
Graph Connectivity: Approximation Algorithms and

Applications to Protein-Protein Interaction Networks

by

Suzanne Renick Gallagher

B.A., Smith College, 2003

M.S., University of Colorado, 2007

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2010

This thesis entitled:
Graph Connectivity: Approximation Algorithms and Applications to Protein-Protein Interaction

Networks
written by Suzanne Renick Gallagher

has been approved for the Department of Computer Science

Harold Gabow

Debra Goldberg

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Gallagher, Suzanne Renick (Ph.D., Computer Science)

Graph Connectivity: Approximation Algorithms and Applications to Protein-Protein Interaction

Networks

Thesis directed by Harold Gabow and Debra Goldberg

A graph is connected if there is a path between any two of its vertices and k-connected if

there are at least k disjoint paths between any two vertices. A graph is k-edge-connected if none

of the k paths share any edges and k-vertex-connected (or k-connected) if they do not share any

intermediate vertices. We examine some problems related to k-connectivity and an application.

We have looked at the k-edge-connected spanning subgraph problem: given a k-edge-connected

graph, find the smallest subgraph that includes all vertices and is still k-edge-connected. We im-

proved two algorithms for approximating solutions to this problem. The first algorithm transforms

the problem into an integer linear program, relaxes it into a real-valued linear program and solves

it, then obtains an approximate solution to the original problem by rounding non-integer values.

We have improved the approximation ratio by giving a better scheme for rounding the edges and

bounding the number of fractional edges. The second algorithm finds a subgraph where every

vertex has a minimum degree, then augments the subgraph by adding edges until it is k-edge-

connected. We improve this algorithm by bounding the number of edges that could be added in

the augmentation step.

We have also applied the idea of k-connectivity to protein-protein interaction (PPI) networks,

biological graphs where vertices represent proteins and edges represent experimentally determined

physical interactions. Because few PPI networks are even 1-connected, we have looked for highly

connected subgraphs of these graphs. We developed algorithms to find the most highly connected

subgraphs of a graph. We applied our algorithms to a large network of yeast protein interactions and

found that the most highly connected subgraph was a 16-connected subgraph of membrane proteins

that had never before been identified as a module and is of interest to biologists. We also looked

iv

at graphs of proteins known to be co-complexed and found that a significant number contained 3-

connected subgraphs, one of the features that most differentiated complexes from random graphs.

Dedication

To my parents, Anne and John Gallagher, for having loved and supported me through 27

years of education, from pre-school all the way through graduate school. I can never thank you

guys enough.

vi

Acknowledgements

I would like to thank my advisors Debra Goldberg and Harold Gabow, who have taught me

so much over the years, as well as all members of the committee.

My family including my parents Anne and John Gallagher, my sister Molly Gallagher, and

my fiancé Wayne Vinson for their support and understanding.

My friends Amanda Pingel and Adam Ramsay.

All members of the Goldberg lab; in particular Todd A. Gibson for always being willing

to answer my questions and help me make the transition from graph theory into computational

biology.

vii

Contents

Chapter

1 Introduction 1

1.1 Definitions . 4

1.2 Organization of the Thesis . 5

2 The k-Edge- and k-Vertex-Connected Spanning Subgraph Problem 7

2.1 Introduction . 7

2.2 Definitions . 9

2.3 Previous Results . 11

2.3.1 Linear Programming Algorithms . 12

2.3.2 Combinatorial Algorithms . 16

2.3.3 Results on Criticality . 18

2.3.4 Theoretical Bounds . 19

2.4 Our Work . 20

3 Better Bounds for Approximating the Minimum k-ECSS with LP Rounding 22

3.1 Improved bound for LP rounding . 23

3.1.1 Improved bound on the size of the laminar family 25

3.1.2 Improved rounding algorithm . 29

3.2 Laminar family lower bound example . 31

3.2.1 Overview . 31

viii

3.2.2 The Construction . 32

3.2.3 Analysis . 35

3.3 Round-the-highest lower bound example . 39

3.3.1 Overview . 39

3.3.2 The Construction . 41

3.3.3 Proof of Uniqueness and k-Connectivity . 53

3.3.4 Approximation Ratio . 64

4 A Bound on Special Edges 66

4.1 An Upper Bound on Special Edges for k ≥ 15 . 67

4.1.1 Criticality . 68

4.1.2 The laminar family and paying for special edges 71

4.2 Extension to 10 ≤ k < 15 . 77

4.2.1 Conservative Path Payment . 77

4.2.2 Modified Lemmas . 78

4.2.3 Liability Payment . 82

5 An introduction to computational biology and protein-protein interaction networks 94

5.1 Protein-Protein Interaction Networks . 94

5.1.1 Topology of PPI networks . 97

5.2 Studying PPI networks . 100

5.2.1 Predicting protein function . 102

5.2.2 Determining functional modules . 102

5.2.3 Finding protein complexes . 103

5.3 My work . 112

5.3.1 k-Connectivity and Independent Paths in the PPI Network 112

5.3.2 Looking for an MHCS in PPI networks . 115

5.3.3 Protein complexes . 115

ix

6 Edge and Vertex Connectivity in the Protein-Protein Interaction Network 117

6.1 The Most Highly Connected Subgraph Problem . 119

6.2 The Algorithm . 120

6.2.1 Proof of Correctness . 122

6.2.2 Complexity . 124

6.2.3 Haircut . 124

6.2.4 Variants on the Basic Algorithm . 127

6.3 Highly Connected Subgraphs in Yeast Two-Hybrid Networks 130

6.3.1 Testing the Implementation . 131

6.3.2 Subgraphs with High Connectivity . 133

6.3.3 MHCS and Other Methods of Finding Modules in the PPI Network 136

6.4 Conclusion . 138

7 Connectivity and other properties in protein complexes 145

7.1 Methods . 146

7.1.1 Data . 146

7.1.2 Graph Properties . 147

7.1.3 Subgraphs . 149

7.1.4 Assessment . 149

7.2 Results . 150

7.2.1 iPFam Complexes . 150

7.2.2 MIPS Complexes . 156

7.3 Discussion . 163

7.3.1 Connectivity and Edge Density . 164

7.3.2 Other Properties . 166

7.3.3 The Role of Connectivity in Future Complex-Finding Algorithms 166

7.4 Conclusion . 168

x

8 Future Work 169

8.1 Linear Programming Algorithm Bounds . 169

8.1.1 Size of the Laminar Family . 169

8.1.2 Further Refinement of the Rounding Method 170

8.2 Bound on Special Edges for k < 10 . 170

8.2.1 The Case k = 9 . 170

8.2.2 The Case k ≤ 8 . 172

8.3 Approximation Bound for the Minimum k-ECSS Problem on Simple Graphs 172

8.4 MHCS Algorithm . 172

8.4.1 Other Varients of the MHCS Algorithm . 172

8.4.2 Further Analysis of Vertex Connectivity Algorithm 173

8.4.3 Subgraphs with High Connectivities . 173

8.4.4 Cytoscape Plug-in . 174

8.5 Protein Complexes . 174

8.5.1 Complex-finding Algorithm . 174

8.5.2 MHCS in Complexes . 174

8.5.3 Pseudocomplex Generation . 175

8.6 MHCS and Complexes in Other Yeast Data Sets . 175

8.7 MHCS and Complexes in Other Organisms . 176

8.8 Biological Hypernetworks . 176

Bibliography 177

Appendix

A Iterated Rounding Algorithms for the Smallest k-Edge Connected Spanning Subgraph 185

A.1 Introduction . 185

xi

A.2 Simple Graphs . 189

A.2.1 The Laminar Family . 189

A.2.2 A Rounding Algorithm . 198

A.3 Multigraphs and Steiner Networks . 200

A.3.1 A Large Laminar Family . 200

A.3.2 Rounding Cardinality LP’s . 205

A.3.3 c-Singletons . 210

A.3.4 Rounding by Matching . 214

A.3.5 Rounding by Covering . 225

A.4 Simple Graph Algorithm . 229

A.4.1 The Basic Algorithm . 230

A.4.2 The Refined Algorithm . 235

B Full Results for Complex Survey 239

B.1 Connected Complexes . 239

B.2 Complexes with Some Interactions . 246

B.3 Complexes with no interactions . 259

xii

Tables

Table

7.1 Statistics for iPFam complexes. 152

7.2 Edge Density in complexes. 156

7.3 Edge density in complexes and pseudocomplexes. 157

7.4 Vertex connectivity of the MHCS complexes. 158

7.5 Vertex connectivity in complexes and pseudocomplexes. 158

7.6 Clustering coefficients in complexes. 159

7.7 Mutual clustering coefficients in complexes. 160

7.8 Clustering coefficients in complexes and pseudocomplexes. 160

7.9 Mutual clustering coefficients in complexes and pseudocomplexes 161

7.10 Maximum degree in complexes. 162

7.11 Maximum degree in complexes and pseudocomplexes. 162

7.12 Betweenness in complexes. 163

7.13 Betweenness in complexes and pseudocomplexes. 163

A.1 Values for simple graphs. 195

B.1 Statistics for connected complexes 0-400. 240

B.2 Statistics for connected complexes 0-400. 241

B.3 Statistics for connected complexes 400-500. 242

B.4 Statistics for connected complexes 400-500. 243

xiii

B.5 Statistics for connected complexes 500 and above. 244

B.6 Statistics for connected complexes 500 and above. 245

B.7 Statistics for disconnected complexes 0-200. 247

B.8 Statistics for disconnected complexes 0-200. 248

B.9 Statistics for disconnected complexes 200-300. 249

B.10 Statistics for connected complexes 200-300. 250

B.11 Statistics for disconnected complexes 300-425. 251

B.12 Statistics for disconnected complexes 300-425. 252

B.13 Statistics for disconnected complexes 425-500. 253

B.14 Statistics for disconnected complexes 425-500. 254

B.15 Statistics for disconnected complexes 500-510.90. 255

B.16 Statistics for disconnected complexes 500-510.90. 256

B.17 Statistics for disconnected complexes 510.100 and up. 257

B.18 Statistics for disconnected complexes 510.100 and up. 258

B.19 Complexes with no interactions. 259

xiv

Figures

Figure

1.1 Examples of connectivity. 2

2.1 An example of the minimum k-ECSS. 7

3.1 An S-set at height 3 and all its descendants. 33

3.2 The edges in a T -set. 34

3.3 k paths from a vertex in A0 to t. 37

3.4 k paths from ℓi to ℓi+1. 38

3.5 k paths from S0 to ℓ. 39

3.6 Fractional edges of Li. 43

3.7 Fractional edges of S0. 45

3.8 Unit edges of S1, S2, and S3. 48

3.9 Fractional edges of Si. 49

3.10 Fractional edges of Sσ. 50

3.11 Unit edges of Sσ. 50

3.12 Joining Sσ and S′
σ−1 to get a T -set . 51

3.13 Unit edges of a T -set. 52

3.14 Edges from a T -set. 54

3.15 2 additional paths between B0 and t. 56

3.16 Additional paths between B0 and t when σ = 2. 56

xv

3.17 4 additional paths between ℓi and ℓi+1 for even values of i. 59

3.18 4 additional paths between ℓi and ℓi+1 for odd values of i. 60

3.19 Path through other T -set. 61

3.20 Additional paths between ℓi and ℓi+1 for even values of i. 61

3.21 Additional paths between ℓi and ℓi+1 for odd values of i ≤ 3. 62

3.22 Additional paths between ℓi and ℓi+1 for odd values of i ≥ σ − 3. 63

4.1 An example of an in-bicritical set. 69

4.2 An example of an in-tricritical set. 70

4.3 An example of a path. 73

4.4 Proof of Lemma 7. 73

4.5 Proof of Lemma 8. 74

4.6 Proof of Lemma 9. 75

4.7 Proof of Lemma 14. 80

4.8 Proof of Case 1a. 84

4.9 Proof of Case 1b. 85

4.10 Tricricial sets in the proof of Case 2c. 91

5.1 A small example of a protein-protein interaction graph. 95

5.2 A protein-protein interaction network. 96

5.3 An example of yeast 2-hybrid. 96

5.4 An example of affinity purification. 97

5.5 Building graphs from an affinity purification assay. 97

5.6 Clustering coefficient on vertices and graphs. 101

5.7 Degree distributions in a random graph and a PPI network. 101

5.8 Examples of protein and protein-RNA complexes. 104

6.1 A 4-connected complex with edge density only 0.35 118

xvi

6.2 A worst case example for the MHCS algorithm. 124

6.3 Graphs used for small-scale testing of MHCS algorithm. 141

6.4 The most highly connected subgraph of the Y2H network for yeast. 141

6.5 The second most highly connected subgraph of the yeast Y2H network. 142

6.6 The third most highly connected subgraph of the yeast Y2H network. 142

6.7 The fourth most highly connected subgraph of the yeast network. 142

6.8 The MHCS of the human Y2H network. 143

6.9 The second MHCS of the human Y2H network. 143

6.10 The third MHCS of the human Y2H network. 143

6.11 The fourth MHCS of the human Y2H network. 144

6.12 The fourth MHCS of the human Y2H network. 144

7.1 The 20S proteasome and the graphs that represent it. 148

7.2 Complexes from iPFam, and those same proteins in Y2H data. 153

7.3 More complexes from iPFam and the same proteins in Y2H data. 154

7.4 Edge density vs. number of vertices in complexes from iPFam. 154

7.5 Clustering Coefficient vs. number of vertices in complexes from iPFam. 155

7.6 Mutual Clustering Coefficient vs. number of vertices in complexes from iPFam. . . . 155

7.7 Edge density in complexes. 157

7.8 Vertex connectivity in complexes. 158

7.9 Clustering coefficients in complexes. 160

7.10 Mutual clustering coefficients in complexes. 161

8.1 A lower bound example for any LP rounding algorithm. 171

A.1 Bad example for iterated rounding, k even. 201

A.2 Example for k odd. 204

A.3 Biased vertices for rounding. 213

xvii

A.4 Rounding by matching. 215

A.5 Tight example for matching, k even. 216

A.6 Tight example for matching, k odd. 217

A.7 Alternating tree. 221

A.8 Rounding by covering. 226

A.9 Basic algorithm for simple graphs. 231

A.10 Sets at the end of Stage I, in the proofs of Section A.4. 233

A.11 Stages II–III of the refined algorithm. 236

Chapter 1

Introduction

A graph is a mathematical structure consisting of vertices and pairs of vertices called edges.

Visually, vertices are represented by dots with edges represented by lines between the vertices. In

disciplines other than mathematics and computer science, a graph is usually called a network, and

we will use the two terms interchangeably.

In a graph, there is a path between two vertices if there is a series of edges we can follow to

get from the first vertex to the second. A graph is connected if there is a path between any two

vertices. The idea of connectivity can be extended to k-connectivity for any integer k > 0: a graph

is k-connected if there are at least k disjoint paths between any two vertices. For a graph to be

k-edge-connected, the paths must be edge-disjoint paths, and to be k-vertex-connected (sometimes

called k-connected), the paths must not go through any of the same intermediate vertices (note

that k-vertex-connected implies k-edge-connected, but not vice versa; see Fig.1.1 for an illustration

of the difference). Equivalently, a k-edge-connected graph is one where any k − 1 edges can be

removed and the graph will remain connected. A k-vertex-connected graph is one where any k− 1

vertices (and all their adjacent edges) can be removed, and the graph will remain connected.

Graph connectivity is closely related to the minimum cut of a graph. In a graph, a cut is

a partition of the vertices into two distinct sets. The number of edges with one endpoint on each

side of the cut is the value of the cut (these edges are said to cross the cut), and a minimum cut

is a cut with the smallest possible value. By Menger’s theorem, a graph is k-edge-connected if and

only if its minimum cut has value at least k [2]. A vertex cut can be defined as a set of vertices

2

(a) This graph is con-
nected, but not 2-edge-
connected or 2-vertex-
connected. Removing the
middle edge or either of its
endpoints will disconnect
the graph.

(b) A graph that is 2-
edge-connected, but not 2-
vertex-connected. Remov-
ing the middle vertex will
disconnect the graph.

(c) A 2-connected graph.

Figure 1.1: Examples of connectivity.

3

whose removal disconnects the graph, and its value is the number of vertices in the cut. As with

edge connectivity, a graph is k-vertex-connected if and only if its minimum vertex cut has value at

least k.

Connectivity is closely related to minimum degree (the number of edges of which a vertex is

a part), because every vertex in a k-connected graph must have degree at least k. The converse,

however, is not true; see Fig.1.1(a) for an example of a graph where every vertex has degree 2,

but the graph is not 2-connected. There is little relation between connectivity and edge density

(the number of edges divided by the number of possible edges). A k-connected graph can have as

few as kn
2 edges, where n is the number of vertices in the graph, which gives an edge density of

k
n−1 . Depending on the relative values of k and n, this could be very low. For example, a graph

of 1001 and vertices with 5 distinct cycles between them would be a 10-connected graph with an

edge density of only .01. Conversely, a graph can have an edge density approaching 1 and not even

be 1-connected. For example, an n− 1-clique and an additional vertex with no edges to the clique

would have an edge density of n−2
n , but would not be connected.

The important feature of a graph with high connectivity is survivability, sometimes also called

stability. A graph with high edge density may have many connections between its vertices, but if

it has low connectivity, it is vulnerable. The loss of a single edge may disrupt a critical pathway.

Therefore, connectivity is important in networks where the maintenance of pathways in the event of

edge loss is necessary or desirable. Some examples of graphs where high connectivity is important

include Internet connections, where we don’t want the loss of a single connection between servers

to cause users to lose access to the Web, or the power grid, where we don’t want the city to lose

power if a single transformer is overloaded.

One class of graphs where this stability can be important is graphs representing biologi-

cal data, often called biological networks. Biological networks include metabolic networks that

model the various chemical reactions in the cell, genetic co-expression networks that have edges

between genes that are expressed together, and protein-protein interaction networks that contain

information about which proteins bind to each other. Despite the importance of pathways in these

4

networks, however, graph connectivity (beyond simply determining whether or not a given network

is connected) has rarely been applied to them.

Here, we look at some well-known problems in graph connectivity and algorithms for finding

solutions to them. Then, we look at a problem of our own design, finding the most highly connected

subgraph of a graph. We apply our algorithm for finding the most highly connected subgraph to

biological networks, though the algorithm could also be applied to other types of graphs. We begin

with some formal definitions.

