25 research outputs found

    Protograph-Based LDPC Code Design for Probabilistic Shaping with On-Off Keying

    Full text link
    This work investigates protograph-based LDPC codes for the AWGN channel with OOK modulation. A non-uniform distribution of the OOK modulation symbols is considered to improve the power efficiency especially for low SNRs. To this end, a specific transmitter architecture based on time sharing is proposed that allows probabilistic shaping of (some) OOK modulation symbols. Tailored protograph-based LDPC code designs outperform standard schemes with uniform signaling and off-the-shelf codes by 1.1 dB for a transmission rate of 0.25 bits/channel use.Comment: Invited Paper for CISS 201

    Near maximum likelihood multiuser receivers for direct sequence code division multiple access

    Get PDF
    Wideband wireless access based on direct-sequence code-division multiple access (DS-CDMA) has been adopted for third-generation mobile communications systems. Hence, DS-CDMA downlink communications systems form the platform for the work in this thesis. The principles of the spread spectrum concept and DS-CDMA technology are first outlined, including a description of the system model and the conventional receiver. The two classes of codes used in this system, namely spreading codes and forward error correction codes (including Turbo codes), are discussed. Due to the fact that practical communications channels are non-ideal, the performance of an individual user is interference limited. As a result, the capacity of the system is greatly restricted. Fortunately, multiuser detection is a scheme that can effectively counteract this multiple access interference. However, the optimum multiuser detection scheme is far too computationally intensive for practical use. Hence, the fundamental interest here is to retain the advantages of multiuser detection and simplify its implementation. The objective of the thesis is to investigate the optimum multiuser receiver, regarded on a chip level sampling basis. The aim is to reduce the complexity of the optimum receiver to a practical and implementable level while retaining its good performance. The thesis first reviews various existing multiuser receivers. The chip-based maximum likelihood sequence estimation (CBMLSE) detector is formulated and implemented. However, the number of states in the state-transition trellis is still exponential in the number of users. Complexity cannot be reduced substantially without changing the structure of the trellis. A new detector is proposed which folds up the original state-transition trellis such that the number of states involved is greatly reduced. The performance is close to that of the CBMLSE. The folded trellis detector (FTD) can also be used as a preselection stage for the CBMLSE. The FTD selects with high accuracy the few symbol vectors that are more likely to be transmitted. The CBMLSE is then used to determine the most likely symbol vector out of the small subset of vectors. The performance of this scheme is as good as the CBMLSE. The FTD is also applied in an iterative multiuser receiver that exploits the powerful iterative algorithm of Turbo codes

    Soft detection and decoding in wideband CDMA systems

    Get PDF
    A major shift is taking place in the world of telecommunications towards a communications environment where a range of new data services will be available for mobile users. This shift is already visible in several areas of wireless communications, including cellular systems, wireless LANs, and satellite systems. The provision of flexible high-quality wireless data services requires a new approach on both the radio interface specification and the design and the implementation of the various transceiver algorithms. On the other hand, when the processing power available in the receivers increases, more complex receiver algorithms become feasible. The general problem addressed in this thesis is the application of soft detection and decoding algorithms in the wideband code division multiple access (WCDMA) receivers, both in the base stations and in the mobile terminals, so that good performance is achieved but that the computational complexity remains acceptable. In particular, two applications of soft detection and soft decoding are studied: coded multiuser detection in the CDMA base station and improved RAKE-based reception employing soft detection in the mobile terminal. For coded multiuser detection, we propose a novel receiver structure that utilizes the decoding information for multiuser detection. We analyze the performance and derive lower bounds for the capacity of interference cancellation CDMA receivers when using channel coding to improve the reliability of tentative decisions. For soft decision and decoding techniques in the CDMA downlink, we propose a modified maximal ratio combining (MRC) scheme that is more suitable for RAKE receivers in WCDMA mobile terminals than the conventional MRC scheme. We also introduce an improved soft-output RAKE detector that is especially suitable for low spreading gains and high-order modulation schemes. Finally we analyze the gain obtained through the use of Brennan's MRC scheme and our modified MRC scheme. Throughout this thesis Bayesian networks are utilized to develop algorithms for soft detection and decoding problems. This approach originates from the initial stages of this research, where Bayesian networks and algorithms using such graphical models (e.g. the so-called sum-product algorithm) were used to identify new receiver algorithms. In the end, this viewpoint may not be easily noticeable in the final form of the algorithms, mainly because the practical efficiency considerations forced us to select simplified variants of the algorithms. However, this viewpoint is important to emphasize the underlying connection between the apparently different soft detection and decision algorithms described in this thesis.reviewe

    Applications of error-control coding

    Full text link

    Performance Evaluation of Phase Optimized Spreading Codes in Non Linear DS-CDMA Receiver

    Get PDF
    Spread spectrum (SS) is a modulation technique in which the signal occupies a bandwidth much larger than the minimum necessary to send the information. A synchronized reception with the code at the receiver is used for despreading the information before data recovery. Bandspread is accomplished by means of a code which is independent of the data. Bandspreading code is pseudo-random, thus the spread signal resembles noise. The coded modulation characteristic of SS system uniquely qualifies it for navigation applications. Any signal used in ranging is subject to time/distance relations. A SS signal has advantage that its phase is easily resolvable. Direct-sequence (DS) form of modulation is mostly preferred over Frequency Hopping system (FH) as FH systems do not normally possess high resolution properties. Higher the chip rate, the better the measurement capability. The basic resolution is one code chip. Initially, some existing code families e.g. Gold, Kasami (large and smal..

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression
    corecore