8 research outputs found

    On the maximum size of a minimal k-edge connected augmentation

    Get PDF
    AbstractWe present a short proof of a generalization of a result of Cheriyan and Thurimella: a simple graph of minimum degree k can be augmented to a k-edge connected simple graph by adding ⩽knk+1 edges, where n is the number of nodes. One application (from the previous paper) is an approximation algorithm with a guarantee of 1+2k+1 for the following NP-hard problem: given a simple undirected graph, find a minimum-size k-edge connected spanning subgraph. For the special cases of k=4,5,6, this is the best approximation guarantee known

    Breaching the 2-Approximation Barrier for Connectivity Augmentation: a Reduction to Steiner Tree

    Full text link
    The basic goal of survivable network design is to build a cheap network that maintains the connectivity between given sets of nodes despite the failure of a few edges/nodes. The Connectivity Augmentation Problem (CAP) is arguably one of the most basic problems in this area: given a kk(-edge)-connected graph GG and a set of extra edges (links), select a minimum cardinality subset AA of links such that adding AA to GG increases its edge connectivity to k+1k+1. Intuitively, one wants to make an existing network more reliable by augmenting it with extra edges. The best known approximation factor for this NP-hard problem is 22, and this can be achieved with multiple approaches (the first such result is in [Frederickson and J\'aj\'a'81]). It is known [Dinitz et al.'76] that CAP can be reduced to the case k=1k=1, a.k.a. the Tree Augmentation Problem (TAP), for odd kk, and to the case k=2k=2, a.k.a. the Cactus Augmentation Problem (CacAP), for even kk. Several better than 22 approximation algorithms are known for TAP, culminating with a recent 1.4581.458 approximation [Grandoni et al.'18]. However, for CacAP the best known approximation is 22. In this paper we breach the 22 approximation barrier for CacAP, hence for CAP, by presenting a polynomial-time 2ln(4)9671120+ϵ<1.912\ln(4)-\frac{967}{1120}+\epsilon<1.91 approximation. Previous approaches exploit properties of TAP that do not seem to generalize to CacAP. We instead use a reduction to the Steiner tree problem which was previously used in parameterized algorithms [Basavaraju et al.'14]. This reduction is not approximation preserving, and using the current best approximation factor for Steiner tree [Byrka et al.'13] as a black-box would not be good enough to improve on 22. To achieve the latter goal, we ``open the box'' and exploit the specific properties of the instances of Steiner tree arising from CacAP.Comment: Corrected a typo in the abstract (in metadata

    Linear Programming Tools and Approximation Algorithms for Combinatorial Optimization

    Get PDF
    We study techniques, approximation algorithms, structural properties and lower bounds related to applications of linear programs in combinatorial optimization. The following "Steiner tree problem" is central: given a graph with a distinguished subset of required vertices, and costs for each edge, find a minimum-cost subgraph that connects the required vertices. We also investigate the areas of network design, multicommodity flows, and packing/covering integer programs. All of these problems are NP-complete so it is natural to seek approximation algorithms with the best provable approximation ratio. Overall, we show some new techniques that enhance the already-substantial corpus of LP-based approximation methods, and we also look for limitations of these techniques. The first half of the thesis deals with linear programming relaxations for the Steiner tree problem. The crux of our work deals with hypergraphic relaxations obtained via the well-known full component decomposition of Steiner trees; explicitly, in this view the fundamental building blocks are not edges, but hyperedges containing two or more required vertices. We introduce a new hypergraphic LP based on partitions. We show the new LP has the same value as several previously-studied hypergraphic ones; when no Steiner nodes are adjacent, we show that the value of the well-known bidirected cut relaxation is also the same. A new partition uncrossing technique is used to demonstrate these equivalences, and to show that extreme points of the new LP are well-structured. We improve the best known integrality gap on these LPs in some special cases. We show that several approximation algorithms from the literature on Steiner trees can be re-interpreted through linear programs, in particular our hypergraphic relaxation yields a new view of the Robins-Zelikovsky 1.55-approximation algorithm for the Steiner tree problem. The second half of the thesis deals with a variety of fundamental problems in combinatorial optimization. We show how to apply the iterated LP relaxation framework to the problem of multicommodity integral flow in a tree, to get an approximation ratio that is asymptotically optimal in terms of the minimum capacity. Iterated relaxation gives an infeasible solution, so we need to finesse it back to feasibility without losing too much value. Iterated LP relaxation similarly gives an O(k^2)-approximation algorithm for packing integer programs with at most k occurrences of each variable; new LP rounding techniques give a k-approximation algorithm for covering integer programs with at most k variable per constraint. We study extreme points of the standard LP relaxation for the traveling salesperson problem and show that they can be much more complex than was previously known. The k-edge-connected spanning multi-subgraph problem has the same LP and we prove a lower bound and conjecture an upper bound on the approximability of variants of this problem. Finally, we show that for packing/covering integer programs with a bounded number of constraints, for any epsilon > 0, there is an LP with integrality gap at most 1 + epsilon
    corecore