1.1 Definitions

Throughout the thesis, we will be looking at a graph G with vertex set V and edge set E.

This will be notated as G = (V,E). If there is some ambiguity as to what graph a particular

vertex or edge set might belong to, they will be further annotated as VG and EG. Let u, v ∈ V and

e = (u, v) ∈ E. Let |V | = n and |E| = m.

If the order of vertices in an edge e ∈ E matters, i.e., (u, v) 6= (v, u), then the edge is

directed. Otherwise, if (u, v) = (v, u), the edge is undirected. Most graphs contain only one

type of edge: a directed graph contains only directed edges, while an undirected graph contains

only undirected edges. A graph that contains both types of edges is called a mixed graph.

A graph is simple if for any two vertices u, v, there can be a maximum of one edge that goes

between u and v in an undirected graph, or a maximum of one edge from u to v and one edge from

v to u in a directed graph. In addition, a simple graph cannot have any loops, edges of the form

(u, u). A graph which allows multiple edges between two vertices is a multigraph.

The degree of a vertex v in an undirected graph is the number of edges which have v as an

endpoint and is denoted d(v). In a directed graph, the out-degree of v is the number of edges

that have v as the first endpoint, while the in-degree of v is the number of edges that have v as

their second endpoint.

The edge-connectivity between two vertices u, v is the number of edge-disjoint paths be-

tween them. The vertex-connectivity (sometimes just called the connectivity) between two ver-

5

tices u, v is the number of vertex-disjoint paths between them (for two paths to be vertex disjoint,

they must not pass through any of the same intermediate vertices).

A graph G is k-edge-connected if all pairs of vertices have an edge-connectivity of at least k

and k-vertex-connected (or simply k-connected) if all pairs of vertices have a vertex-connectivity

of at least k.

A subgraph of a graph G is a graph H = (VH , EH) where VH ⊆ VG and EH ⊆ {(u, v) ∈

EG|u, v ∈ VH}. If EH = {(u, v) ∈ EG|u, v ∈ VH}, then this is called the subgraph induced by VH

or simply an induced subgraph and denoted as G[VH].

1.2 Organization of the Thesis

The first part of the thesis discusses a problem in graph connectivity, the k-edge-connected

spanning subgraph (k-ECSS) problem. We analyze two different algorithms for approximating this

problem.

Chapter 2 gives an introduction to the k-ECSS problem and an overview of previous work.

Section 2.2 gives definitions of critical terms, while the remainder of the chapter gives a summary

of previous results that have been achieved.

Chapter 3 describes our results on a linear programming algorithm to solve the k-ECSS prob-

lem. Section 3.1 gives a summary of our improvements to the previous algorithm. The remainder

of the chapter describes our lower bound examples.

Chapter 4 gives a summary of our improvements to a combinatorial algorithm that solves

the same problem. Section 4.1 gives a detailed summary of previously published results. Section

4.2 gives our extension these previous results.

The second part of the thesis contains an application of graph connectivity to a particular

type of biological networks, protein-protein interaction (PPI) networks. Biologists may wish to skip

Chapters 2-4 and start directly in Chapter 5.

Chapter 5 contains a description of PPI networks. Section 5.1 is a general introduction to

PPI networks including their major features, and Section 5.2 is a discussion of previous work done

6

on PPI networks.

Chapter 6 contains our algorithm for finding the most highly connected subgraph and the

results of iteratively applying that algorithm to a PPI network.

Chapter 7 contains an analysis of protein complexes using connectivity with the intention

of using connectivity to predict unknown complexes from interaction data. In order to determine

if connectivity might be a useful indicator of protein complexes, we conducted a survey of known

protein complexes and calculated connectivity as well as other metrics currently used to predict

protein complexes. We show that connectivity is one of the properties that most differentiates

complexes from random subgraphs.

Chapter 8 gives our conclusions as well as directions for future work on the problems discussed

in Chapters 3, 4, 6, and 7.

Finally, Appendix A gives full results from Chapter 3. Appendix B contains the additional

data from Chapter 7.

Chapter 2

The k-Edge- and k-Vertex-Connected Spanning Subgraph Problem

2.1 Introduction

Suppose we have a k-connected graph G. Is every edge of G necessary to insure that we have

k disjoint paths between any two vertices of G? If the answer to that question is “no,” then it is

reasonable to ask how few edges of the original graph we could keep and still have a k-connected

graph. This is the minimum k-connected spanning subgraph problem. The problem is “spanning”

because we want to keep all vertices in the original graph and a “subgraph” problem because we

are only allowed to use edges that were in the original graph rather than adding additional ones. If

we are using edge connectivity, then the problem is called the k-edge-connected spanning subgraph

problem and abbreviated k-ECSS; if we are using vertex connectivity, then the problem is simply

called the k-connected spanning subgraph problem and abbreviated k-CSS.

(a)
A 2-connected
graph.

(b) The smallest
2-connected sub-
graph of the graph
in (a).

Figure 2.1: An example of the minimum k-ECSS.

Both problems are specific cases of a much larger problem known as the Generalized Steiner

8

Network problem. The GSN problem takes as input a complete graph G = (V,E), a cost function

on the edges, a set S ⊆ V of vertices that we don’t want to see duplicated in distinct u, v paths

(other vertices may appear in multiple paths), and a requirement function for the connectivity

between each pair of vertices r : V × V → Z. The goal is to find a minimum cost set of edges

such that all of the connectivity requirements are fulfilled. We can convert the k-ECSS problem

into the GSN by making our original graph G into a complete graph Gk by adding edges between

all pairs of vertices. Let S = ∅, r(u, v) = k for all u, v ∈ V , and c(e) = 1 if e was an edge in G

and c(e) =∞ otherwise. The k-CSS problem uses almost the same conversion, except that S = V

rather than being empty. Many other common problems are special cases of the GSN. The simplest

of these problems is the minimum cost spanning subtree problem, where our goal is to find the

minimum cost connected subgraph of a graph. The Steiner tree and Steiner forest problems, also

special cases of the GSN, are similar to the min cost spanning subtree problem, except that only

certain vertices are required to be connected. The Steiner tree problem divides the vertices into two

categories: required vertices that must be connected in the resulting tree and Steiner vertices which

can be part of the tree but are not required to be. The Steiner forest problem is similar, except

that there are multiple sets of required vertices that only need to be connected to other vertices in

the set. Converting the minimum cost spanning subtree, Steiner tree, and Steiner forest problems

into the GSN simply requires setting the appropriate connectivity requirements to 1 and giving

illegal edges infinite cost. The Steiner network, or survivable network design problem, includes all

edge-connectivity cases of the GSN (i.e., the only restriction from the general case is that S = ∅).

Another special case of the GSN is the graph augmentation problem, where we are given a graph

that is not k-connected and want to find the minimum number of edges we would need to add to

make it k-connected; this can be converted to the GSN in a similar way to the k-ECSS and k-CSS

problems, except that all edges in the original graph have cost 0 and all other edges have cost 1.

Various network flow problems, where the goal is to insure a certain amount of “flow” between

certain pairs of vertices, also fall under the GSN.

There are many reasons to look at the k-connected and k-edge-connected spanning subgraph

9

problem. First, they are interesting unsolved problems in graph theory in their own right. Secondly,

it is possible that algorithms for solving the k-CSS and k-ECSS problems may be applicable to other

GSN problems. Finally, there are many applications of networks in every day life, from computers

to roads to biological interactions. In many of these situations, we want a robust network that will

be connected even if some number k of our links are unusable.

There are several variations of both types of spanning subgraph problems. Both of these

problems have their variants on directed and undirected graphs. The k-ECSS problem also has

different variations depending on whether we are looking at simple graphs, which allow for only

one edge between any given pair of vertices, or multigraphs, which allow for multiple edges between

a given pair of vertices.

The problem of finding the smallest k-edge connected spanning subgraph of a graph G has

long been known to be NP-complete for k ≥ 2 [3]. However, despite the fact that we are un-

likely to find an efficient algorithm to find an exact solution, there are several good approximation

algorithms. An approximation algorithm is an algorithm designed to find the solution to an

optimization problem that is within a certain set ratio of the true optimum. Usually, this means

a polynomial time approximation algorithm is given for an NP-complete problem. Approximation

algorithms are not heuristics which might or might not give a good answer depending on the prob-

lem; the performance of an approximation algorithm is guaranteed. Approximation algorithms are

also not randomized algorithms; most approximation algorithms are deterministic. Each approxi-

mation algorithm has an approximation ratio, how close the solution given by the approximation

algorithm will be to the true optimum. For example, if we used a 5
4 approximation algorithm for

approximating 2-ECSS on a graph whose minimum 2-ECSS contained 8 edges, our algorithm would

be guaranteed to return a 2-ECSS with no more than 10 edges.

2.2 Definitions

All definitions refer to a graph G = (V,E), with vertex set V , edge set E, u, v ∈ V , e =

(u, v) ∈ E.

10

An edge e = (u, v) is a critical edge if G is k-connected but G− e is not.

An edge e = (u, v) is a special edge if e is a critical edge but neither of its two endpoints

have degree exactly k.

The degree of a set of vertices S ⊂ V in an undirected graph is the number of edges that

have exactly one endpoint in S and is denoted as d(S). In a directed graph out-degree of a set of

vertices S is the number of edges with only their first endpoint in S, and the in-degree of S is the

number of vertices with only their second endpoint in S. For a subset of edges D ⊂ E, let dD(v) be

the degree of v if we count only edges in D, and define dD(S) for S ⊂ V analogously to the single

vertex case.

A set of vertices in a k-connected graph is critical if it has degree exactly k. This is also

called a tight set. When there is some ambiguity about the value of k, these are referred to as

k-critical sets.

A set of vertices S in a directed k-connected graph is in (out) critical if it has in (out)

degree exactly k. A set is 2-way critical if it is both in and out critical.

A set of vertices S is bi-critical if V can be partitioned into three sets S, T1, T2 such that

T1 and T2 are both critical. Analogously, we can define a tri-critical set S, with V partitioned into

S, T1, T2, T3. Higher order criticality is defined analogously.

A set of vertices S is in (out) bi-critical if V can be partitioned into three sets S, T1, T2

such that T1 and T2 are both out (in) critical. As with the undirected case, we can also define in

or out tri-critical sets, as well as higher order in or out criticalities.

A collection of sets L is called laminar if, for any two sets S, T ∈ L, either S ⊂ T , T ⊂ S,

or S and T are disjoint.

For a set A and a singleton set {s}, we will denote A ∪ {s} as A + s.

In a weighted graph, a fractional edge is an edge with weight strictly between 0 and 1.

A critical set S in an undirected graph covers a critical edge e if e has exactly one endpoint in

S. In a directed graph, a set of vertices S covers a critical edge e = (u, v) if either S is out-critical

and u ∈ S, v /∈ S or S is in-critical and v ∈ S, u /∈ S.

11

2.3 Previous Results

For small values of k, near optimal approximation algorithms for the k-CSS and k-ECSS

problems already exist. For k = 2, for example, there is a 5
4 approximation for both the vertex and

edge connectivity versions of the spanning subgraph problem[4]. For this reason, our research will

be primarily focused on large values of k and exploring trends as k grows larger.

Note that for any k-connected or k-edge-connected graph G, there is an obvious lower bound

on the number of edges in the minimum k-CSS or k-ECSS. Because every vertex must have degree

at least k, the Handshaking Lemma implies any solution must have a minimum of kn
2 edges if G is

undirected or kn edges if G is directed. This fact will be of use in exploring many of the following

algorithms. This guaranteed lower bound allows us to derive good approximation ratios; in several

instances, we will divide all or part of our results by this kn
2 lower bound in order to give a good

bound.

An equally important, though less obvious result, concerns the upper bound on the number

of edges in the solution. By using Menger’s theorem and various results on cycles of critical edges,

Mader proved that any minimal undirected k-connected graph can have at most kn edges [5].

Mader later achieved a similar result about directed graphs, proving that a minimal k-connected

directed graph will have at most 2kn edges [6]. (Translation of these results presented in [7]).

There is also an important result about the collection of sets that covers all critical edges.

Every critical edge can be covered using a laminar family of tight sets of vertices. The proof of this

uses an “uncrossing argument”: if we have a laminar family L of tight sets that does not cover all

critical edges, there is another tight set that we can add to L that increases the number of edges

covered without violating laminarity. Take some critical set S /∈ L that covers a critical edge not

covered by any of the sets in L. We know that S must exist because there is some critical edge

not covered by a set in L, and every critical edge is covered by some critical set; otherwise, the

edge could be removed and every cut would still have value at least k, contradicting the fact that

the edge is critical. Say that S crosses a set T if S 6⊂ T , T 6⊂ S and S ∪ T 6= ∅. Let the crossing

12

number of S be the number of sets of L that S crosses. If the crossing number of S is 0, it can be

added to L. Otherwise, there is some set T ∈ L that crosses S. Jain showed that S ∪ T , S ∩ T ,

S − T , and T − S all have a lower crossing number than S. Further, either S ∪ T and S ∩ T are

both tight and together cover all critical edges covered by S and T , or S − T and T − S are both

tight and together cover all critical edges covered by S and T . Thus, one of S ∪ T , S ∩ T , S − T ,

or T − S covers a critical edge not covered by any set in L while crossing fewer sets of L than S.

This argument can be repeated until we have a critical set that covers an additional critical edge

and does not cross any sets of L; therefore it can be added to L without violating laminarity [8, 9].

2.3.1 Linear Programming Algorithms

Linear programming has produced algorithms for finding the smallest k-ECSS with some of

the best known approximation ratios to date. Mathematical programming is a technique which

seeks to maximize or minimize the value of some function, called the objective function, given a

number of constraints, which can be either equations or inequalities. When the objective function

and the constraints for a mathematical programming problem are all linear, this is called a linear

program, sometimes abbreviated as an LP. If the values of the variables in the linear program must

be integers, this is called an integer linear program (ILP) and finding the optimum value for the

objective function is NP-Hard. However, if the variables can take real values, then there are several

good algorithms for solving linear programs.

The solutions given by linear programming algorithms are called basic feasible solutions

(BFS). A basic feasible solution to a linear program with n variables is one that contains at

least n constraints that hold with equality and uniquely determine values for the n variables. If the

constraints were graphed in n-dimensional space, the solution space of the LP would be represented

by an n-dimensional polyhedron with the basic solutions as the corners of the polyhedron. The

fact that one of the optimal solutions to a linear program is always a BFS is an important reason

that efficient solutions exist to solve linear programs.

The k-ECSS problem can be considered an integer linear program, where our requirement is

13

that each proper subset of vertices must have in and out degree at least k. Consider a multigraph

G = (V,E) where each edge e ∈ E has multiplicity ue. Take a vector x with one entry for each

edge. Then our goal becomes:

minimize
∑

e∈E

xe

subject to :dx(S) ≥ k ∅ ⊂ S ⊂ V

xe ∈ {0, 1, . . . , ue} e ∈ E

While the number of constraints in this problem is exponential in the number of vertices, Jain

showed that there is an equivalent LP with a polynomial number of constraints [8]. For reasons of

simplicity, we will continue to show the k-ECSS problem with the notation above, but whenever

we talk about “solving” the LP, we will be solving the polynomial version.

As mentioned before, finding an exact solution to this integer linear program would be NP-

Hard. However, if we relax the requirements of the integer linear program and allow non-integer

values for the edges, then there are efficient algorithms that can solve this problem, giving us a

BFS [9]. If we apply this relaxation to our original linear program, we get:

minimize
∑

e∈E

xe

subject to :dx(S) ≥ k ∅ ⊂ S ⊂ V

0 ≤ xe ≤ ue e ∈ E

This relaxation leads to a natural approximation algorithm: solve the relaxation, and for

every edge which is included fractionally in the solution, round up to include the full edge.

There are two major advantages to looking at the k-ECSS as a linear program. The linear

programming problem has many applications, and so has been studied by mathematicians, com-

puter scientists, and businessmen for many years. As a result, there are efficient algorithms known

14

for solving it. Linear programs also have a duality result: for every linear program minimization

problem, there is a dual maximization problem such that the only solution that the two problems

have in common is the optimum. By looking at feasible solutions of the dual problem, we can

obtain upper or lower bounds on the solution to the primal problem.

Linear programs have been used successfully in many Generalized Steiner Network Problems.

Linear programming gives a 2-approximation for the Steiner tree and Steiner forests problems

(where the connectivity requirement between any pair of vertices is either 0 or 1) [10]. Even more

important is Jain’s proof of a 2-approximation for the edge-connectivity version of the Survivable

Network Design Problem (there is an edge connectivity requirement between each pair of vertices)

[8]. Jain proves that in any basic feasible solution of the LP, there will be at least one fractional

edge f such that the value of f is at least 1
2 . This theorem leads to an iterated algorithm. First,

solve the linear program for existing connectivity requirements. Then, for any edge ei that has a

value of 0 or 1, add the constraint ei = 0 or ei = 1 to make sure that edge keeps its current value.

Also round up any edge ef with fractional weight at least 1
2 and add ef = 1 to the constraints. If

there are still some connectivity requirements not satisfied by edges with integer weights, re-solve

the linear program with adjusted constraints. Note that in the next stage, the total weight of the

edges not constrained to be 0 or 1 cannot increase, because the current fractional weights satisfy

all requirements, and therefore a minimum solution cannot have any greater weight. Because of

this, the weight of the solution cannot increase by more than the amount that we have rounded.

Also note, however, that because of Jain’s theorem, at least one fractional edge in the new solution

must have weight at least 1
2 , and thus can be rounded in the next stage of rounding. Repeat this

procedure until all requirements are satisfied by edges with integer weights, which will take fewer

than m iterations. This algorithm gives the desired bound of 2. The solution to the relaxed linear

program we solved in the first iteration is less than or equal to the optimum. Because the total

weight of the unconstrained edges could not increase and we were only rounding edges with weight

at least 1
2 , then through all iterations we can at most double the weights of the fractional edges

from the first iteration.

15

This algorithm gives the desired bound of 2. The solution to the relaxed linear program we

solved in the first iteration is less than or equal to the optimum. Because the total weight of the

unconstrained edges could not increase and we were only rounding edges with weight at least 1
2 ,

then through all iterations we can at most double the weights of the fractional edges from the first

iteration.

