13,028 research outputs found

    Approximation Algorithms for the Asymmetric Traveling Salesman Problem : Describing two recent methods

    Full text link
    The paper provides a description of the two recent approximation algorithms for the Asymmetric Traveling Salesman Problem, giving the intuitive description of the works of Feige-Singh[1] and Asadpour et.al\ [2].\newline [1] improves the previous O(logn)O(\log n) approximation algorithm, by improving the constant from 0.84 to 0.66 and modifying the work of Kaplan et. al\ [3] and also shows an efficient reduction from ATSPP to ATSP. Combining both the results, they finally establish an approximation ratio of (43+ϵ)logn\left(\frac{4}{3}+\epsilon \right)\log n for ATSPP,\ considering a small ϵ>0\epsilon>0,\ improving the work of Chekuri and Pal.[4]\newline Asadpour et.al, in their seminal work\ [2], gives an O(lognloglogn)O\left(\frac{\log n}{\log \log n}\right) randomized algorithm for the ATSP, by symmetrizing and modifying the solution of the Held-Karp relaxation problem and then proving an exponential family distribution for probabilistically constructing a maximum entropy spanning tree from a spanning tree polytope and then finally defining the thin-ness property and transforming a thin spanning tree into an Eulerian walk.\ The optimization methods used in\ [2] are quite elegant and the approximation ratio could further be improved, by manipulating the thin-ness of the cuts.Comment: 12 page

    Approximating Minimum-Cost k-Node Connected Subgraphs via Independence-Free Graphs

    Full text link
    We present a 6-approximation algorithm for the minimum-cost kk-node connected spanning subgraph problem, assuming that the number of nodes is at least k3(k1)+kk^3(k-1)+k. We apply a combinatorial preprocessing, based on the Frank-Tardos algorithm for kk-outconnectivity, to transform any input into an instance such that the iterative rounding method gives a 2-approximation guarantee. This is the first constant-factor approximation algorithm even in the asymptotic setting of the problem, that is, the restriction to instances where the number of nodes is lower bounded by a function of kk.Comment: 20 pages, 1 figure, 28 reference

    Well-Centered Triangulation

    Get PDF
    Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality properties and relationships to Delaunay and minmax angle triangulations. We present an iterative algorithm that seeks to transform a given triangulation in two or three dimensions into a well-centered one by minimizing a cost function and moving the interior vertices while keeping the mesh connectivity and boundary vertices fixed. The cost function is a direct result of a new characterization of well-centeredness in arbitrary dimensions that we present. Ours is the first optimization-based heuristic for well-centeredness, and the first one that applies in both two and three dimensions. We show the results of applying our algorithm to small and large two-dimensional meshes, some with a complex boundary, and obtain a well-centered tetrahedralization of the cube. We also show numerical evidence that our algorithm preserves gradation and that it improves the maximum and minimum angles of acute triangulations created by the best known previous method.Comment: Content has been added to experimental results section. Significant edits in introduction and in summary of current and previous results. Minor edits elsewher
    corecore