8,411 research outputs found

    Global integration of the Schr\"odinger equation: a short iterative scheme within the wave operator formalism using discrete Fourier transforms

    Full text link
    A global solution of the Schr\"odinger equation for explicitly time-dependent Hamiltonians is derived by integrating the non-linear differential equation associated with the time-dependent wave operator. A fast iterative solution method is proposed in which, however, numerous integrals over time have to be evaluated. This internal work is done using a numerical integrator based on Fast Fourier Transforms (FFT). The case of a transition between two potential wells of a model molecule driven by intense laser pulses is used as an illustrative example. This application reveals some interesting features of the integration technique. Each iteration provides a global approximate solution on grid points regularly distributed over the full time propagation interval. Inside the convergence radius, the complete integration is competitive with standard algorithms, especially when high accuracy is required.Comment: 25 pages, 14 figure

    On Approximate Nonlinear Gaussian Message Passing On Factor Graphs

    Full text link
    Factor graphs have recently gained increasing attention as a unified framework for representing and constructing algorithms for signal processing, estimation, and control. One capability that does not seem to be well explored within the factor graph tool kit is the ability to handle deterministic nonlinear transformations, such as those occurring in nonlinear filtering and smoothing problems, using tabulated message passing rules. In this contribution, we provide general forward (filtering) and backward (smoothing) approximate Gaussian message passing rules for deterministic nonlinear transformation nodes in arbitrary factor graphs fulfilling a Markov property, based on numerical quadrature procedures for the forward pass and a Rauch-Tung-Striebel-type approximation of the backward pass. These message passing rules can be employed for deriving many algorithms for solving nonlinear problems using factor graphs, as is illustrated by the proposition of a nonlinear modified Bryson-Frazier (MBF) smoother based on the presented message passing rules

    Adapting Predictive Feedback Chaos Control for Optimal Convergence Speed

    Full text link
    Stabilizing unstable periodic orbits in a chaotic invariant set not only reveals information about its structure but also leads to various interesting applications. For the successful application of a chaos control scheme, convergence speed is of crucial importance. Here we present a predictive feedback chaos control method that adapts a control parameter online to yield optimal asymptotic convergence speed. We study the adaptive control map both analytically and numerically and prove that it converges at least linearly to a value determined by the spectral radius of the control map at the periodic orbit to be stabilized. The method is easy to implement algorithmically and may find applications for adaptive online control of biological and engineering systems.Comment: 21 pages, 6 figure

    How single neuron properties shape chaotic dynamics and signal transmission in random neural networks

    Full text link
    While most models of randomly connected networks assume nodes with simple dynamics, nodes in realistic highly connected networks, such as neurons in the brain, exhibit intrinsic dynamics over multiple timescales. We analyze how the dynamical properties of nodes (such as single neurons) and recurrent connections interact to shape the effective dynamics in large randomly connected networks. A novel dynamical mean-field theory for strongly connected networks of multi-dimensional rate units shows that the power spectrum of the network activity in the chaotic phase emerges from a nonlinear sharpening of the frequency response function of single units. For the case of two-dimensional rate units with strong adaptation, we find that the network exhibits a state of "resonant chaos", characterized by robust, narrow-band stochastic oscillations. The coherence of stochastic oscillations is maximal at the onset of chaos and their correlation time scales with the adaptation timescale of single units. Surprisingly, the resonance frequency can be predicted from the properties of isolated units, even in the presence of heterogeneity in the adaptation parameters. In the presence of these internally-generated chaotic fluctuations, the transmission of weak, low-frequency signals is strongly enhanced by adaptation, whereas signal transmission is not influenced by adaptation in the non-chaotic regime. Our theoretical framework can be applied to other mechanisms at the level of single nodes, such as synaptic filtering, refractoriness or spike synchronization. These results advance our understanding of the interaction between the dynamics of single units and recurrent connectivity, which is a fundamental step toward the description of biologically realistic network models in the brain, or, more generally, networks of other physical or man-made complex dynamical units
    • …
    corecore