Jain’s algorithm has many uses in the general case of the GSN problem. In particular,

Jain’s algorithm gives the only known constant approximation algorithm for the general case of

the undirected Steiner network problem. A modified version of Jain’s algorithm can sometimes

be used in the directed case: if the requirement function meets certain conditions, then we can

prove that there will be a fractional edge f such that the weight of f is at least 1
3 , giving us a 3-

approximation algorithm [11]. Unfortunately, this does not work on the general case of the directed

Steiner network, which is NP-Hard to approximate within a constant factor.

Gabow, Goemans, Tardos, and Williamson use a linear program for their 1 + 2
k algorithm

for k-connectivity on undirected multigraphs[12]. Their algorithm uses the linear relaxation, then

rounds up any fractional edges. In their analysis, they make use of the fact that in a basic feasible

solution, the weights of the fractional edges are uniquely determined by a collection of critical sets,

meaning that there is a 1-to-1 correspondence between the fractional edges and the sets. As we

have already shown, that collection can be laminar, and a laminar family of subsets of an n element

set can have no more than 2n members. Thus, there are no more than 2n fractional edges, and

rounding will increase the solution by no more than 2n. Because OPT ≤ kn
2 this gives us that

the rounded approximation is less than (OPT + 2n)/OPT ≤ 1 + 2n/(kn/2) = 1 + 4
k times the

optimum. Further refinement of this argument can be achieved by looking at the weights of the

fractional edges, allowing us to prove a 1 + 2
k approximation ratio for even values of k and a 1 + 3

k

approximation ratio for odd values of k. If we combine these results with Jain’s iterated rounding,

this gives a ratio of 1 + 2
k for all values of k. There exist algorithms for solving linear programs

in polynomial time, and because there can be no more than 2n fractional edges, the number of

iterations of the algorithm is also polynomial. Therefore, the entire algorithm is polynomial, though

16

it is a large polynomial. Gabow et. al. also showed that the 1 + 2
k bound is tight for multigraphs

by giving an example multigraph on which the linear program will achieve this ratio.

2.3.2 Combinatorial Algorithms

Linear programming algorithms are useful, and they have produced good approximation

algorithms, but they have some serious drawbacks. The algorithms used to solve linear programs

are expensive in terms of both the time and the space required. Running the iterated rounding

algorithm can take as long as O(n10m7) [8]. It would be far more efficient if, rather than relying on

the linear program, we could obtain our approximation algorithm by looking at the combinatorial

properties of the graph itself.

Cheriyan and Thurimella developed a combinatorial algorithm to approximate the smallest

k-connected subgraph of a simple graph using matching [1]. By using matching, Cheriyan and

Thurimella achieve a graph where every vertex has a minimum degree, then augment the graph by

adding edges until the graph is k-connected. The approximation ratio of this algorithm is based off

of the number of edges that have to be added in the augmentation step. Cheriyan and Thurimella’s

technique works for both vertex and edge connectivity, although there are slight differences in the

way that it is implemented for both. The algorithms achieve a bound of 1+ 1
k for vertex connectivity,

1 + 2
k+1 for edge connectivity in undirected graphs, and 1 + 4√

k
for directed graphs.

For vertex connectivity, the first step is to find the subgraph with the smallest number of

edges such that every vertex has degree k − 1. This can be done in O(m
3

2 (log(n))2) time (it is

the b-matching problem, a well-known problem in P). The subgraph is then augmented to make

it k-connected. This will produce a graph with no more than n − 1 + |M | edges, where M is the

smallest edge set such that every vertex has degree at least k − 1. Cheriyan and Thurimella then

prove that the optimum k-connected subgraph will have no fewer than n
2 + |M | edges. This second

step takes O(m
3

2 (log(n))2). Combining these two gives the desired approximation ratio of 1 + 1
k in

a time of O(km2 + m
3

2 (log(n))2). This is currently the best known approximation ratio for vertex

connectivity [7].

17

For edge connectivity, two very similar algorithms are used. Variations exist for both the

directed and undirected cases. When using the algorithm on edge connectivity, we first find M ,

a minimum edge set such that every vertex has degree at least k. Again, this can be done in

polynomial time. Then, start with G′ = G where G is our original graph. For every edge e ∈ E−M ,

determine if G′ − e is k-connected. If it is, remove the edge and continue with G′ = G′ − e. The

approximation ratio for this algorithm depends on the number of critical edges from E−M , which

is less than or equal to the number of special edges in G. For undirected graphs, Cheriyan and

Thurimella prove that there will be no more than k|V |
k+1 edges in E−M in the final graph by looking

at the laminar family of critical sets. This gives an overall approximation bound of 1 + 2
k+1 for

the undirected case. For the directed case, we find M as the minimum edge set such that every

vertex has in and out degree at least k, then use the same procedure as in the undirected case to

augment M into a k-connected graph. Cheriyan and Thurimella prove that there will be no more

than 4n
√

k special edges in a directed graph by looking at the laminar families of in- and out-

critical sets. This bound on the special edges gives an overall approximation bound of 1 + 4√
k
. For

both undirected and directed graphs, the time bound is the same as for the vertex connectivity

algorithm.

Gabow [13] refines that analysis somewhat. Rather than looking at two families, one of in-

critical sets and one of out-critical sets, he looks at a single laminar family that includes both the

in- and out-critical sets (the existence of such a set was proved by Frank [14]). For any integer k,

Gabow looks at the two unique integers τ and ω such that 0 ≤ ω ≤ τ and:

k =
τ(τ + 1)

2
+ ω (2.1)

To see that these numbers are unique, just note that this equation implies that k is exactly ω

larger than the sum of the first τ integers. Using those values for τ and ω, we can define a function,

σ defined on k so that:

18

σ(k) = τ +
ω

τ
(2.2)

Then, by using certain results about criticality and bi-criticality, Gabow proves that for

k ≥ 15, there will be no more than n∗σ(k) special edges. This improves the approximation ratio of

Cheriyan and Thurimella’s algorithm from 1 + 4√
k

to approximately 1 +
√

2√
k
. Gabow also provides

an example which proves that the bound on the number of special edges is tight for all values of k

for which it applies.

Multigraphs are also treated in [13]. By improving on the algorithm developed in [15], Gabow

is able to use a combinatorial algorithm to find the smallest k-ECSS of a multigraph to within a

factor of 2 − 1
3k . At the time, this was the only algorithm for finding the smallest k-ECSS of a

directed multigraph that was guaranteed to be under a 2-approximation. A better combinatorial

algorithm for undirected multigraphs was developed by Khuller and Raghavachari by using a variant

of depth first search, giving a bound of 1.85 [16]. Gabow used the properties of laminar families

to refine the analysis and modify the algorithm slightly to give a bound of 1.61 on undirected

multigraphs [17]. Currently, all of these bounds have been bested by the LP technique in [12].

2.3.3 Results on Criticality

It is a widely known result mentioned in [1] among others that in simple graphs there are

restrictions on the potential size of k-critical sets. A k-critical set can consist of a single vertex,

but if there is more than one vertex in the set, then there must be at least k vertices in the set.

Gabow [13] expanded these results to encompass bi-, tri-, and higher order criticality sets as

well. For a k-critical set S of order c, |S| = s:

ck + s(s− 1) ≥ sk (2.3)

When we are dealing with bi-critical sets, we have c = 2 and our equation implies that for

k ≥ 7, either s ≤ 2 or s ≥ k− 1. For higher order criticalities, similar inequalities will hold, but for

19

progressively higher values of k.

There are two other implications of the equation that are worthy of note. The first is that

either s ≤ c or s ≥ k− c + 1 for values of c ≈
√

k. The second is that a k-critical set of order c can

be of size c
2 only if c ≥ k/4.

2.3.4 Theoretical Bounds

As mentioned before, the k-ECSS problem is NP-Complete for k ≥ 2. A relatively recent

result has been to prove that the problem is in fact MAXSNP hard, meaning that there is a limit

to how small the approximation guarantee can be for any polynomial algorithm, unless P = NP.

For any given instance of the problem, the approximation bound will depend on k.

Fernandes proved that the 2-ECSS problem is MAXSNP-hard for undirected graphs using a

reduction from VC3, the vertex cover problem for graphs where every vertex has degree less than

or equal to three, to 2-ECSS [18]. The reduction is done by taking an instance G of VC3 and

transforming it into an instance H of 2-ECSS. Each edge of G is transformed into a gadget in H

consisting of six vertices and six edges; H has one additional vertex where all gadgets are linked

together. If we say that G has m edges, n vertices, and a smallest vertex cover C, and H has a

smallest 2-ECSS K, it can be shown that:

|K| = 6m + |C| ≤ 19|C| (2.4)

The last inequality comes from the facts that a vertex has degree at most 3, so each vertex

in C can cover at most 3 edges, and that C must cover all m edges; thus 3|C| ≥ m. This implies

that whatever approximation bound our algorithm gives for 2-ECSS, it will give a better one for

VC3, and because VC3 is MAXSNP-hard [19], 2-ECSS will be also.

Gabow et. al. extended this result to cover all values of k > 2. Their reduction changes an

instance G of VC3 into a multigraph H which then has an k-ECSS K such that if G has m edges

and a vertex cover C, then:

20

|K| = (6 + 14k)m + |C| ≤ (19 + 42k)|C| (2.5)

Given this inequality, for any fixed value of k, the argument is the same as it was for k = 2

that k-ECSS is MAXSNP-hard. In fact, this equation implies something more: the approximation

bound for any polynomial k-ECSS algorithm will be worse than 1 + c
k for some constant c. While

the ratio will improve as k gets larger, there is a limit to how fast it can improve.

The results from Gabow et. al. can also be modified to work on digraphs, giving the same

approximation results for k ≥ 1. An analogous result also applies to simple graphs, although this

result is not nearly as strong. Because the multigraph has to be broken up and many more vertices

have to be added, this technique proves only that the approximation bound for any polynomial

k-ECSS algorithm on simple graphs will be worse than 1 + c
k2 .

Vertex connectivity is also MAXSNP hard. Chumaj and Lingas use a reduction from the

traveling salesman problem to prove that there exists some value ǫ such that k-node-connectivity

cannot be approximated to within 1 + ǫ [20]. For more general vertex connectivity problems which

allow the edges to have a variety of costs, Kortsarz, Krauthgamer, and Lee proved that the lowest

cost vertex connectivity problem cannot be approximated to within 2log1−ǫ(n) on any graph with n

vertices [21].

2.4 Our Work

Most of our work has been on the k-ECSS problem for simple graphs. We have explored

two different approximation algorithms for this problem and made improvements to each. The

first algorithm is the linear programming algorithm of Gabow, Goemans, Tardos, and Williamson

[12]. We improve the analysis of the algorithm in the case of simple graphs. The approximation

ratio for this algorithm is based on how many edges need to be rounded. By looking at various

theorems on the size of critical sets, we have improved the approximation ratio of this algorithm on

undirected simple graphs from 1 + 2
k to 1 + 1

k + 3
k2 + 3

k2
√

k
+ O(1

k3). We also improve the algorithm

21

by modifying the way that edges are chosen to be rounded. If we round intelligently, we can push

the approximation bound even further, to 1 + 1
2k + O(1

k2).

We have also looked at lower bounds for the linear programming algorithm. We have shown

that a k-edge-connected graph with n vertices can have a laminar family with as many as n(1 +

3
k + 1√

2k
√

k
− O(1

k2)) critical sets. For the standard iterated rounding algorithm, where all edges

with weights of at least 1
2 are rounded up, we have an example where the algorithm gives a 1+ 1

k +

3
k2 + 1√

2k2
√

k
−O(1

k3) approximation.

The second algorithm is Cheriyan and Thurimella’s algorithm for finding a k-ECSS by using

matching [1]. The approximation ratio is based on the number of “special” edges in the graph.

Gabow improved the bound on the maximum number of special edges that can be in a simple graph

when k ≥ 15 [13]; we extend Gabow’s bound to values 10 ≤ k < 15.

Chapter 3

Better Bounds for Approximating the Minimum k-ECSS with LP Rounding

In this chapter, we discuss our work on approximating the smallest k-edge-connected sub-

graph of a simple, undirected k-edge-connected graph using linear programming. Section 3.1 gives

our improvements to the approximation bound. Sections 3.2 and 3.3 give lower bound examples.

Recall from Chapter 2 that linear programming approximation to the minimum k-ECSS

problem works by formulating the problem as an ILP, relaxing to allow fractional edges, solving

the relaxed LP, then rounding fractional edges in the LP solution. The approximation bound is

based on how many edges need to be rounded and the weights on those edges.

Gabow et al. [12] proved that the linear programming technique of iterated rounding gives a

bound of 1+ 2
k . Under iterated rounding, edges with weight at least 1

2 are rounded, the requirements

of the linear program are updated, the linear program is solved again, and the process is repeated.

Because the weights on the fractional edges are uniquely determined by a laminar family of tight

sets [8], and a laminar family of subsets of an n element set can have at most 2n elements, there

are at most 2n fractional edges. Rounding these will add n to the solution, which when divided by

the lower bound of kn
2 , gives the desired bound. Gabow et al. also gave a lower bound example to

show that this bound is tight for multigraphs.

We improve the bound of Gabow et al. for simple, undirected graphs. First, we show that

while an arbitrary laminar family may have 2n sets, a laminar family of critical sets in a simple

undirected graph can have at most n
(

1 + 3
k + 3

k
√

k
+ O(1

k2)
)

sets. This immediately improves the

approximation bound from 1 + 2
k to 1 + 1

k + 3
k2 + 3

k2
√

k
+ O(1

k3). In addition, we give a new method

23

of rounding the edges that gives a bound of 1 + 1
2k + O(1

k2) in simple, undirected graphs, a further

improvement when k is large.

To demonstrate lower bounds on the approximation guarantee, we give an infinite family of ex-

amples of simple, undirected graphs which each contain a laminar family of n
(

1 + 3
k + 1√

2k
√

k
−O(1

k2)
)

critical sets. This shows that our n
(

1 + 3
k + 3

k
√

k
+ O(1

k2)
)

bound is close to tight. We also show

how to modify this infinite family of examples to give basic feasible solutions to the linear pro-

gram with n
(

1 + 3
k + 1√

2k
√

k
−O(1

k2)
)

edges of weight 1
2 . Rounding all of these edges as is done

in the traditional round-the-highest algorithm (iteratively rounding all edges with weights at least

1
2) will result in an approximation ratio of 1 + 1

k + 3
k2 + 1√

2k2
√

k
− O(1

k3). This shows that the

1 + 1
k + 3

k2 + 3
k2

√
k

+ O(1
k3) bound for the round-the-highest method is also close to tight.

3.1 Improved bound for LP rounding

In this section we discuss the improvements we have made to the LP rounding algorithm for

finding the smallest k-edge-connected subgraph of a simple, undirected k-edge-connected graph.

We will give an overview of all improvements. For full details, see Appendix A.

Recall some critical definitions. A laminar family L is a collection of sets such that for any

S, T ∈ L, either S and T are disjoint or one is a subset of the other. In a graph G = (V,E), the

degree of a vertex v ∈ V is denoted by d(v). For a subset of edges D ⊂ E, let dD(v) be the degree

of v if we count only edges in D. For a real valued function x on the edges, let dx(v) be the degree

of v counting each edge according to its value x(e). For a subset of vertices S ⊂ V , let d(S) be the

number of edges that have exactly one endpoint in S, and define dD(S) and dx(S) analogously to

the single vertex case.

Recall that the k-ECSS problem can be formulated as an integer linear program. For every

edge e, define an indicator variable xe and let xe = 1 if we include e in our subgraph and xe = 0

otherwise. Then, the k-ECSS problem reduces to the following ILP:

24

minimize
∑

e∈E

xe

subject to :dx(S) ≥ k ∅ ⊂ S ⊂ V

xe ∈ {0, 1} e ∈ E

Though this ILP has an exponential number of constraints, there is an equivalent version

where the number of constraints and equations is polynomial in the size of the graph [8]. A

minimum solution to this ILP would give a minimum k-ECSS. As discussed in Chapter 2, the k-

ECSS problem is NP hard, so obtaining an exact solution to this ILP is NP hard as well. However,

we can get an approximate solution using an algorithm we call round-the-highest. First, we relax

the conditions to allow for fractional edges:

minimize
∑

e∈E

xe

subject to :dx(S) ≥ k ∅ ⊂ S ⊂ V

0 ≤ xe ≤ 1 e ∈ E

We can solve the polynomial version of this LP in polynomial time and round some of the

fractional edges, those edges e where xe is strictly between 0 and 1 in the solution of the LP (call xe

the weight of edge e). We use iterated rounding to round the edges, meaning that we round only

those edges that have weight at least 1
2 . We then update our linear program: for every edge e ∈ E

that was either rounded or had xe = 1 in the solution to the current LP, add the constraint xe = 1.

We solve the updated LP and again round and update. We repeat this process until all constraints

are satisfied. Recall from Chapter 2 that Jain [8] proved that a solution to this linear program will

always have an edge of weight at least1
2 . Jain also showed that the values of the fractional edges

are uniquely determined by a system of linear equations, d(S) = k, S ∈ L where L is a laminar

family of sets. Therefore, if OPT is the number of edges in the smallest k-ECSS, round-the-highest

25

will give a k-ECSS with fewer than OPT + |L|
2 edges. This gives a naive approximation bound of

1 + |L|
2(OPT) ≤ 1 + |L|

kn ≤ 1 + 2
k based on the fact that OPT ≥ kn

2 and |L| ≤ 2n.

We make two improvements to this bound. First, while it is possible for an arbitrary laminar

family of subsets of an n-element set to have 2n subsets, if the elements of the laminar family are

critical sets of vertices in a k-edge-connected simple graph, the size of the laminar family is far

more restricted. We improve the bound on the possible size of a laminar family of critical sets from

2n to n
(

1 + 3
k + 3

k
√

k
+ O(1

k2)
)

. Second, we suggest a more intelligent way to round the edges.

Rather than rounding every edge of weight 1
2 or greater, we only round one edge every iteration,

giving priority to edges that we call “good” edges. This improved rounding further reduces the

approximation bound.

3.1.1 Improved bound on the size of the laminar family

For any n element set, a laminar family of subsets can contain no more than 2n sets. If

our laminar family is also a family of critical sets in a simple graph, we can improve this bound

considerably.

Recall that in a k-edge-connected graph, a set S is r-critical if V −S can be partitioned into

exactly r sets of degree exactly k. If S is an r-critical set with |S| = s, then we know

rk ≥ s(k − s + 1) (3.1)

based on the fact that each vertex in S must have degree at least k but can have no more than

s− 1 neighbors in S [13]. Note that a critical set is 1-critical under this notation.

