamforming design is proposed. The aim is to design multi-cell beamformers to maximize the minimum SINR of users subject to individual BS power constraints. In contrast to all works available in the literature that aimed at balancing SINR of all users in all cells to the same level, the SINRs of users in each cell is balanced and maximized at different values. This new technique takes advantage of the fact that BSs may have different available transmission powers and/or channel conditions for their users

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Resource allocation and optimization techniques in wireless relay networks

    Get PDF
    Relay techniques have the potential to enhance capacity and coverage of a wireless network. Due to rapidly increasing number of smart phone subscribers and high demand for data intensive multimedia applications, the useful radio spectrum is becoming a scarce resource. For this reason, two way relay network and cognitive radio technologies are required for better utilization of radio spectrum. Compared to the conventional one way relay network, both the uplink and the downlink can be served simultaneously using a two way relay network. Hence the effective bandwidth efficiency is considered to be one time slot per transmission. Cognitive networks are wireless networks that consist of different types of users, a primary user (PU, the primary license holder of a spectrum band) and secondary users (SU, cognitive radios that opportunistically access the PU spectrum). The secondary users can access the spectrum of the licensed user provided they do not harmfully affect to the primary user. In this thesis, various resource allocation and optimization techniques have been investigated for wireless relay and cognitive radio networks
    • …
    corecore