272 research outputs found

    Dynamic Resource Allocation in Cognitive Radio Networks: A Convex Optimization Perspective

    Full text link
    This article provides an overview of the state-of-art results on communication resource allocation over space, time, and frequency for emerging cognitive radio (CR) wireless networks. Focusing on the interference-power/interference-temperature (IT) constraint approach for CRs to protect primary radio transmissions, many new and challenging problems regarding the design of CR systems are formulated, and some of the corresponding solutions are shown to be obtainable by restructuring some classic results known for traditional (non-CR) wireless networks. It is demonstrated that convex optimization plays an essential role in solving these problems, in a both rigorous and efficient way. Promising research directions on interference management for CR and other related multiuser communication systems are discussed.Comment: to appear in IEEE Signal Processing Magazine, special issue on convex optimization for signal processin

    Cognitive Orthogonal Precoder for Two-tiered Networks Deployment

    Full text link
    In this work, the problem of cross-tier interference in a two-tiered (macro-cell and cognitive small-cells) network, under the complete spectrum sharing paradigm, is studied. A new orthogonal precoder transmit scheme for the small base stations, called multi-user Vandermonde-subspace frequency division multiplexing (MU-VFDM), is proposed. MU-VFDM allows several cognitive small base stations to coexist with legacy macro-cell receivers, by nulling the small- to macro-cell cross-tier interference, without any cooperation between the two tiers. This cleverly designed cascaded precoder structure, not only cancels the cross-tier interference, but avoids the co-tier interference for the small-cell network. The achievable sum-rate of the small-cell network, satisfying the interference cancelation requirements, is evaluated for perfect and imperfect channel state information at the transmitter. Simulation results for the cascaded MU-VFDM precoder show a comparable performance to that of state-of-the-art dirty paper coding technique, for the case of a dense cellular layout. Finally, a comparison between MU-VFDM and a standard complete spectrum separation strategy is proposed. Promising gains in terms of achievable sum-rate are shown for the two-tiered network w.r.t. the traditional bandwidth management approach.Comment: 11 pages, 9 figures, accepted and to appear in IEEE Journal on Selected Areas in Communications: Cognitive Radio Series, 2013. Copyright transferred to IEE

    Non-convex distributed power allocation games in cognitive radio networks

    Get PDF
    In this thesis, we explore interweave communication systems in cognitive radio networks where the overall objective is to maximize the sum-rate of each cognitive radio user by optimizing jointly both the detection operation based on sensing and the power allocation across channels, taking into account the influence of the sensing accuracy and the interference limitation to the primary users. The optimization problem is addressed in single and multiuser cognitive radio networks for both single-input single-output and multi-input multi-output channels. Firstly, we study the resource allocation optimization problem for single-input single-output single user cognitive radio networks, wherein the cognitive radio aims at maximizing its own sum-rate by jointly optimizing the sensing information and power allocation over all the channels. In this framework, we consider an opportunistic spectrum access model under interweave systems, where a cognitive radio user detects active primary user transmissions over all the channels, and decides to transmit if the sensing results indicate that the primary user is inactive at this channel. However, due to the sensing errors, the cognitive users might access the channel when it is still occupied by active primary users, which causes harmful interference to both cognitive radio users and primary users. This motivates the introduction of a novel interference constraint, denoted as rate-loss gap constraint, which is proposed to design the power allocation, ensuring that the performance degradation of the primary user is bounded. The resulting problem is non-convex, thus, an exhaustive optimization algorithm and an alternating direction optimization algorithm are proposed to solve the problem efficiently. Secondly, the resource allocation problem for a single-input single-output multiuser cognitive radio network under a sensing-based spectrum sharing scheme is analyzed as a strategic non-cooperative game, where each cognitive radio user is selfish and strives to use the available spectrum in order to maximize its own sum-rate by considering the effect of imperfect sensing information. The resulting game-theoretical formulations belong to the class of non-convex games. A distributed cooperative sensing scheme based on a consensus algorithm is considered in the proposed game, where all the cognitive radio users can share their sensing information locally. We start with the alternating direction optimization algorithm, and prove that the local Nash equilibrium is achieved by the alternating direction optimization algorithm. In the next step, we use a new relaxed equilibrium concept, namely, quasi-Nash equilibrium for the non-convex game. The analysis of the sufficient conditions for the existence of the quasi-Nash equilibrium for the proposed game is provided. Furthermore, an iterative primal-dual interior point algorithm that converges to a quasi-Nash equilibrium of the proposed game is also proposed. From the simulation results, the proposed algorithm is shown to yield a considerable performance improvement in terms of the sum-rate of each cognitive radio user, with respect to previous state-of-the-art algorithms. Finally, we investigate a multiple-input multiple-output multiuser cognitive radio network under the opportunistic spectrum access scheme. We focus on the throughput of each cognitive radio user under correct sensing information, and exclude the throughput due to the erroneous decision of the cognitive radio users to transmit over occupied channels. The optimization problem is analyzed as a strategic non-cooperative game, where the transmit covariance matrix, sensing time, and detection threshold are considered as multidimensional variables to be optimized jointly. We also use the new relaxed equilibrium concept quasi-Nash equilibrium and prove that the proposed game can achieve a quasi-Nash equilibrium under certain conditions, by making use of the variational inequality method. In particular, we prove theoretically the sufficient condition of the existence and the uniqueness of the quasi-Nash equilibrium for this game. Furthermore, a possible extension of this work considering equal sensing time is also discussed. Simulation results show that the iterative primal-dual interior point algorithm is an efficient solution that converges to the quasi-Nash equilibrium of the proposed game
    • …
    corecore