Lemma 1 (Criticality). An r-critical set has cardinality ≤ r or ≥ k − r + 1 if at least one of the

following holds:

(i) r = 1

(ii) r = 2 and k ≥ 7

(iii) r ≤
√

k − 1
2

26

Part (i) is a well-known result mentioned in [1] among others. Part (ii) is shown for directed

graphs in [13].

Proof. The proof of all three parts follows from basic manipulation of Eq.3.1. For details, see

Appendix A.

We will divide the laminar family of critical sets into singleton sets, those with only a single

vertex, and nonsingleton sets. Obviously, there can be at most n singleton sets. We will look at

the family of nonsingleton sets, N . We will use a tree notation to describe N . A leaf of N will be

a set L ∈ N such that there does not exist S ∈ N such that S ⊂ L. For S,X ∈ N , we will say X

is a descendant of S if X ⊆ S. We will say X is a child of S if X is a proper descendant of S and

there is no Y ∈ N such that X ⊂ Y ⊂ S. Note that the Criticality Lemma implies that all sets of

N must have cardinality at least k.

In order to minimize confusion, we will refer to the sets in the laminar family that make up

the nodes of the tree as “sets” or “nodes” and the vertices of the original graph as “vertices.”

The number of nonsingleton sets is bounded by the following theorem:

Theorem 1. In any simple, weighted k-edge-connected graph G=(V,E) where |V | = n, a laminar

family of nonsingleton sets of degree k has cardinality no more than n
(

3
k + 3

k
√

k
+ O(1

k2)
)

Proof. Let N be a laminar family of nonsingleton critical sets.

We will prove the limits on the size of N implied by the Criticality Lemma by using a

concept that we call excess. Excess is defined as follows: for a set S ∈ L, let X = {X1, . . . ,Xℓ}

be a collection of pairwise disjoint descendants of S. Say S has excess ∆X over X if:

|S| −
ℓ

∑

i=1

|Xi| ≥ ℓ + ∆X

Note that if we let X1 = S, any set will have excess −1 over itself.

The key insight is that because of criticality, any set with excess 2 actually has a larger excess

if ℓ is small.

27

Claim 1. If a critical set S has excess of 2 over X = {X1, . . . ,Xℓ} and ℓ ≤
√

k− 3
2 , then S actually

has an excess of k − 2ℓ.

The proof of this claim follows from part (iii) of the Criticality Lemma because S −⋃

Xi is

an (ℓ + 1)-critical set (with the partition S −⋃

Xi,X1, . . . ,Xℓ, V −S) that has ℓ + 2 vertices. This

claim implies that either the excess or ℓ must be large.

To prove the n
(

3
k + 3

k
√

k
+ O(1

k2)
)

bound, we will give each vertex 3
k + 3

k
√

k
+ O(1

k2) credits

and show we can pay for each set using 1 of these credits. We will start with the leaves of N and

work our way up the tree.

We will give each node of the tree a label ∆ ∈ {−1, 0, 1}. Leaves will be labeled as ∆ = −1.

For a nonleaf S, let X(S) be the collection of maximal proper subsets of S which all have ∆ = −1.

If S has excess 1 over X(S), we give S label ∆ = 1. If S has excess 0 over X(S), we give S label

∆ = 0. If S has excess at least 2 or no more than −1 over X(S), we give S label ∆ = −1.

We will want each set to have a certain number of credits on it based on its label. We will

maintain the following invariant:

Invariant: A set S with label ∆ will have 1−∆ credits remaining on it after we have paid

for S and all of its descendants.

By the Criticality Lemma, leaves of N must have at least k vertices. Each of these k vertices

has 3
k + 3

k
√

k
+O(1

k2) credits on it, giving a total of at least 3+ 3√
k

+O(1
k) credits on the leaves. We

can use the first 3 credits to pay for the leaf and satisfy the invariant. We will show that we can

maintain the invariant for a non-leaf node S with label ∆. If S has excess less than 2 over X(S),

we will show that the invariant will guarantee that there will be enough credits on the children of

S to pay for S and leave 1−∆ credits. If S has excess 2 over X(S), then we will show that we can

obtain 3 credits either from the vertices of S −X(S) or from the remaining credits on the leaves.

Consider a nonleaf set S with excess less than 2 over X(S). Assume that all of its descendants

have been paid for and all of its children have the credits required by the invariant. First consider

the case that S has only one child C, and C has label ∆C . If ∆C = −1, then X(S) = C. Because

28

|S − C| ≥ 1 and S does not have an excess of 2, ∆ ≥ ∆C + 1. If ∆C 6= −1, then X(S) = X(C).

Again because |S − C| ≥ 1 and S does not have an excess of 2, ∆ ≥ ∆C + 1. In either case, there

are 1−∆C ≥ 2−∆ credits on C, allowing us to pay for S and maintain the invariant.

Now, consider the case that S has at least 2 children C = {C1, . . . , Cc}. Let ∆i be the label

of Ci. If ∆i = ∆j = −1 for some i, j ≤ c and i 6= j, then there are at least 4 credits on the children.

This is enough to pay for S and maintain the invariant no matter what the label of S. Otherwise,

if there is a child with label −1, let that child be C1. Then X(S) =
⋃

X(Ci) ∪ {C1} for 2 ≤ i ≤ c

if ∆1 = −1 or X(S) =
⋃

X(Ci) for 1 ≤ i ≤ c if ∆1 6= −1. In either case, S has excess
∑c

i=1 ∆i

over X(S). There are c−∑c
i=1 ∆i credits on the children of S. Under our assumptions that S has

excess less than 2 over X(S) and c ≥ 2, S has label ∆ ≥∑c
i=1 ∆i. We have at least 2−∆ credits,

enough to pay for S and maintain the invariant.

This completes the proof that we can pay for all sets S with excess less than 2 and maintain

the invariant, assuming that the invariant is maintained on the children. For a set C with excess

2 or greater, there are two possibilities. The first is that |X(C)| ≤
√

k − 3
2 , in which case, there

must be at least k −
√

k + 3
2 vertices in C − X(C). Because each vertex has 3

k + 3
k
√

k
+ O(1

k2)

credits, there are enough credits on these vertices to pay for C and maintain the invariant. If

|X(C)| ≤
√

k − 3
2 , we will pay for C using the credits on the leaves. Because a tree with ℓ leaves

can have no more than ℓ−1
r−1 nodes with r children, there can be no more than ℓ√

k− 5

2

nodes with

excess 2 and |X(C)| ≥
√

k − 3
2 . This allows us to pay for C and maintain the invariant using the

remaining 3√
k

+O(1
k) credits on each of the leaves. See Appendix A for the details of this case.

This results in an immediate improvement in the approximation ratio:

Corollary 1. Iterated rounding approximates the smallest k-ECSS to within a factor of 1 + 1
k +

3
k2 + 3

k2
√

k
+ O(1

k3).

Proof. Because there is a 1-1 relationship between the fractional edges and the sets in the lam-

inar family [8], there can be at most n
(

1 + 3
k + 3

k
√

k
+ O(1

k2)
)

fractional edges. Because we in-

crease the weight by at most 1
2 for every fractional edge, we increase the weight of the graph by

29

n
2

(

1 + 3
k + 3

k
√

k
+ O(1

k2)
)

. Dividing this by the minimum weight of an optimal k-ECSS, kn
2 , gives

us the desired bound.

Both of these bounds are very close to tight. Section 3.2 gives an example of a k-edge-

connected graph with a laminar family of critical sets of size

n

(

1 +
3

k
+

1√
2k
√

k
−O(

1

k2
)

)

.

Section 3.3 gives an example of an extreme point solution to the LP with

n

(

1 +
3

k
+

1√
2k
√

k
−O(

1

k2
)

)

edges of weight 1
2 . Round-the-highest gives an approximation ratio of

1 +
1

k
+

3

k2
+

1√
2k2
√

k
−O(

1

k3
)

on this example.

3.1.2 Improved rounding algorithm

The approximation ratio can be improved further if, with each iteration, we only round some

edges with weight at least 1
2 rather than all of them. If we choose the edges to round intelligently,

we can significantly improve the approximation ratio for large values of k.

Consider an extreme point solution of the LP. Let F be the set of all fractional edges. Call

a fractional edge heavy if its weight is greater than or equal to 1
2 . Let L be the laminar family

that determines the values of the fractional edges. As before, we will want to partition L into two

subfamilies, the family of singletons S and the family of nonsingletons, N . We further want to

subdivide the set of singletons into:

S2 = {v ∈ S : dF (v) = 2} S3 = {v ∈ S : dF (v) ≥ 3}

At any iteration, call a heavy edge good if it joins two vertices of S2. Intuitively, a good edge

is one that can be rounded cheaply because it is heavy, and rounding it will cause two singleton sets

30

that were not previously incident to at least k unit edges to become so. Once those two singletons

are incident to k unit edges, they are no longer tight sets covering fractional edges. Thus our

laminar family shrinks by two sets for the cost of rounding a single edge.

Our new algorithm is iterated rounding, with a slight modification: at every iteration we

round exactly one heavy edge. If possible, we round a good edge.

Theorem 2. The above version of iterated rounding approximates the smallest k-ECSS to within

a factor of 1 + 1
2k + O(1

k2).

Proof. Let L be the laminar family corresponding to the first iteration of the algorithm where there

is no good edge. F , N , S, etc. will all refer to this iteration.

The total number of edges that will be rounded will be the number of (good) edges rounded in

previous iterations plus |L| = |S|+ |N |. For any good edge that was previously rounded, e = (v,w),

v and w will not be singletons of L. Thus, there can be at most n−|S|
2 edges rounded in previous

iterations. Rounding these will add at most n−|S|
4 to the weight of the solution. The value of |N |

is bounded by Theorem 1. We can bound |S| by bounding |S2| and |S3|. We bound |S3| using the

handshaking lemma:

2|S2|+ 3|S3| ≤
∑

v∈V

dF (v) = 2(|S|+ |N |) = 2(|S2|+ |S3|+ |N |)

This simplifies to |S3| ≤ 2|N |.

Note that because the weights of the fractional edges incident to a vertex of S2 must sum to 1

(because a singleton set must have degree exactly k). Thus, every vertex in S2 must be incident to

a heavy edge. If the other endpoint of that heavy edge was a vertex in S2, then it would be a good

edge, contradicting our assumption that there is no good edge at this iteration of the algorithm.

Therefore, every vertex in S2 must have a fractional edge leading to a vertex not in S2. This allows

us to bound |S2|:

|S2| ≤
∑

v/∈S2

dF (v) = 2(|S| + |N |)− 2S2 = 2(|S3|+ |N |) ≤ 6|N |

31

So |S| = |S2|+ |S3| ≤ 8|N |.

Overall, we will increase the objective function by no more than n−|S|
4 + |L|

2 = n+|S|
4 + |N |

2 ≤
n
4 + 5|N |

2 . By Theorem 1, |N | = O(1
k), so substituting in this value and dividing by kn

2 gives the

desired approximation ratio.

This analysis can be refined further to improve the constant factor on the 1
k2 term. The

details are in Appendix A, Section 4.

3.2 Laminar family lower bound example

3.2.1 Overview

We now exhibit an infinite family of graphs G = (V,E) with a large laminar family of critical

sets. The size of this laminar family is close to the upper bound proved in Section 3.1.1. Specifically,

we will prove the following theorem:

Theorem 3. For values of k ≥ 8 that are twice the value of an even perfect square, there exists a

graph G = (V,E) with a laminar family of critical sets of size

n

(

1 +
3

k
+

1√
2k
√

k
−O(

1

k2
)

)

.

We prove this theorem by constructing the graph. We first give an overview of the con-

struction before moving into the details in Section 3.2.2. In Section 3.2.3 we prove the example is

k-edge-connected and calculate the number of sets in the laminar family.

Our laminar family will consist of several types of sets as illustrated in Fig. 3.1. All vertices

will be singleton sets. An L-set will be a critical set of k + 1 vertices containing a critical subset

of k vertices. We will have two types of S-sets. A minimal S-set will be a critical set of k + 2

vertices that contains a critical subset of k + 1 vertices, which in turn contains a critical subset of

k vertices. Larger S-sets will be the union of an S-set and an L-set. We will say that an S-set is

at height i if there are i smaller S-sets contained in it, so an S-set at height i, i > 0, will be the

union of an L-set and an S-set at height i− 1. Finally, T -sets will be the union of two S-sets. We

32

define

h =
k

2
(3.2)

and

σ =
√

h. (3.3)

In the terminology used in the upper bound proof in Section 2, an L-set is a small chain node

whose only child is a leaf. A minimal S-set is a small chain node whose child is another small chain

node and whose grandchild is a leaf, while a larger S-set is a branching node with two children. A

T -set is also branching node with two children. These sets are differentiated by their excess. An

L-set has an excess of 0 over its (leaf) child. An S-set has an excess of 1 over {X : X ⊂ S and

X is a leaf }. A T -set has an excess of 2 over {X : X ⊂ T and X is a leaf }. The T -set contains

2σ =
√

2k >
√

k − 3/2 leaves, so it does not violate Claim 1 of Theorem 2.2.

3.2.2 The Construction

L-sets are referred to as Li, 1 ≤ i ≤ σ−1, where i is the height of the smallest S-set containing

the L-set. Li has k + 1 vertices, {0, 1, . . . , k− 1, ℓi}. Let Ai = {0, 1, . . . , k− 1}. We construct edges

incident to the vertices of Li so that the following conditions hold: d(ℓi, Ai) = d(ℓi, Li) = h and

d(Ai) = d(Li) = k. The vertices of Ai form a complete graph. Also, for h vertices u ∈ Ai there is an

edge (u, ℓi) and d(u,Li) = 0; for the remaining h vertices, there is no edge (u, ℓi) and d(u,Li) = 1.

Minimal S-sets are referred to as S0. S0 has k + 2 vertices, {0, 1, . . . , k − 1, s, t}, where

we let A0 = {0, 1, . . . , k − 1} and B0 = A0 ∪ {s}. Notice that sets Ai refer to the grandchild

of S0 when i = 0 and to the child of an L-set when i > 0. We construct edges incident to the

vertices of S0 so the following conditions hold: d(s,A0) = d(t, A0) = d(s, S0) = d(t, S0) = h and

d(A0) = d(B0) = d(S0) = k. The vertices of A0 form a complete graph. For h vertices u ∈ A0

there is an edge (u, s), and for the remaining h vertices there is an edge (u, t). For all u ∈ A0,

d(u, S0) = 0.

Larger S-sets are defined inductively. For an S-set at height r, 1 ≤ r ≤ σ − 1, Sr =

33

L
3

S
2

S
3

h−σ
h−σ

L2 S1

L1 S0

l3
l2

l1

1A

0A

σ/2

σ/2

σ/2σ/2

h
h

h

h/2

h/2

h

σ σ

h
h

t

s
h/2 − σ

h/2 − σ

2A3 A

Figure 3.1: An S-set at height 3 and all its descendants.

34

σ−1

h h

S’
T

3 2

1 1

2l l

l

l’

l’

s

t t’

s’

l’3

σ−1S

Figure 3.2: The edges between the two Sσ−1 sets in a T -set that has σ = 4.

Sr−1 ∪ Lr. Observe that since Sr contains only one S0, the vertices s, t ∈ Sr are unique. Given

d(Sr−1) = d(Lr) = k, we will arrange the edges so that d(Sr−1, Lr) = h as well as d(Sr) = k. The

edges are arranged as follows: if r > 1, then d(Ar, s) = d(Ar, t) = σ/2 and d(Ar, ℓr−1) = h − σ;

otherwise, if r = 1, d(A1, s) = d(A1, t) = h/2. For the edges leaving Sr, let d(ℓr, Sr) = h,

d({s, t}, Sr) = h− (r − 1)σ, and d(ℓi, Sr) = σ for all 1 ≤ i ≤ r − 1.

A T -set consists of two S-sets at height σ − 1, Sσ−1 and S′
σ−1. There are h edges between

the two S-sets and k edges leaving the T -set. Note d(ℓi, Sσ−1) = d(ℓ′i, S
′
σ−1) = σ for 1 ≤ i ≤ σ− 2;

also, d(s, Sσ−1) = d(t, Sσ−1) = d(s′, S′
σ−1) = d(t′, S′

σ−1) = h/2−σ(σ−2)/2 = h/2−σ2/2+σ = σ.

Thus, we can form a complete bipartite graph using s, t, ℓi, 1 ≤ i ≤ σ−2 and their counterparts in

S′
σ−1, as in Fig. 3.2. For the edges leaving the T -set, d(ℓσ−1) = d(ℓ′σ−1) = h. This gives us 2h = k

edges leaving the T -set as well as d(Sσ−1, S
′
σ−1) = σ2 = h as desired.

To complete the example, take a prime number of T -sets p > h. Label the T -sets as

T0, T1, ..., Tp−1. Connect the T -sets using h different cycles. There are two cycles of the form

T0, T1, T2, . . . , Tp−1, T0, one cycle through the ℓσ−1 of each T -set and one cycle through the ℓ′σ−1.

Similarly, there are two cycles of the form T0, T2, T4, . . . , Tp−1, T1, . . . , Tp−2, T0, two cycles of the

35

form T0, T3, T6, . . . , Tp−3, T0, up through T0, Th/2, Th, . . . , T0. A prime number of T -sets is used in

order to ensure that all of these cycles contain all T -sets.

3.2.3 Analysis

In order to prove that the example graph is k-edge-connected, we first show (in Fig. 3.3) that

for any v ∈ B0, there are k edge-disjoint paths from v to t. This allows us to contract S0 into a

single vertex.

