5 research outputs found

    Identifying and Scheduling Loop Chains Using Directives

    Get PDF
    Exposing opportunities for parallelization while explicitly managing data locality is the primary challenge to porting and optimizing existing computational science simulation codes to improve performance and accuracy. OpenMP provides many mechanisms for expressing parallelism, but it primarily remains the programmer’s responsibility to group computations to improve data locality. The loopchain abstraction, where data access patterns are included with the specification of parallel loops, provides compilers with sufficient information to automate the parallelism versus data locality tradeoff. In this paper, we present a loop chain pragma and an extension to the omp for to enable the specification of loop chains and high-level specifications of schedules on loop chains. We show example usage of the extensions, describe their implementation, and show preliminary performance results for some simple examples

    Master of Science

    Get PDF
    thesisThe advent of the era of cheap and pervasive many-core and multicore parallel sys-tems has highlighted the disparity of the performance achieved between novice and expert developers targeting parallel architectures. This disparity is most notiable with software for running general purpose computations on grachics processing units (GPGPU programs). Current methods for implementing GPGPU programs require an expert level understanding of the memory hierarchy and execution model of the hardware to reach peak performance. Even for experts, rewriting a program to exploit these hardware features can be tedious and error prone. Compilers and their ability to make code transformations can assist in the implementation of GPGPU programs, handling many of the target specic details. This thesis presents CUDA-CHiLL, a source to source compiler transformation and code generation framework for the parallelization and optimization of computations expressed in sequential loop nests for running on many-core GPUs. This system uniquely uses a complete scripting language to describe composable compiler transformations that can be written, shared and reused by nonexpert application and library developers. CUDA-CHiLL is built on the polyhedral program transformation and code generation framework CHiLL, which is capable of robust composition of transformations while preserving the correctness of the program at each step. Through its use of powerful abstractions and a scripting interface, CUDA-CHiLL allows for a developer to focus on optimization strategies and ignore the error prone details and low level constructs of GPGPU programming. The high level framework can be used inside an orthogonal auto-tuning system that can quickly evaluate the space of possible implementations. Although specicl to CUDA at the moment, many of the abstractions would hold for any GPGPU framework, particularly Open CL. The contributions of this thesis include a programming language approach to providing transformation abstraction and composition, a unifying framework for general and GPU specicl transformations, and demonstration of the framework on standard benchmarks that show it capable of matching or outperforming hand-tuned GPU kernels

    Loop Tiling in Large-Scale Stencil Codes at Run-time with OPS

    Get PDF
    The key common bottleneck in most stencil codes is data movement, and prior research has shown that improving data locality through optimisations that schedule across loops do particularly well. However, in many large PDE applications it is not possible to apply such optimisations through compilers because there are many options, execution paths and data per grid point, many dependent on run-time parameters, and the code is distributed across different compilation units. In this paper, we adapt the data locality improving optimisation called iteration space slicing for use in large OPS applications both in shared-memory and distributed-memory systems, relying on run-time analysis and delayed execution. We evaluate our approach on a number of applications, observing speedups of 2Ă—\times on the Cloverleaf 2D/3D proxy application, which contain 83/141 loops respectively, 3.5Ă—3.5\times on the linear solver TeaLeaf, and 1.7Ă—1.7\times on the compressible Navier-Stokes solver OpenSBLI. We demonstrate strong and weak scalability up to 4608 cores of CINECA's Marconi supercomputer. We also evaluate our algorithms on Intel's Knights Landing, demonstrating maintained throughput as the problem size grows beyond 16GB, and we do scaling studies up to 8704 cores. The approach is generally applicable to any stencil DSL that provides per loop data access information

    Generalized full sparse tiling of loop chains

    Get PDF
    2013 Fall.Includes bibliographical references.Computer and computational scientists are tackling increasingly large and complex problems and are seeking ways of improving the performance of their codes. The key issue faced is how to reach an effective balance between parallelism and locality. In trying to reach this balance, a problem commonly encountered is that of ascertaining the data dependences. Approaches that rely on automatic extraction of data dependences are frequently stymied by complications such as interprocedural and alias analysis. Placing the dependence analysis burden upon the programmer creates a significant barrier to adoption. In this work, we present a new programming abstraction, the loop chain, that specifies a series of loops and the data they access. Given this abstraction, a compiler, inspector, or runtime optimizer can avoid the computationally expensive process of formally determining data dependences, yet still determine beneficial and legal data and iteration reorderings. One optimization method that has been previously applied to irregular scientific codes is full sparse tiling. Full sparse tiling has been used to improve the performance of a handful of scientific codes, but in each case the technique had to be applied from scratch by an expert after careful manual analysis of the possible data dependence patterns. The full sparse tiling approach was extended and generalized as part of this work to apply to any code represented by the loop chain abstraction. Using only the abstraction, the generalized algorithm can produce a new data and iteration ordering as well as a parallel execution schedule. Insight into tuning a generalized full sparse tiled application was gained through a study of the different factors influencing tile count. This work lays the foundation for an efficient autotuning approach to optimizing tile count

    Automatic Parallelization of Tiled Stencil Loop Nests on GPUs

    Full text link
    This thesis attempts to design and implement a compiler framework based on the polyhedral model. The compiler automatically parallelizes loop nests; especially stencil kernels, into efficient GPU code by loop tiling transformations which the polyhedral model describes. To enhance parallel performance, we introduce three practically efficient techniques to process different types of loop nests. The experimental results of our compiler framework have demonstrated that these advanced techniques can outperform previous approaches. Firstly, we aim to find efficient tiling transformations without violating data dependences. How to select a tile's shape and size is an open issue that is performance-critical and influenced by GPU's hardware constraints. We propose an approach to determine the tile shapes out of consideration for improving two-level parallelism of GPUs. The new approach finds appropriate tiling hyperplanes by embedding parallelism-enhancing constraints into the polyhedral model to maximize intra-tile, i.e., intra-SM parallelism. This improves the load balance among the streaming processors (SPs), which execute a wavefront of loop iterations within a tile. We eliminate parallelism-hindering false dependences to optimize inter-tile, i.e., inter-SM parallelism. This improves the load balance among the streaming multiprocessors (SMs), which execute a wavefront of tiles. Furthermore, to avoid combinatorial explosion of tile size's configurations, we present a model-driven approach to automating tile size selection that is performance-critical for loop tiling transformations, especially for DOACROSS loop nests. Our tile size selection model accurately estimates the execution times of tiled loop nests running on GPUs. The selected tile sizes lead to the performance results that are close to the best observed for a range of problem sizes tested. Finally, to address the difficulty and low-performance of parallelizing widely used SOR stencil loop nests, we present a new tiled parallel SOR method, called MLSOR, which admits more efficient data-parallel SIMD execution on GPUs. Unlike the previous two approaches that are dependence-preserving, the basic idea is to algorithmically restructure a stencil kernel based on a non-dependence-preserving parallelization scheme to avoid pipelining for higher parallelism. The new approach can be implemented in compilers through a pattern matching pass to optimize SOR-like DOACROSS loop nests on GPUs
    corecore