14 research outputs found

    A Subspace Shift Technique for Nonsymmetric Algebraic Riccati Equations

    Full text link
    The worst situation in computing the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation associated with an M-matrix occurs when the corresponding linearizing matrix has two very small eigenvalues, one with positive and one with negative real part. When both these eigenvalues are exactly zero, the problem is called critical or null recurrent. While in this case the problem is ill-conditioned and the convergence of the algorithms based on matrix iterations is slow, there exist some techniques to remove the singularity and transform the problem to a well-behaved one. Ill-conditioning and slow convergence appear also in close-to-critical problems, but when none of the eigenvalues is exactly zero the techniques used for the critical case cannot be applied. In this paper, we introduce a new method to accelerate the convergence properties of the iterations also in close-to-critical cases, by working on the invariant subspace associated with the problematic eigenvalues as a whole. We present a theoretical analysis and several numerical experiments which confirm the efficiency of the new method

    Shift techniques for Quasi-Birth and Death processes: canonical factorizations and matrix equations

    Full text link
    We revisit the shift technique applied to Quasi-Birth and Death (QBD) processes (He, Meini, Rhee, SIAM J. Matrix Anal. Appl., 2001) by bringing the attention to the existence and properties of canonical factorizations. To this regard, we prove new results concerning the solutions of the quadratic matrix equations associated with the QBD. These results find applications to the solution of the Poisson equation for QBDs

    Explicit Solutions for a Riccati Equation from Transport Theory

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1137/070708743.We derive formulas for the minimal positive solution of a particular nonsymmetric Riccati equation arising in transport theory. The formulas are based on the eigenvalues of an associated matrix. We use the formulas to explore some new properties of the minimal positive solution and to derive fast and highly accurate numerical methods. Some numerical tests demonstrate the properties of the new methods

    Approximate solutions to large nonsymmetric differential Riccati problems with applications to transport theory

    Full text link
    In the present paper, we consider large scale nonsymmetric differential matrix Riccati equations with low rank right hand sides. These matrix equations appear in many applications such as control theory, transport theory, applied probability and others. We show how to apply Krylov-type methods such as the extended block Arnoldi algorithm to get low rank approximate solutions. The initial problem is projected onto small subspaces to get low dimensional nonsymmetric differential equations that are solved using the exponential approximation or via other integration schemes such as Backward Differentiation Formula (BDF) or Rosenbrok method. We also show how these technique could be easily used to solve some problems from the well known transport equation. Some numerical experiments are given to illustrate the application of the proposed methods to large-scale problem
    corecore