Next we prove that from any ℓi, 1 ≤ i ≤ σ − 2, there are k edge-disjoint paths to ℓi+1

(Fig. 3.4). This allows us to contract all ℓi, 1 ≤ i ≤ σ − 1, into a single vertex, ℓ. The following

facts are used to validate Fig. 3.4: in Fig. 3.4(a) and (d), there are h paths that go through Ai+1

to ℓi+1, which each use exactly one of the h edges between Ai+1 and ℓi+1. For any j > 1, the

h − σ edges from Lj to ℓj−1 occur ≤ σ(σ − 1) = h − σ total times in the paths of Fig. 3.4(b),

(e), and (f). Similarly, in Fig. 3.4(b), (d), and (e), in the case i = 1, the h edges from A1 to S0

are each used exactly once. Also, for Fig. 3.4(e) and (f), G has h − σ edge-disjoint paths from

{s′, t′, ℓ′g : 1 ≤ g ≤ σ − 2} to ℓ′σ−1. This can be increased to h edge-disjoint paths if we include the

σ edge-disjoint paths from {s′, t′} through A′
σ−1 to ℓ′σ−1, which allows us to have h paths going

through the other T -sets in the case i = σ − 2. If i = σ − 2, the paths in Fig. 3.4(c) go to S′
σ−1 to

ℓ′σ−1 and into another T -set. Also in Fig. 3.4(c),(e), and (f), a path through another T -set starts at

that T -set’s ℓ′σ−1, goes through the T -set to ℓσ−1, and from there to the ℓσ−1 of our initial T -set.

Because the T -sets are connected and each of these paths goes through a different T -set, the details

of the path through the T -set are irrelevant. Note that there are potentially σ(σ− 3) + 2σ + σ = h

paths of this type. Because each T -set has two edges to h other T -sets, one from ℓσ−1 to the other

T -set’s ℓσ−1 and one from ℓ′σ−1 to the other T -set’s ℓ′σ−1, each of these paths can go through a

different T -set.

Next we prove that there are k edge-disjoint paths between S0 and ℓ (Fig. 3.5). For the 2σ

paths in Fig. 3.5(b), we use the inequality h ≥ 2σ, which holds for k ≥ 8. This allows us to contract

S0 and ℓ. For any vertex v ∈ Ai, 1 ≤ i ≤ σ − 1, it is obvious that there are k edge-disjoint paths

36

to ℓ∪S0 because all k edges leaving Ai go to either ℓ or S0. This allows us to contract Sσ−1 into a

single vertex.

Between any two Sσ−1 in the same T -set, there are h paths from the top-level cycles, and h

paths within the T -set, giving us k edge-disjoint paths between them, and allowing us to contract

each T -set into a single vertex. The T -sets are k-edge-connected because there are h cycles through

them.

37

0S

(a) h
paths.

0L1 S

(b) h/2 paths.

0L Si

(c) σ/2 paths go
through each of the
σ−2 Li, 2 ≤ i ≤ σ−1.

0

,s’,t’}{ l’g

Other Sσ−1S

(d) σ paths go
through the other
Sσ−1 in the same
T -set.

Figure 3.3: h + h/2 + (σ2 − 2σ)/2 + σ = k paths from a vertex in A0 to t. These same paths can
also be used to give k edge-disjoint paths from s to t, although the lengths of the paths will be
slightly different from what is pictured here.

38

i
LL

i+1

(a) h − σ paths.

j>i+1 S0LiLj Li+1

(b) σ paths through each Lj , j > i + 1, for a total of
σ(σ − 1 − (i + 1)).

i

{ l’g

Other Sσ−1LL
i+1

,s’,t’}

(c) σ paths (if i = σ − 2, these paths go
through the other T -sets).

0
LL

i+1 i
S

(d) σ paths.

Other T

{ l’g

l’σ−1

Other Sσ−1L Si 0Lσ−1 Li+1

,s’,t’}

(e) 2σ paths.

j<i

,s’,t’}{ l’g

l’σ−1

Other Sσ−1L Li jLσ−1 Li+1

Other T

(f) σ paths through each Lj , j < i, for a total of σ(i − 1).

Figure 3.4: (h−σ)+σ(σ− i−2)+σ +σ +2σ +σ(i−1) = k paths from ℓi to ℓi+1 for 1 ≤ i ≤ σ−2.

39

l

A
S0

i

(a) h+σ(σ−2) =
k − 2σ paths.

l

{ l’g

l’σ−1

S0

Other T

Other Sσ−1

,s’,t’}

(b) 2σ paths.

Figure 3.5: (k − 2σ) + 2σ = k paths from S0 to ℓ.

We now calculate the size of L in terms of the number of vertices in the graph, n. We do

this in two stages: first, we calculate the number of vertices contained in each T -set, nT . Next we

calculate a, the total number of non-singleton sets that each T -set contributes to L. Then, the size

of L is the number of T sets multiplied by the number of sets each contributes to L plus the n

singletons, n(1 + a/nT).

Each T -set contains two S-sets at height σ − 1. This means each T -set contains 2σ − 2

L-sets, which each contain k + 1 vertices. Each T -set also contains 2 S0, which each contain

k + 2 vertices. Thus nT = 2σ(k + 1) + 2. Now, each of the 2σ − 2 L-sets contributes 2 non-

singleton sets. Each of the 2 S0 contributes 3. There are 2σ − 2 larger S-sets, as well as the T -set

itself. Therefore a = 2(2σ − 2) + 6 + (2σ − 2) + 1 = 6σ + 1. This gives us a total size for L of

n
(

1 + 6σ+1
2σ(k+1)+2) = n(1 + 3

k + 1
2σk −O(1/k2)

)

. When we substitute for σ =
√

h =
√

k
2 , we get a

laminar family of size n
(

1 + 3
k + 1√

2k
√

k
−O(1

k2)
)

.

3.3 Round-the-highest lower bound example

3.3.1 Overview

In the previous section, we gave an example of a k-edge-connected graph G with n vertices

that has a laminar family which contains n
(

1 + 3
k + 1√

2k
√

k
−O(1

k2)
)

critical sets. In this section,

we will show how to modify that example to give an infinite family of graphs where the LP from

40

Section 3.1 has a basic feasible solution (bfs) with a large number of fractional edges. We will prove

the following theorem:

Theorem 4. For values of k ≥ 8 that are twice the value of an even perfect square, there exists a

graph G = (V,E) where a solution to the linear program in Section 3.1 has n
(

1 + 3
k + 1√

2k
√

k
−O(1

k2)
)

fractional edges, all of which have weight 1
2 . Rounding all of these edges as is done in the traditional

round-the-highest method will result in an approximation ratio of

1 +
1

k
+

3

k2
+

1√
2k2
√

k
−O(

1

k3
).

As in the previous section, we will first give a brief overview of the construction before going

into the details in Section 3.3.2. Section 3.3.3 will prove that the solution to the LP that we give

is in fact a bfs. Section 3.3.4 gives a count of the fractional edges.

For this construction, we will need a few additional definitions. Call an edge of weight 1

a unit edge and an edge with weight w, 0 < w < 1, a fractional edge. For any real-valued

variables x and y, we say x and y are complementary if x + y = 1. We denote this by x = y.

For a vertex v, let dU (v) be the number of unit edges incident to v and dF (v) be the number of

fractional edges incident to v. These will also be referred to as the unit degree and fractional

degree respectively. For sets S, T ⊂ V , define dU (S), dF (S), dU (S, T), dF (S, T) analogously.

We will describe G by describing the bfs and the laminar family L of tight sets associated

with the bfs. We will focus on the differences between this construction and the previous one. As

in the previous example, every vertex of G will be a singleton set. The nonsingleton sets will be

classified as either L-, S-, or T -sets. As before, all S-sets and L-sets will have a height i: Si will

contain i smaller S-sets within it and will be the smallest S-set that contains Li. A T -set will

consist of two S-sets, one at height σ and one at height σ− 1. Note that the T -set is different from

the previous example, where a T -set consisted of two S-sets at height σ − 1.

As we construct each set, we will be mindful of the fractional edges within that set and

leaving the set. We will maintain the following invariants:

41

I1: For any L-, S- or T -set, any two fractional edges within the set will either have identical

or complementary weights.

I2: Si will have two pairs of fractional edges with complementary weights leaving it if i is

even or three pairs if i is odd.

We will use these invariants to prove that the weights of the fractional edges are unique, one

of the conditions necessary for this solution to be a bfs.

3.3.2 The Construction

In this construction, Li will consist of k + 2 vertices, {0, 1, . . . , k, ℓi}. Let Ai = {0, 1, . . . , k}.

There will be an edge between every two vertices of Ai, but those shown in Fig. 3.6 will be fractional

edges. There will be two fractional edges and h − 1 unit edges from Ai to ℓi. There will be two

fractional edges and h−1 unit edges leaving Ai. For all values of i < σ, there will be four fractional

edges and h− 2 unit edges from ℓi leaving Li. For i = σ, there will be six fractional and h− 3 unit

edges leaving ℓi. See Fig. 3.6 for details. Note that the labels b1, b2, c, d, e, and f on the fractional

edges leaving Li are temporary labels used in this example to determine the relative values of these

fractional edges. In later stages of the construction, the labels on these edges will differ depending

on the exact value of i.

For the fractional edges of Li, 1 ≤ i ≤ σ − 1, shown in Fig. 3.6, the following must be true

(notation defined in Fig. 3.6):

2a + b1 + b2 = 2 because d(Ai) = k

b1 + b2 + c + d + e + f = 3 because d(Li) = k

2a + c + d + e + f = 3 because d(ℓi) = k

Combining the second and third of these gives us 2a = b1 + b2. This can be combined with

the first equation to prove a = 1
2 , b1 = b2, and c + d + e + f = 2. Also, the fact that b1 + b2 = 1

42

implies that all edges in the odd cycle 0, 1, . . . , k− 3, k− 2, 0 shown in Fig. 3.6 must have weight 1
2 .

This proves Invariant I1. A similar argument can be made for Lσ except that there are six edges

from ℓσ that leave Lσ, and their weights will be forced to add up to 6.

S0 will have k + 3 vertices, {0, 1, . . . , k, s, t}. A0 = {0, 1, . . . , k} and B0 = A0 ∪ {s}. Again,

there will be an edge between every two vertices of A0, but those shown in Fig. 3.7 will be fractional

edges. We arrange the four fractional edges leaving A0 as follows: dF (A0, s) = 2, dF (A0, t) = 1,

dF (A0, S0) = 1. There is a fractional edge between s and t. There is one fractional edge from s

and two from t that leave S0. For the unit edges, we have

dU (A0, s) = dU (A0, t) = dU (s, S0) = dU (t, S0) = h− 1

In A0, vertices k−1 and k each have k−1 unit edges to other vertices in A0, one fractional edge

to a vertex of A0, and one fractional edge to {s, t}. The fractional edges must be complementary

to force these vertices to have degree k. All other vertices in A0 have k − 2 unit edges and two

fractional edges to vertices in A0. Vertex 0 has two fractional edges leaving S0. All vertices except

for 0, k − 1, and k have 1 unit edge leaving S0, so each of these vertices has a total of k − 1 unit

edges. Again, this forces the fractional edges adjacent to each of these vertices to be complementary.

There are a total of k − 2 unit edges that leave S0. This is the right number for there to be h− 1

edges to s and h− 1 to t as specified in the description of S0.

The following must be true about the value of the fractional edges of S0:

43

lia a

a

h−2

k−1 k

0

1

2

b1 b2

c
d
e
f

A
i

L

h−1

unit edges

k−3

h

k−2

i

unit edges
h−1

Figure 3.6: Fractional edges of Li, 1 ≤ i ≤ σ − 1. Lσ is the same except dF (ℓσ , Lσ) = 6 and
dU (ℓσ, Lσ) = h− 3.

44

a1 + a2 + a3 + a4 = 2 because d(A0) = k

a3 + a4 + b1 + b2 = 2 because d(B0) = k

a4 + b1 + c1 + c2 = 2 because d(S0) = k

a1 + a2 + a3 + a4 = 2 because d(0) = k

a1 + a2 + b1 + b2 = 2 because d(s) = k

a3 + b2 + c1 + c2 = 2 because d(t) = k

Combining the equations for B0, s, and A0 gives us a1 = a2, a3 = a4, and b1 = b2. Combining

these with the equation for vA gives a1 = a2 = a3 = a4. Finally if we add in the equations for S0

and t, we can show b1 + a4 = 1 which implies a1 = a2 = a3 = a4 = b1 = b2 and c1 + c2 = 1. This

proves Invariants I1 and I2.

Just as in Section 3.2, for 0 < i ≤ σ − 1, Si = Si−1 ∪ Li. There are slightly fewer unit edges

than there were in the previous example, but the arrangement of edges is almost the same. The

arrangement of unit edges is shown in Fig. 3.8. The following changes need to be made for edges

within Si: dU (A1, s) = h
2 − 1 and dU (Ai, ℓi−1) = h − 2 − σ for i > 1. A few additional changes

need to be made for edges leaving Si: dU (ℓi, Si) = h − 2, dU (t, Si) = h
2 − 1 − (i−1)σ

2 . In addition,

dU (A2j , A2j+1) = 1 for values of j ≥ 1. All other unit edges are the same as in the previous example:

dU (A1, t) = h
2 , dU (Ai, s) = dU (Ai, t) = σ

2 for i > 1, dU (s, Si) = h
2 −

(i−1)σ
2 , and dU (ℓj , Si) = σ for

all 1 ≤ j ≤ i− 1.

The arrangement of the fractional edges of Si is slightly different depending on whether i

is even or odd. Both arrangements are shown in Fig. 3.9. For both even and odd values of i,

dF (ℓi, ℓi−1) = dF (ℓi−1, Si) = dF (ℓi−2, Si) = 1 (for purposes of this discussion, let ℓ0 = t and ℓ−1 =

s). In addition, dF (ℓi, Si) = 2. For odd values of i, dF (Ai, Si) = 2 and dF (ℓi, ℓi−3) = 1 (if i = 1,

this edge is from ℓ1 to A0). For even values of i, dF (Ai, Ai−1) = dF (ℓi, Ai−1) = dF (Ai, ℓi−3) = 1.

45

2

1

k

k−1

0

b

a

a

a

a

a

a

1

2

3

3

3

3

2

t

a 4

c2c1

b1

a1

s B

A

0

0

0
S

Figure 3.7: Fractional edges of S0.

46

A slightly different proof is needed to prove the invariants on the fractional edges depending

on whether i is even or odd. For S1, the following is true about the fractional edges:

c1 + c2 = e1 + e2 = b1 + a4 = 1 from prior constraints

a4 + c1 + d1 + d2 = 2 because d(ℓ1) = k

b1 + c2 + d1 + d2 = 2 because d(S1) = k

These last two equations can be combined to give a4 + c1 = b1 + c2. Combining these

with information from the previous constraints gives c1 + b1 = b1 + c1. This implies c1 = b1 and

a4 = b1 = c1 = c2. This also implies d1 + d2 = 1. These equations prove Invariants I1 and I2.

Note that while these specific equations refer to S1, the invariants of this construction mean

that identical equations will hold for all Si where i is odd.

For even values of i, note the following about S2:

b1 + c2 = d1 + d2 = e1 + e2 = b1 + e2 = 1 from prior constraints

d2 + e1 + f1 + f2 = 2 because d(ℓ2) = k

c2 + d1 + f1 + f2 = 2 because d(S2) = k

Adding those last two equations gives us

d1 + e1 + c2 + d2 + 2(f1 + f2) = (d1 + d2) + (c2 + e1) + 2(f1 + f2) = 4

From the equations from the previous sets, we know d1 + d2 = 1, and we can deduce c2 + e1 = 1.

This gives us f1 + f2 = 1 and also

b1 = c2 = d1 = d2 = e1 = e2

47

proving Invariants I1 and I2.

Again, while these specific equations refer to S2, the invariants mean that we have identical

equations for all Si where i is an even number less than σ.

When i = σ, there are a few differences. Neither Lσ nor Sσ are exactly the same as Li or Si

for smaller values of i. At height σ, dF (ℓσ, Lσ) = 6, dF (ℓσ, Sσ) = 4, and dU (ℓσ, Lσ) = dU (ℓσ, Sσ) =

h− 3. The fractional edges are arranged as in Fig. 3.10. The unit edges are as shown in Fig. 3.11.

The values of the fractional edges in Sσ are almost identical to those at other even heights:

x1 + x2 = t1 + t2 = w1 + w2 = x1 + w2 = 1 from prior constraints

t2 + w1 + y1 + y2 + z1 + z2 = 3 because d(ℓσ) = k

x2 + t1 + y1 + y2 + z1 + z2 = 3 because d(Sσ) = k

Just as in the other even cases, we can add those last two equations to get

(t1 + t2) + (x2 + w1) + 2(y1 + y2 + z1 + z2) = 6

From the equations from the previous sets, we know t1 + t2 = 1. From the equations above derived

from prior constraints, we can deduce that x2 + w1 = 1. This gives us y1 + y2 + z1 + z2 = 2 and

also

x1 = x2 = t1 = t2 = w1 = w2

which proves Invariant I1 for Sσ.

A T set is the union of two S-sets at heights σ and σ−1, T = Sσ∪S′
σ−1. The fractional edges

are arranged as in Fig. 3.12. The unit edges are shown in Fig. 3.13. For all values 1 ≤ i ≤ σ − 1

and 1 ≤ j ≤ σ − 2 there is a unit edge between ℓi and ℓ′j. There are also unit edges between ℓi

and s′ as well as ℓi and t′. If j is odd, there will be a unit edge between ℓ′j and s. If j is even,

there will be a unit edge between ℓ′j and t. For unit edges leaving T , we have dU (ℓσ, T) = h − 3,

dU (ℓ′σ−1, T) = h− 2, and dU (s, T) = dU (s′, T) = dU (Aσ, T) = 1.

48

S1

L1 S0

s

tl1
h−2

h/2

h/2 − 1

h/2

h/2 − 1

(a) Unit edges of S1.

L2 S1

S2

l
h−2

2

t
h/2

h/2 − 1

− σ/2

− σ/2

l1

σ/2
σ/2

h − 2 − σ

σ

s

1

(b) Unit edges of S2.

L3 S2

S3

l
h−2

s

t
h/2

h/2 − 1

− σ

− σ

l

σ/2
σ/2

σ
2

h − 2 − σ l
1

σ
3

1
A 2

(c) Unit edges of S3.

Figure 3.8: Unit edges of S1, S2, and S3. For larger values of i, the arrangement will be similar to
S2 if i is even or S3 if i is odd.

49

S1

L1 S0

a4

c1

d1
d2

1e

2e

c2

b1
s

tl1

0

0

(a) Fractional edges of S1.

2L 1S

0 of A
1

1

b
e2
1

d2

e1

f1

f2

d1

c2

S2

ll2

s
t

0

(b) Fractional edges of S2.

S3

L3 S2

l1

l2
l3

c2

li−3

1

1

2

1

2

2

1

0

g
g

h
h

f f

d

t
 (if i > 3)

(c) Fractional edges of S3.

4L 2S

0 of A
3

l4

l2

l1d
h2
1

g2

h1

1

2

g1

f2

S

l

0

4

i

i 3

(d) Fractional edges of S4.

Figure 3.9: Fractional edges of S1, S2, S3, and S4. In general Si has a similar arrangement to S1

and S3 if i is odd. If i is even, the arrangement is similar to S2 and S4.

50

σL σ−1S

σS

lσ−1

lσ−2

lσ−3

t2 t1

x2

x1

0 of A
σ−1

lσ w
1

w2

z 1
z2

y
2

y
1

0

Figure 3.10: Fractional edges of Sσ. If σ = 2, ℓσ−2 = t and ℓσ−3 = s.

l

s

t

l

σ/2
σ/2

h − 2 − σ

σ

k

σ

L

Sσ
Sσ−1σ

h−3

l1
σ

σ−1

σ/2 − 1

σ/2

Figure 3.11: Unit edges of Sσ.

51

Sσ S’σ−1

lσ−2

lσ−1

l’σ−2

t

y

x

2y

1

2

z1

z2

r
1

r2

T

lσ

l’

l’

σ−1

σ−3

1

σ−1
0 of A’

Figure 3.12: Joining Sσ and S′
σ−1 to get a T -set. If σ = 2, ℓσ−2 = t, ℓ′σ−2 = t′, and ℓ′σ−3 = s′.

From the equations for Sσ and S′
σ−1, we know

r1 + r2 = x2 + t1 = t1 + y1 = x2 + r2 = 1

and

y1 + y2 + z1 + z2 = 2

Making d(T) = k will force r1 + r2 + z1 + z2 = 2 which implies z1 + z2 = 1 and y1 + y2 = 1.

Combining with previous equations give us

r1 = r2 = t1 = x2 = y1 = y2

We will take a prime number p > h+1 of T -sets and form cycles between them using the unit

and fractional edges to complete the example. An example of the edges from a particular T -set is

shown in Fig. 3.14. The cycles will have “jumps” of 1, 2, . . . , h/2, h/2 + 1. Number the T -sets from

0 to p− 1 and arrange the edges from a set Ti as follows: the h− 2 unit edges from ℓ′σ−1 will go to

the ℓ′σ−1 of Ti+j and Ti−j for 1 ≤ j ≤ h−2
2 . For the unit edges from ℓσ, h− 4 of them will go to the

ℓσ of Ti+j and Ti−j for 1 ≤ j ≤ h−4
2 . The remaining edge will go the Aσ of Ti+ h−2

2

. The unit edge

from Aσ will go to the ℓσ of Ti−h−2

2

. The unit edge from s will go to the s′ of Ti+ h
2

, and the unit

52

S’
T

l l’3

S σ−1

1

2l’

l’

t’
1l

t

l2

l
34

σ

h−3 h−2

s
s’

k of A 4

Figure 3.13: The unit edges of a T -set if σ = 4.

53

edge from s′ will go to the s of Ti−h
2

. The fractional edges from ℓσ will go to the ℓσ of Ti+ h+2

2

and

Ti−h+2

2

. The fractional edge from ℓ′σ−2 will go to the 0 vertex of A′
σ−1 in Ti+ h+2

2

and the fractional

edge from the 0 vertex of A′
σ−1 will go to the ℓ′σ−2 of Ti−h+2

2

. All arithmetic on the subscripts of

the T -sets is done mod p.

3.3.3 Proof of Uniqueness and k-Connectivity

In order to prove that this is a basic feasible solution, we must prove two things: first, that

the values on the fractional edges are unique, and second, that the graph is k-edge-connected.

Proving that the fractional edges are unique is easy due to the invariants. Because the

fractional edges between the T -sets are arranged in odd cycles of complementary edges, they are

all forced to have weight 1
2 . Once it is determined that the fractional edges between the T -sets

have weight 1
2 , the invariants and our equations for the T -set will force all fractional edges in the

construction to have weight 1
2 .

We prove that the solution is k-edge-connected the same way that we did in the previous

section. First, we show that for any v ∈ B0, there are k edge-disjoint paths from v to t so we can

contract S0 into a single vertex. Next we show that from any ℓi there are k edge-disjoint paths

to ℓi+1 so we can contract all ℓi into a single vertex ℓ. Then we will show that from S0 there are

k paths to ℓ and that there are k paths from Ai to the contracted S0 ∪ ℓ. Finally, we show that

there are k paths from Sσ to S′
σ−1 and that there are k paths between the T -sets. We will be

referencing the paths shown in Fig. 3.3-3.5 of Section 3.2. While most of the paths present in the

earlier example will also be present here, not all of them will be. In particular, we will have to be

careful about paths that reference “the other Sσ−1” because now the two S-sets that compose our

T -set are not symmetric.

3.3.3.1 Paths from B0 to t

For any v ∈ B0, k − 2 of the paths shown in Fig. 3.3 of Section 3.2 are also present in this

example. The 2 missing paths come from (b) and (d). The missing path from (b) is because there

54

Sσ S’σ−1

Sσ

Sσ S’σ−1

Sσ S’σ−1

Sσ S’σ−1 Sσ S’σ−1

l’σ−2

σ
k of A’

Sσ S’σ−1

σ−1
0 of A’

σ
k of A

S’σ−1

lσ

l’σ−2

σ−1
0 of A’

0T

6T
1T

2T

4T3T

5T

l’σ−1

l’σ−1

s’

l’σ−1

s’

s

lσ

lσ

s

lσ

Figure 3.14: The edges from T0 if h = 4 and p = 7.

55

are now only h− 1 edges between S0 and A1. In S′
σ−1 there is 1 fewer path from (d) because there

are only σ − 1 vertices in the other set that have an edge to s and t. In Sσ there are σ+2
2 fewer

paths from (d) because there are only σ − 2 vertices in the other set that have an edge to either

s or to t. However, we have an additional σ
2 paths like those in (c), so we are still only 2 paths

short. We can replace these paths with the 3 additional paths shown in Fig. 3.15. Two of these

paths use fractional edges and hence each only count as 1
2 of a path. For the path in Fig. 3.15(c),

if we are in Tj , the path goes to the s′ of Tj+ h
2

then to ℓ1, A1 and s. From there it goes to the s′

of Tj+h, through Tj+h to s, to the s′ of Tj+ 3h
2

, etc. until it reaches the s of Tj−h
2

, from which it

returns to the s of the initial T -set. Note that because this path goes through all p T -sets, we need

to keep track of the path within the T -sets to be sure that no edges are duplicated in other paths

(see below).

If σ = 2, the 1
2 path shown in Fig. 3.15(a) may not exist. See Fig. 3.16 for paths in this case.

In Fig. 3.16(a), the path through the other T -set goes to that T -set’s ℓ2 to ℓ′1 to t′ and then to the

A′
1 of our original T -set. In Fig. 3.16(b), the path through the other T -set goes to that T -set’s ℓ2,

to ℓ′1 to A′
1 and then to the t′ of our original T -set. Note that none of these edges are the same as

the ones used in the paths through the other T -set in Fig. 3.15(c).

3.3.3.2 Paths from ℓi to ℓi+1

For any ℓi, 1 ≤ i ≤ σ − 1, or ℓ′i, 1 ≤ i ≤ σ − 2, all paths shown in Fig. 3.4 of Section 3.2 are

also present in this example except for 2 paths from (a) (because there are only h − σ − 2 edges

between ℓi and Ai+1) and some number of paths from (e). If we are in S′
σ−1 2 paths from (e) are

not present because there are only 2σ − 2 edges between S′
0 and Sσ. This gives a total of 4 paths

that need to be replaced. If we are in Sσ, σ + 2 paths from (e) are not present because there are

only σ − 2 edges between S0 and S′
σ−1. However, there are an additional σ paths like those shown

in (b), so we are still only 4 paths short. Note that all paths in (c) and (f) are present. Despite the

fact that the 2 maximal S-sets are not symmetric, any ℓi in either set will have σ edges to a vertex

in the other maximal S-set in the same T -set. Note, however, that if ℓi = ℓσ−1 or ℓ′σ−2, the paths

56

L2L3 S0

(a) 1

2
path. If σ = 2, see Fig. 3.16.

S1 0L

(b) 1

2
path.

L1L’1

Other T

S00S’

(c) 1 path.

Figure 3.15: 2 additional paths between B0 and t.

S2 S’1

l2

T

Other T

t

s
0 of A’

1

(a) 1

2
path between

B0 and t in the case
σ = 2.

S2 S’1

l s’2

T

Other T

t’

(b) 1

2
path between

B′

0 and t′ in the case
σ = 2.

Figure 3.16: Additional paths between B0 and t when σ = 2.

57

in Fig. 3.4(c) go through other T -sets. The replacements for the 4 missing paths differ depending

on whether i is even or odd and are shown in Fig. 3.17 (for even values of i) or Fig. 3.18 (for odd

values). Note that in the paths in Fig. 3.17(b) and Fig. 3.18(b) Lj is the last L-set the S-set, either

Lσ or Lσ−1.

As in Section 3.2.3 we have several facts we can use to validate the paths shown in the

figures. The single unit edge between A2j and A2j+1 will be used exactly once for each ℓi, either

in Fig. 3.17(a) or Fig. 3.18(b). There are h paths that use the h − 1 unit edges and 2 fractional

edges between Ai+1 and ℓi+1, h− 2 in Fig. 3.4(a) and (d) and 2 in Fig. 3.17 and Fig. 3.18. In the

case i = 1, there are h − 1 paths that use the h − 1 unit edges between Ai+1 and ℓi+1, h − 2 in

Fig. 3.4(b), (d), and (e), and 1 from Fig. 3.18. For any j > 1, the h− σ − 2 edges from Lj to ℓj−1

occur ≤ σ(σ − 1)− 2 = h− σ − 2 total times in the paths of Fig. 3.4(b), (e), and (f). Similarly for

Fig. 3.4(e) and (f), there are h − σ − 2 edge-disjoint paths from {s′, t′, ℓ′g : 1 ≤ g ≤ σ − 2} to ℓ′σ−1

in S′
σ−1 and h − σ − 2 edge-disjoint paths from {s, t, ℓg : 1 ≤ g ≤ σ − 1} to ℓσ in Sσ. This can be

increased to h − 2 edge-disjoint paths if we include the σ edge-disjoint paths from {s, t} through

Aσ to ℓσ or from {s′, t′} through A′
σ−1 to ℓ′σ−1. This increase allows us to have h − 2 paths going

through the other T -sets in the case i = σ − 2. If ℓi = ℓσ−1, the paths in Fig. 3.4(c) go into S′
σ−1,

then to ℓ′σ−1 and to another T -set. If ℓi = ℓ′σ−2, σ − 1 of the paths in Fig. 3.4(c) go into Sσ, then

to ℓσ and to another T -set. The remaining path goes into Sσ, then to Aσ and to another T -set.

As in Section 3.2.3, for the paths that go through other T -sets, we will give the start and end

of the path. These paths will be disjoint because with one exception, a path from a T -set Tj will

go through just one other T -set, and that T -set will be part of the collection {Tj+i : 1 ≤ |i| ≤ h−2
2 }.

The exceptional path goes through T -sets not part of that collection. Because the T -sets are

connected, the specifics of the paths through the other T -sets are not relevant.

For a path through the “other T -set”, as referenced in Fig. 3.4(e) and (f), if our original ℓi

was in Sσ, the path goes to that T -set’s ℓ′σ−1, through the T -set to ℓσ, and to the ℓσ of our initial

T -set. If our original ℓi was in S′
σ, the path through the other T -set is reversed. If ℓi = ℓσ−1, σ− 1

of the paths in Fig. 3.4(c) go to the ℓ′σ−1 of another T -set, through the T -set to ℓσ, and to the ℓσ

58

of our initial T -set. The remaining path goes to the ℓ′σ−1 of another T -set, through the T -set to

Aσ, and to the ℓσ of our initial T -set. If ℓi = ℓ′σ−2, the paths go to the ℓσ of another T -set to ℓ′σ−1,

and then to the ℓ′σ−1 of our original T -set.

The exceptional path is the path from either Fig. 3.17(b) or Fig. 3.18(b). If we start in Sσ of

Tj and i 6= σ−1, the path through goes to Tj+ h
2

’s S′
0, to Tj+ h

2

’s ℓσ, to Tj+ h−2

2

’s ℓσ, through Tj+ h−2

2

to Aσ, and from there to the ℓσ of our initial T -set. If i = σ − 1, the path is shown in Fig. 3.19.

This path goes to Tj+ h
2

’s S′
0 to Tj+ h

2

’s ℓσ to Tj+ h+2

2

’s ℓσ. From there, the path splits into two 1
2

paths. The first goes from Tj+ h+2

2

’s ℓσ back to the ℓσ of the original T -set. The second path goes

to Tj+ h+4

2

’s ℓσ, to Tj+ h+6

2

’s ℓσ, etc. until it reaches Tj−h+2

2

’s ℓσ, from which it travels back to the

ℓσ of our original T set. Note that if h = 4, in each T -set the path must go from the ℓσ of the

current T to the next T -set’s Aσ and through that T -set to ℓσ. Note that as per the invariant, this

path travels through T -sets Tj+ h
2

, Tj+ h+2

2

, Tj+ h+4

2

, Tj+ h+6

2

, . . . , Tj−h+2

2

, which are not part of the

collection of sets used by the other paths.

If we start in S′
σ−1 of Tj and i 6= σ − 2, the path goes to S0 of Tj+ h

2

, to Tj+ h
2

’s ℓ′σ−1, to

Tj+ h−2

2

’s ℓ′σ−1 to the original ℓ′σ−1. If i = σ − 2, the path goes to S0 of Tj+ h
2

, to Tj+ h
2

’s ℓσ, to

Tj+ h+2

2

’s ℓσ. From there, the path splits into two 1
2 paths. The first goes from Tj+ h+2

2

’s ℓσ back to

the ℓσ of the original T -set, then goes to ℓσ−1 and to ℓ′σ−1. The second path goes to Tj+ h+4

2

’s ℓσ,

to Tj+ h+6

2

’s ℓσ, etc. until it reaches Tj−h+2

2

’s ℓσ. From there, it goes to Tj−h+2

2

’s ℓ′σ−2, from which

it travels back to the A′
σ−1 of our original T set, and from there to ℓ′σ−1.

There are some special cases for these figures. When i ≤ 3 or i ≥ σ − 3, some of the paths

shown in Fig. 3.17 and 3.18 may not exist. See Fig. 3.20-3.22 for paths in these cases. In the path

in Fig. 3.20(b), the path through the other T -set goes to that T -set’s A′
σ−1 to ℓσ to the ℓσ of our

original T -set. The path in Fig. 3.22(d) is reversed from the path for Fig. 3.20(b).

Note that for any ℓi, there are at most h distinct paths through other T -sets, h − 2 from

Fig. 3.4 and 2 from Fig. 3.17-3.22. Therefore, we have enough T -sets that each path can go through

a different T -set.

59

LLi+1 i

(a) 1 path.

S0LL ii+1i+2 L

Other T

Lj

(b) 1 path (in the dashed parts, path splits into two 1

2
paths). Lj

is the last L-set in this S-set.

LLi+1 i

(c) 1

2
path.

Li+3 iLLi+1

(d) 1

2
path. If i = σ − 2, see Fig. 3.20(b) and (c).

L i−2LiL Li+1 i−1

(e) 1

2
path. If i = 2, see Fig. 3.20(d).

Li+2 i−1Li+1L Li

(f) 1

2
path. If ℓi = ℓ′σ−2, see Fig. 3.20(a).

Figure 3.17: 4 additional paths between ℓi and ℓi+1 for even values of i.

60

LLi+1 i

(a) 1 path (in the dashed
part, path splits into two
1

2
paths).

S0LL ii+1i+2 L

Other T

Lj

(b) 1 path. Lj is the last L-set in this S-set.

LLi+1 i

(c) 1

2
path.

Li+2 i−1Li+1L Li

(d) 1

2
path. If i = 1 or σ − 1, see Fig. 3.21(b) and (b).

Li+4 iLLi+3 i+1L

(e) 1

2
path. If i ≥ σ − 3, see Fig. 3.22.

Li+1 i−3LLi−2Li

(f) 1

2
path. If i ≤ 3, see Fig. 3.21(a) and (c).

Figure 3.18: 4 additional paths between ℓi and ℓi+1 for odd values of i.

61

S’σ−1

T0

lσ

lσ

Th/2

Sσ

lσ
lσ

T(h+2)/2

lσ

Tp−(h+2)/2

T(h+4)/2

0
S’

S0

Figure 3.19: The path through another T -set used in Fig. 3.18(b) when i = σ − 1. A similar path
is used through the other T -set in Fig. 3.17(b) when i = σ − 2. If h = 4, in each T -set the path
must go from the ℓσ of the current T to the next T -set’s Aσ and through that T -set to ℓσ.

Sσ S’σ−1

σ−3l’

l’σ−2

σ−10 of A’

l’σ−1

l’σ−2

T

lσ

l’σ−1

(a) Additional 1

2
path in the

case ℓi = ℓ′σ−2.

L’σ−2L’σ−1Lσ

Other T

(b) Additional 1

2
path in the case ℓi = ℓ′σ−2.

Sσ S’σ−1

lσ−1

lσ−2 σ−10 of A’

l’σ−1

T

(c) Additional 1

2
path in the

case ℓi = ℓσ−2.

S0LL L2 13

(d) Additional 1

2
path if i = 2.

Figure 3.20: Additional paths between ℓi and ℓi+1 for even values of i.

62

S0LL2 1

(a) Additional 1

2
path in the case i = 1.

S0LL L2 13

(b) Additional 1

2
path in the case i = 1.

S0LL L3 14

(c) Additional 1

2
path in the case i = 3.

Figure 3.21: Additional paths between ℓi and ℓi+1 for odd values of i ≤ 3.

63

Sσ S’σ−1

lσ−2

l’σ−1lσ−1

T

lσ

(a) Additional 1

2
path in the

case ℓi = ℓσ−1.

Sσ S’σ−1

lσ−1 l’σ−1

l’σ−2

l’σ−3lσ

T

(b) Additional 1

2
path in the

case ℓi = ℓσ−1.

Sσ S’σ−1

lσ−2

lσ−3

l’σ−1

T

lσ

(c) Additional 1

2
path in the

case ℓi = ℓσ−3.

Sσ S’σ−1

l’σ−2

lσ l’σ−3

T

Other T

(d) Additional 1

2
path in the

case ℓi = ℓ′σ−3.

Figure 3.22: Additional paths between ℓi and ℓi+1 for odd values of i ≥ σ − 3.

64

3.3.3.3 Other Paths

For paths between S0 and ℓ, if we are in Sσ, there are actually k − σ − 1
2 paths like those

shown in Fig. 3.5(a) and σ−2 like those shown in Fig. 3.5(b). If we are in Sσ−1, there are k−2σ− 1
2

paths like those shown in Fig. 3.5(a) and 2σ − 2 like those shown in Fig. 3.5(b). In both cases, we

need 2 1
2 additional paths. There are 1 1

2 paths that go from S0 directly to ℓ. We can find one

additional path that goes from S0 to the S′
0 of another T -set, to the ℓ of that T -set, and from there

to the ℓ of our original T -set.

For paths between Ai and ℓ ∪ S0, k − 2 of the edges leaving Ai go to either ℓ or S0. The

remaining two edges go to some other Aj from which we can find a path to ℓ.

Just as in the previous example, there are h edges between Sσ and S′
σ−1. There are also h

paths between Sσ and S′
σ−1 which use the h cycles in the T -sets. This gives a total of k paths.

There are h cycles between the T -sets, insuring that they are k-connected.

3.3.4 Approximation Ratio

To calculate the approximation ratio for this example, we first note that there is a 1-1 cor-

respondence between sets in the laminar family and edges with weight 1
2 . We can show this corre-

spondence by noting that each set contributes 2 to the total fractional degree. By the handshaking

lemma, this implies that the number of sets and fractional edges is the same. Each vertex is a

singleton set and has fractional degree at least 2. Each of Ai, 0 ≤ i ≤ σ, B0, and S0 has one vertex

of fractional degree 4 that is not in any smaller non-singleton set, so each of those sets contributes

an additional 2 to the fractional degree beyond what was already counted for the vertices. Each

Li, 1 ≤ i ≤ σ − 1, has a vertex of fractional degree 6, which will contribute an additional 4 to the

fractional degree: 2 for Li and 2 for Si. Finally, Lσ has a vertex of fractional degree 8, which will

contribute an additional 6 to the fractional degree: 2 for Lσ, 2 for Sσ, and 2 for T . Therefore, we

can count the number of fractional edges by counting the number of sets in the laminar family.

As before, we calculate the size of L in terms of the number of vertices in the graph, n, by

65

calculating the number of vertices, nT , and non-singleton sets, a, in each T -set. Each T -set contains

an Sσ and an Sσ−1. This means each T -set contains 2σ−1 L-sets, which each contain k+2 vertices.

Each T -set also contains 2 S0, which each contain k + 3 vertices. Thus nT = (2σ + 1)(k + 2) + 2.

Now, each of the 2σ − 1 L-sets contributes 2 nonsingleton sets. Each of the 2 S0 contributes 3

nonsingleton sets. There are 2σ − 1 larger S-sets, as well as the T -set itself. Therefore

a = 2(2σ − 1) + 6 + (2σ − 1) + 1 = 6σ + 4.

This gives us a total size for L of

n(1 +
(6σ + 3) + 1

(2σ + 1)(k + 2) + 2
) = n

(

1 +
3

k
+

1

2σk
−O(

1

k2
)

)

.

When we substitute for σ =
√

h =
√

k
2 , we get n

(

1 + 3
k + 1√

2k
√

k
−O(1

k2)
)

as the number of critical

sets and thus the number of fractional edges. By rounding up all the edges of weight 1
2 , we get an

approximation ratio of 1 + 1
k + 3

k2 + 1√
2k2

√
k
−O(1

k3).

Chapter 4

A Bound on Special Edges

In this chapter we turn our attention to directed graphs and a combinatorial as opposed to

linear programming-based algorithm for approximating the minimum k-ECSS. We extend Gabow’s

bound on the number of special edges that can be in a k-connected graph. In Section 4.1, we go

over the details of Gabow’s proof necessary to understand our work. We also prove some facts

about the size of tricritical sets. In Section 4.2 we give the proof for our extension to 10 ≤ k < 15.

Recall from Chapter 2 that a critical edge e of a k-connected graph G is one such that G−e is

not k-connected, and a special edge is a critical edge whose endpoints both have degree greater than

k. How many special edges can there be in a k-connected graph with n vertices? A bound on the

number of special edges is an interesting combinatorial problem in its own right, but such a bound

also plays a role in the analysis of the Cheriyan and Thurimella [1] algorithm described in Chapter

2. The Cheriyan and Thurimella algorithm has an approximation bound that explicitly depends

on the number of special edges. The algorithm is guaranteed to approximate the minimum k-ECSS

in a simple directed graph to within 1 + s
kn , where s is the number of special edges. Cheriyan

and Thurimella showed that a simple directed graph will have no more than 4
√

kn special edges.

While the Cheriyan and Thurimella algorithm has an approximation bound that has been eclipsed

by subsequent linear programming algorithms, it is still the best known combinatorial algorithm.

Linear programming algorithms are expensive in terms of both time and space. The Cheriyan and

Thurimella algorithm is much faster and requires far less space.

Gabow [13] improved the upper bound on the number of special edges that can be in a simple

67

directed graph from Cheriyan and Thurimella’s bound of 4
√

kn to a number slightly larger than

√
2kn for values of k greater than or equal to 15. He also gave a lower bound example for all values

of k greater than or equal to 1, proving that the upper bound was tight for all values of k ≥ 15. In

addition he proved an upper bound of 5n for values of k greater than or equal to 6 with the caveat

that this bound is certainly loose.

Here, we extend the
√

2kn bound to values of k between 10 and 15, improving on the previous

5n bound. Because of the lower bound example given in [13], we know that this bound is tight. All

references to “graphs” in this chapter refer to directed graphs.

4.1 An Upper Bound on Special Edges for k ≥ 15

This section gives a summary of the proof of Gabow’s bound on the number of special edges

for k ≥ 15. All results in Section 4.1 come from Gabow, “Special Edges, and Approximating the

Smallest Directed k-connected Spanning Subgraph” [13] unless otherwise noted.

For every value of k, define two integers τ and ω such that 0 ≤ ω ≤ τ and:

k =
τ(τ + 1)

2
+ ω (4.1)

Note that for a given value of k, τ and ω are unique. In order to see this, consider the

“triangle numbers,” those numbers Tn =
∑n

i=0 i. For each value of k, the values of τ and ω are the

unique values such that Tτ ≤ k < Tτ+1 and k = Tτ + ω.

Once the values of τ and ω are determined, we can then define a function σ on k such that:

σ(k) = τ +
ω

τ + 1
(4.2)

From here on, the value of k will be clear from context, so we will refer to this number as σ.

Gabow proved that for k ≥ 15, there will be no more than nσ special edges in a k-edge-

connected graph. We give some of the details of the proof that will later be used in our extension

to 10 ≤ k < 15.

68

4.1.1 Criticality

Say that two critical sets T1 and T2 are same-way critical if both sets are in-critical or both

sets are out-critical. Likewise, say that T1 and T2 are opposite-way critical if T1 is in-critical and

T2 is out-critical or vice versa. A set is two-way critical if it is both in-critical and out-critical.

Lemma 2 gives a general fact about in- and out- critical sets. It appears in [12].

Lemma 2. Let {Z1, ..., Zj−1} be a collection of sets that are all same-way critical and W be a set

that is opposite-way critical from the Zi. If W =
⋃j−1

i=0 Zi, then W and all Zi are 2-way critical.

Proof. WLOG, assume that W is out-critical and the Zi are in-critical. We will show that W is

also in-critical and the Zi are out-critical. For any set S, let ρ(S) be the in-degree of S and δ(S)

be the out-degree of S. Let b be the number of edges that go between the Zi. Then, the in-degree

of W is ρ(W) =
∑j−1

i=0 ρ(Zi) − b and the out-degree of W is δ(W) =
∑j−1

i=0 δ(Zi) − b. Combining

these two equations gives

ρ(W) +

j−1
∑

i=0

δ(Zi) = δ(W) +

j−1
∑

i=0

ρ(Zi)

We were given δ(W) = ρ(Zi) = k, so this reduces to

ρ(W) +

j−1
∑

i=0

δ(Zi) = (j + 1)k

Because the graph is k-edge-connected, all sets must have in- and out-degree at least k, so ρ(W) ≥ k

and δ(Zi) ≥ k. The only way that this can be consistent with the the previous equation is if

ρ(W) = δ(Zi) = k

Recall that in a simple graph, a k-critical set must either have cardinality 1 or a cardinality

greater than or equal to k. If we are looking for critical sets that cover special edges, we can expand

this somewhat: a critical set that covers special edges must have cardinality greater than or equal

to k + 1. This is because a singleton set that is critical consists of a vertex with degree k, while a

critical set with exactly k vertices is a clique on k vertices where every vertex has exactly one edge

that leaves the set, so all vertices have degree k and the set cannot cover any special edges.

69

V

ST1 T2

Figure 4.1: An example of an in-bicritical set. If T1 and T2 are out-critical, S is in-bicritical.

Recall also that a bicritical set is a set S such that V can be partitioned into T1, T2, S where T1

and T2 are same-way critical. Say that two critical sets T1 and T2 in our laminar family alternate

if T1 ⊂ T2 and T1 and T2 are opposite-way critical. Note that if T1 and T2 alternate, then T2 − T1

is bicritical (with the partition being T1, V − T2, T2 − T1). See Fig. 4.1 for examples of bicritical

sets.

From Chapters 2 and 3, recall that for an r-critical set S with s vertices, we know:

s(k − s + 1) ≤ rk

Gabow used this equation to prove several important lemmas about bicritical sets (given here

without proof):

Lemma 3. Let G be a simple k-edge-connected graph and S be a bicritical set with the partition of

V being S, T1, T2. Then, the following assertions hold:

(i) If k ≥ 7, then |S| ≤ 2 or |S| ≥ k − 1.

(ii) If |S| = 2 or |S| = k − 1 then d(T1, T2) ≤ 2.

(iii) If |S| = k − 1 then T1 and T2 together cover at most 6 special edges.

Lemma 4. Let G be a simple k-edge-connected graph for k ≥ 7. Consider critical sets A ⊂ B ⊂ C.

Then, the following assertions hold:

(i) If B alternates with A and with C then |C −A| 6= 3, 4.

(ii) If B alternates with A then |C −A| ≤ 2 or |C −A| ≥ k − 1.

70

V

ST1 T2

T3

Figure 4.2: An example of an in-tricritical set. If T1, T2, and T3 are out-critical, S is in-tricritical.

The same ideas used to prove these lemmas about bicritical sets can be extended to tricritical

sets. Recall that a tricritical set is a set S such that V can be partitioned into T1, T2, T3, S where

T1 and T2 are same-way critical. See Fig. 4.2 for examples. Lemmas 5 and 6 are original and not

from [13]:

Lemma 5. If k ≥ 10 and the vertices of S actually cover any special edges, then |S| 6= 5 or 6.

Proof. Using the equation |S| = s, s(k − s + 1) ≤ rk, substituting r = 3 and k = 10 gives

s(11−s) ≤ 30. This gives exact equality for s = 5 or 6. Exact equality implies that all vertices in S

have degree exactly k, meaning no special edges can have one of those vertices as an endpoint.

Lemma 6. If S is tricritical, with at least 3 special vertices, then |S| = 3 or |S| ≥ k−2 for k ≥ 10.

Proof. Recall from Chapter 2 that a special vertex is one with degree greater than k. Say that

there are t special vertices. Modifying our previous equation to account for the special vertices, we

have s(k − (s− 1)) + t ≤ 3k. For t = 3 and s = 4 (or s = k − 3), this gives

4(k − 3) + 3 = 4k − 9 ≤ 3k

which implies k ≤ 9.

71

4.1.2 The laminar family and paying for special edges

As mentioned previously, all critical edges (and therefore all special edges) can be covered

by a laminar family of critical sets [8]. Gabow’s proof makes use of this fact, examining a single

laminar family L of in-critical and out-critical sets that covers all special edges in the graph. The

laminar family can be treated as a tree, where for two sets T1, T2 ∈ L, T1 is a child of T2 if T1 ⊂ T2

and there is no S ∈ L such that T1 ⊂ S ⊂ T2. This tree has three types of nodes: leaves, chain

nodes (those nodes with exactly one child), and branching nodes (those nodes with multiple

children). Leaves and branching nodes will be referred to collectively as non-chain nodes. In

order to minimize confusion, for the remainder of this chapter we will use “vertex” to refer to a

vertex in the original graph and “node” to refer to a set in the tree representing L.

We count the number of special edges in the following way: give each vertex in the graph σ

“credits.” Each special edge must be “paid for” with one credit. The theorem is proved by paying

for all special edges using the credits on the vertices.

Each leaf in L has at least (k + 1)σ credits on its vertices. Take these credits from the leaves

and use them to form shares, each share containing (k+1)σ
2 credits. These shares are distributed

to the nodes of the tree. Each leaf receives one share. A non-leaf node with C children receives C

shares if it is the root or C − 1 shares if it is not the root. If a branching node receives more than

one share of credits, every share beyond the first share is called a bonus share.

The shares on the leaf nodes and branching nodes are sufficient to pay for any special edges

leaving those sets. The difficult part of the proof comes from paying for the special edges of the

chain nodes. This is done using a method called path payment.

4.1.2.1 Path payment

We partition L into paths in the tree. Each path starts with a non-chain node A0 and includes

all consecutive ancestors of A0 up to Aq that are all chain nodes: Ai is the unique child of Ai+1

for all 0 ≤ i < q, and Aq’s parent is a non-chain node. We further divide the path into subpaths

72

with boundary nodes Bi. Let B0 = A0. For i > 0, let Bi = Aj if Aj is the first node in the path

such that |Aj −Bi−1| > τ , or Aq if no such Aj exists. The subpath Pi consists of all nodes that are

proper ancestors of Bi−1 and descendants of Bi (including Bi itself). See Fig. 4.3

For subpaths where |Bi −Bi−1| > τ we can pay for all special edges covered by the subpath

using the following lemmas. To simplify notation, let Pi = P , Bi−1 = A, and Bi = Z. Let Y be

the last set before Z (note that it is possible Y = A), and let B be the first set of P that alternates

with A (with the caveat that it is possible B does not exist). Let the function Credits(P) be the

number of credits on the vertices in Z −A. Let Special(P) be the number of special edges covered

by sets in P but not covered by A or any of its descendants.

We present these lemmas along with a sketch of the proofs. For full proofs, see [13].

Lemma 7. For all values of k, if |Z −A| > τ and all sets in {A} ∪ P are same-way critical, then

Credits(P) ≥ Special(P).

Proof. (Sketch) Let |Y − A| = s and |Z − Y | = t. Then, we could have s(s−1)
2 special edges with

both ends in |Y − A|, st with one end in |Y − A| and the other in |Z − Y |, and k incident to Z.

See Fig. 4.4. Using the inequality s ≤ τ < s+ t we can show k ≤ s(s+1)
2 +(τ − s− ω

τ+1)(s+ t). Now

we can say

Special(P) ≤ s(s− 1)

2
+ st + k ≤ s(s + t) + (τ − s− ω

τ + 1
)(s + t) = σ(s + t)

Because σ(s + t) = Credits(P), the proof is complete.

Lemma 8. For k ≥ 10, if |Z −A| > τ , B exists, and |B−A| > 2, then Credits(P) ≥ Special(P).

Proof. (Sketch) The condition on k implies τ ≥ 4 and k > τ + 4. Because |B − A| is bicritical,

|B − A| > 2 implies |B − A| ≥ k − 1. Because k − 1 > τ , this also implies B = Z. This further

implies that Y alternates with Z, which along with |Z − A| ≥ k − 1 implies |Z − Y | ≥ k − 1. If

|Y − A| = s, there are at most s(s−1)
2 special edges with both ends in |Y − A|, k special edges

incident to Y , and 2k incident to Z. See Fig. 4.5. We also have

Credits(P) ≥ sτ + (k − 1)τ > s2 + 4k − 4 > s2 + 3k >
s(s− 1)

2
+ 3k ≥ Special(P)

73

A1

A2

0A = B 0

3A = B 1

A5

4A = B 2

6A = B 3

Figure 4.3: The sequence A0, . . . , A6 is an example of a path. The parent of A6 is a non-chain
node. If τ = 4, then A0, A3, A4, and A6 are the boundary nodes dividing the path into subpaths.

A

Y

Z

k edges

Figure 4.4: Proof of Lemma 7. A subpath with no alternation and the special edges that the sets
in the subpath may cover.

74

A

Y

Z=B

k edgesk edges

k edges

Figure 4.5: Proof of Lemma 8. Possible special edges in a subpath where B is the first set that
alternates with A and |B −A| > 2 (which implies that B = Z, the last set of the subpath).

This completes the proof.

Lemma 9. For k ≥ 21, if |Z −A| > τ , B exists, and |B−A| ≤ 2, then Credits(P) ≥ Special(P).

Proof. (Sketch) The condition on k implies τ ≥ 6. Let C be the first set of P with |C − A| > 2.

C alternates with either A or B, so we can show |C − A| ≥ k − 1 and therefore C = Z. Thus,

|Y −A| ≤ 2, so we have at most two special edges that have both endpoints in Y , k incident to A,

and 2k incident to each of Y and Z. See Fig. 4.6. We have

Credits(P) ≥ 6k − 6 > 5k + 2 ≥ Special(P)

which completes the proof.

4.1.2.2 Finishing details

All that remains is to pay for the edges covered by the last subpath. Because of the way that

the subpaths were defined, the last subpath is the only one where it is possible that |Z − A| ≤ τ .

We have another lemma that aids in this case.

75

A

k edgesk edges

Y

k edgesk edges

Z

k edges

Figure 4.6: Proof of Lemma 9. Possible special edges in a subpath where B is the first set that
alternates with A and |B −A| ≤ 2.

76

Lemma 10. For all k, if |Z −A| ≤ τ , Credits(P) ≥ Special(P) + 3k.

Proof. The fact that |Z − A| ≤ τ implies that Credits(P) is greater than the number of special

edges with both ends in |Z −A|. There may be k special edges incident to A and 2k special edges

incident to Z. The lemma follows.

The difficulty of paying for the remaining 3k special edges depends on the value of k. If

k ≥ 55, then A0 has at least 5k credits, enough to pay for its own special edges and the 3k

remaining special edges of the path. Otherwise, we need to look more closely at our path payment

and realize that we overestimated the credits needed to pay for our special edges. Let a set X be

saturated if it is either 2-way critical or is 1-way critical and has k unspent credits. Note that:

Lemma 11. For k ≥ 21, if |Z − A| > τ and A is saturated at the beginning of path payment, Z

will be saturated at the end of path payment.

Proof. (Sketch) Lemmas 7-9 all pay for special edges in a way that satisfies this condition. Lemma

7 assumes that both A and Z are 1-way critical, so we can just transfer the k credits on A to Z.

Lemmas 8 and 9 both allocate 2k credits to pay for special edges incident to Z; if Z is 1-way

critical, the unused k credits can be used to saturate it.

This extension to path payment allows us to pay for all special edges if k ≥ 36. A0 has at least

4k credits, so 2k can be used to saturate A0, and 2k can be used to pay for special edges incident to

Z in the last subpath. In the last subpath, if A was 2-way critical, there are no additional special

edges incident to A. If A was 1-way critical, the extra k credits on A can be used to pay for any

special edges incident to it.

If k < 36, there may be some edges that are not paid for by path payment. We call these

edges liabilities, and the following lemma helps pay for them:

Lemma 12. Let k ≥ 10. Let P be the last subpath of A0, ..., Aq . If P has liabilities then the

following properties hold:

(i) A,P has an alternation;

77

(ii) |Z −A| ≤ 2;

(iii) every vertex of Z −A has ≥ σ + 1− |Z −A| credits.

Proof. (Sketch) Note that |Z −A| ≤ τ , otherwise one of Lemmas 7-9 will let us pay for all special

edges. All special edges within P are paid for by Lemma 10. If A,P does not contain an alternation,

then all edges incident to A have already been paid for and there are k credits on A because A

is saturated. These k credits can be used to pay for the k edges incident to Z. Thus, if P has

liabilities, A,P must have an alternation. This alternation also implies |Z − A| ≤ 2 by Lemma

4(ii). After we pay for all edges in P , (iii) holds.

This lemma and others are used to pay for the cases k ≥ 21 and k ≥ 15. We omit the

additional lemmas because these lemmas and their proofs do not apply directly to our proof for

10 ≤ k < 15. See [13] for details.

4.2 Extension to 10 ≤ k < 15

In this section we will extend the nσ bound on the number of special edges to values of k

between 10 and 15. We will prove the following theorem:

Theorem 5. For k ≥ 10, any k-edge-connected graph has no more than nσ special edges. This

bound is tight.

The fact that the bound is tight comes from the lower bound example in [13]. In order to

the upper bound proof for 10 ≤ k < 15, we need to introduce a new method of path payment.

4.2.1 Conservative Path Payment

Conservative path payment is a variation on path payment that allows us to save some

of the credits of a non-chain node in order to help pay for the liabilities of its children. For each

non-chain node W , let W ′ be the first ancestor of W that alternates with it (W = W ′ if W is

2-way critical). If W is 2-way critical or |W ′−W | = 1, charge W the 2k credits necessary to cover

78

all its entering and leaving liabilities. Otherwise, if |W ′ −W | ≥ 2 or W ′ does not exist, charge W

only the k-credits necessary to cover its own liabilities. The other k credits are used to pay for the

liabilities of W ’s children.

The reason that we use conservative path payment to pay for the special edges when k < 15

is that, when W ′−W is large, it is difficult to pay for the liabilities of W ’s children that are incident

to W . Conservative path payment helps offset this by giving us k additional credits to help pay for

these liabilities.

Previously, we charged W 2k credits in order to saturate it. This allowed us to saturate A,

the set before our final subpath. Under conservative path payment, A will still be saturated except

in the case that all sets on the path are same-way critical.

4.2.2 Modified Lemmas

There are several lemmas that need to be modified from the previous section. First we give

a lemma that will help us in extending the lemmas from Section 4.1.

Lemma 13. Let k ≥ 10. If B is the first set that alternates with A0 and |B−A0| > τ , then either

B or the last set in the subpath immediately before B will be saturated.

Proof. If B is the last set of a subpath, Lemma 8 applies. Otherwise, let Z be the last set on the

subpath before B and note that this implies |B −Z| ≤ 2. Let Y be the set before Z. Because B is

the first set that alternates with A0, the subpath before B does not contain an alternation. Thus

B alternates with Z, Y , and A.

Since |Z − A| > τ by definition, |B − A| > τ and thus |B − A| ≥ k − 1. This implies that

since |Y −A| ≤ τ , |B − Y | ≥ k − 1. Because |B − Z| ≤ 2, therefore |Z − Y | ≥ k − 3.

The special edges with both ends in Y −A can be paid for using the credits on the vertices

of |Y − A|, leaving at least 4 credits. There are at least 4k − 12 credits on the vertices of Z − Y .

When these are added to the 4 credits remaining on the vertices of |Y − A|, this gives a total of

4k−8 > 3k credits. This is enough to pay for the at most k special edges covered by Y and saturate

79

Z.

Now we are ready to modify the lemmas from Section 4.1 in order to use conservative path

payment and extend the entire proof to 10 ≤ k < 15. As in Section 4.1.2.1, let A be the first set of

a subpath P , Z be the last set of P , Y the last set before Z, and B the first set of P that alternates

with A.

Lemma 14. For k ≥ 10, if |Z −A| > τ , B exists, and |B −A| ≤ 2, Credits(P) ≥ Special(P).

Proof. Let X be the largest set alternating with Z. Note that because |X − A| ≤ τ by definition,

|Z −X| ≥ (k − 1)− τ > 2, so |Z −X| ≥ k − 1. The condition on k implies τ > 4. In the original

variant of the lemma, we said that this subpath had 5k+2 potential special edges: k edges incident

to A, 2k incident to each of Y and Z, and 2 with both endpoints in Y − A. Consider 3 cases

for the edges that are incident to A. We will show that in all three cases, we do not need to pay

additional credits for the edges incident to A, either because A is saturated or because we have

already counted the edges incident to A.

Case 1: A is a non-chain node. If A is 2-way critical, then A is saturated. Otherwise, without

loss of generality say that A is only out-critical and thus the entering edges of B are all possible

special edges incident to A. If |B − A| = 2, then B = Y and its liabilities are already counted in

the liabilities incident to Y . If |B−A| = 1, all the entering edges of B are paid for by conservative

path payment.

Case 2: There is an alternation in the path somewhere between A and the beginning of the

path A0. Then A will be saturated.

Case 3: There is no alternation between A and A0. In this case, Lemma 13 will apply, and

A will be saturated.

These cases show we do not need to pay for any additional special edges incident to A.

Therefore, we only need to pay for 4k + 2 special edges. We consider two cases:

Case 1: X 6= A. If |Z −X| ≥ k, then |Z −A| ≥ k + 1 and Credits(P) ≥ 4(k + 1) > 4k + 2.

Otherwise |Z −X| = k − 1 and because Z −X is bicritical, by Lemma 3(iii) there can be at most

80

6 special edges that enter Z or leave X. In addition k special edges may enter Y , 2 special edges

can have both ends in Y −A, and we charge Z an extra k credits in order to saturate it, giving us

a total of 2k + 8 special edges. See Fig. 4.7(a). Our total credits are:

Credits(P) ≥ 4k = 2k + 2k > 2k + 8 = Special(P)

Case 2: X = A. In this case, all sets between A and Z are 1-way critical. Therefore, there

are only k special edges leaving Y rather than the 2k we originally assumed, giving us only 3k + 2

special edges we need to pay for. See Fig. 4.7(b). Our total credits are:

Credits(P) ≥ 4(k − 1) = 3k + (k − 4) > 3k + 2 = Special(P)

A

k edges

k edges

Z

Y
X

< 6 edges

(a) If |Z − X| = k − 1, fewer
than 6 special edges enter Z.

A

k edgesk edges

Y

k edges

Z

(b) If A is the largest set that
alternates with Z, all sets be-
tween A and Z are one way
critical.

Figure 4.7: Proof of Lemma 14. Possible special edges for a subpath where B is the first set that
alternates with A and |B −A| ≤ 2.

Lemma 14 allows us to extend Lemma 11 to values of k between 21 and 10 under conservative

path payment. However, this is insufficient to allow us to extend Lemma 12; the first set of a path

81

is not necessarily saturated, so we cannot assume saturation all the way through. We can show

that the results of Lemma 12 still apply assuming that the path contains an alternation. We can

also show a fourth result that was previously obvious but now must be proved.

Lemma 15. Let k ≥ 10. Consider P , the last sub path of the path A0, ..., Aq . Let Z be the last set

of P and A the last set before P . If the path A0, ..., Aq has an alternation, and P has any liabilities,

then the following properties hold:

(i): There is an alternation in A,P

(ii): |Z −A| ≤ 2

(iii): Every vertex of Z −A has ≥ σ + 1− |Z −A| unused credits.

(iv): No unpaid liability of P is incident to A.

Proof. Assume A0 is 1-way critical; otherwise, conservative path payment will saturate A0 and

Lemma 12 will apply. Let B be the first set of the path that alternates with A0. If B is part of a

subpath with more than τ vertices, then one of Lemmas 8 or 14 will saturate the last set of that

subpath. If B is not part of a subpath with more than τ vertices, but |B − A0| > τ , then Lemma

13 applies and we can saturate the last set of the subpath before B. In either case, Lemma 11

applies, the set before the last subpath will be saturated, and Lemma 12 applies.

If neither of these cases apply, then B must be in P with A0 = A. This gives us (i), and

Lemma 4 gives us (ii). These in turn imply (iii) by the same reasoning as in the proof of Lemma

12. The only remaining task is to prove (iv). If |B − A| = 1, conservative path payment will pay

for the liabilities of B that alternate with A. Also, every liability of P which is incident to A is

covered by B, so (iv) is proved. If |B − A| = 2, then B = Z. Let b be the number of vertices in

Z − A of in-degree at least k + 1 and d be the number of edges which go between A and V − Z.

Then, since B − Z is bicritical, by Lemma 3(ii) b + d ≤ 2. This gives us three cases:

Case 1: b = 2. This implies d = 0, which implies no edges can enter A from outside Z.

Case 2: b = 0. This implies d ≤ 2 and also no edge from A to Z can be special. The total

number of special edges entering or leaving A is less than or equal to 2, which can be paid for with

82

our k credits.

Case 3: b = 1. This implies d ≤ 1. Path payment pays for two edges between the vertices of

Z − A, but b = 1 implies that no edge in Z − A can be special. Therefore, we can use one of the

credits that would have paid for those edges to pay for the one potential edge from outside Z to

A.

4.2.3 Liability Payment

Once these lemmas are in place, we are ready to pay for the liabilities of the children Zi of

some non-chain node W . Order the children of W so that any with no liabilities are given the lowest

numbers, then those whose paths have no alternation, then finally those children with both liabilities

and an alternation. For those with liabilities and an alternation, assume |Zi − Ai| ≥ |Zj − Aj | if

i > j. The remainder of the proof is a listing of cases and a proof that in each of these cases, we

have enough credits remaining to pay for our liabilities.

Let W ′ be the first ancestor of W that alternates with it (W = W ′ if W is 2-way critical).

Let x = |W − ∪Zi|. For all Zi, if there is an intermediate set between Zi and Ai, call it Bi.

Define the pass-up as the credits beyond 2k in a share. For 10 ≤ k < 15, a share of credits

is

σ(k + 1)

2
= 2k + 2 + ω +

ω(ω + 1)

10

For a node at the start of a path, the first 2k credits will be used to satisfy its obligations under

conservative path payment. The remaining 2 + ω will be “passed-up” to the end of the path to

help pay for any remaining liabilities. We ignore the ω(ω+1)
10 term.

Our cases all deal with the first two paths, Z0 − A0 and Z1 − A1. The different cases are

based on the lengths of these paths and whether or not they contain alternations.

(1) At least one subpath has no alternation.

a. Z0’s subpath has no liabilities.

b. Neither Z0’s subpath nor Z1’s subpath contain an alternation, but both have liabilities.

83

c. Z0’s subpath has no alternation but Z1’s does, and both have liabilities.

(2) Both subpaths have an alternation.

a. |Z0 −A0| = |Z1 −A1| = 1

b. |Z0 −A0| = 1, |Z1 −A1| = 2

c. |Z0 −A0| = |Z1 −A1| = 2 and W has exactly 2 children.

d. |Z0 −A0| = |Z1 −A1| = 1 and W has 3 or more children.

In all cases except the last one, we will pay for the remaining liabilities of Zi, i ≥ 2 by using

the bonus shares of W .

Case 1: At least one subpath has no alternation

Case 1a: Z0’s subpath has no liabilities

Say Z0 is in-critical. Assuming that Z1’s subpath has liabilities, we are guaranteed at least

4x + 4 + 2(2 + ω) = 4x + 8 + 2ω

credits from the vertices of W , the vertices of Z1, and the pass-up of Z0 and Z1. We will first show

that we can pay for all liabilities if either x > 0 or W has more than 2 children. We will then

consider the case where W = Z0 ∪ Z1.

If |W ′ −W | > 1 or W ′ does not exist, conservative path payment returns the k credits. We

will have 18+2ω +4x credits. If x > 0, this is enough credits to let us pay for the 20+2ω potential

liabilities of Z1. Similarly, if W has more than 2 children, there will be 2 additional credits from

Z2’s pass-up, and we will have at least 20 + 2ω credits.

If |W ′ −W | ≤ 1, there are 10 + ω liabilities entering Z1 and |Z1 −A1|(x + 1) liabilities from

Z0 to the vertices of W ′ −W , and again we will have enough credits if x > 0 or W has more than

two children. In either case, we will have enough credits unless W = Z0 ∪ Z1.

Say that W = Z0∪Z1. We begin with the case that W is in-critical. In this case, if Z1 is also

in-critical, every entering edge covered by W is also covered by either Z0 or Z1. Use the k credits

84

Z0 Z1t edges

W
k−t edgesk−t edges

Figure 4.8: Proof of Case 1a, assuming W = Z0∪Z1, W and Z0 are in-critical, and Z1 is out-critical
(and not in-critical). If t liabilities of Z1 enter Z0, then exactly k − t edges enter Z0 from outside
W .

that pay for W ’s entering edges to pay for Z1’s entering liabilities instead. If Z1 is only out-critical,

then the special edges must be arranged as in Fig. 4.8. Note that any liabilities of Z1 that enter Z0

are already paid for. If t liabilities of Z1 enter Z0, then exactly k − t edges enter Z0 from outside

W . Edges entering Z0 from outside W are paid for by Z0, so there is no need to charge W for

those edges. Instead, charge W k − t credits to pay for the outstanding k − t liabilities of Z1.

Finally, we deal with the case where W = Z0∪Z1 and W only is out-critical. In this case, we

have no liabilities leaving Z1 and at most 10+ω entering it. If |Z1−A1| = 2, we have 10+2ω credits,

enough to pay for entering liabilities. If |Z1 −A1| = 1 and Z1 actually has entering liabilities, then

Z1 must be in-critical, so all three sets must be 2-way critical by Lemma 2. This contradicts our

assumption that W was only out-critical, completing the case.

Case 1b: Neither Z0’s subpath nor Z1’s subpath contain an alternation, but both have

liabilities

From the pass-up and the credits on the vertices of Z0 and Z1, we have at least 12 + 2ω

credits. If |W −⋃

Zi| ≥ 2 or if conservative path payment returns k credits (so |W ′ −W | > 1 or

W ′ does not exist), we have 20+2ω credits, enough to pay for all 2k liabilities of Z0 and Z1. Thus,

assume that |W − ⋃

Zi| ≤ 1 and |W ′ −W | ≤ 1. We first consider the case where both sets are

same-way critical, then the case where they are opposite-way critical.

85

Z1Z0

t edges

s edges

k−s edgesk−t edges

W

Z U Z0 1

Figure 4.9: Proof of Case 1b, assuming Z0 and Z1 are in-critical. There are t edges from Z1 to Z0

and s from Z0 to Z1. Since Z0 ∪Z1 is a set in a k-connected graph, at least k edges enter it, which
implies t + s ≤ k.

First, consider the case where Z0 and Z1 (and all sets in their paths) are in-critical. Consider

the set Z0 ∪ Z1. This is a set of vertices in a k-edge-connected graph, so it must have in-degree at

least k, which implies that there can be at most k edges which go between Z0 and Z1, as shown

in Fig. 4.9. We can pay for these k edges between the two sets using the credits on the vertices of

Z0, Z1, and W −⋃

Zi, leaving at least |W ′ −⋃

Zi| credits on each vertex of Z0 and Z1, giving us

enough credits to pay for the edges to the vertices of W ′−⋃

Zi. A parallel case occurs if both sets

are out-critical.

In the case where Z0 is in-critical while Z1 is out-critical, we can use k credits to pay for all

of the liabilities of Z1, again leaving at least 2 credits on each vertex of Z0 to pay for its liabilities

to the at most 2 vertices of W ′ −⋃

Zi. Again, a parallel case holds if Z1 is in-critical while Z0 is

out-critical.

Case 1c: Z0’s subpath has no alternation but Z1’s does, and both have liabilities

WLOG, say Z0 is only in-critical. We will consider two cases, a general case that will apply

in almost all circumstances and a special case if |Z0 − A0| + |Z1 − A1| ≥ 5, Z1 is out-critical, and

W −⋃

Zi is non-empty.

For the general case, using the pass-up, the credits on the vertices of Z1, and any credits

86

needed from the vertices of Z0, pay for the k entering liabilities of Z1. After these liabilities have

been paid for, there will still be at least |Z1−A1|+1 credits on all vertices of Z0 (or |Z1−A1|+2 if

|Z0−A0| = 1 and |Z1−A1| = 2). If conservative path payment returns k credits (so |W ′−W | > 1 or

W ′ does not exist), use those to pay for either the entering liabilities of Z0 or the leaving liabilities

of Z1, whichever alternates with W . If |W ′ −W | ≤ 1, pay for the liabilities between the possible

vertex of W ′ −W and either Z0 or Z1 using the credits on the vertices of Z0, leaving |Z1 − A1|

credits on each vertex of Z0. Pay for the liabilities from Z0 to Z1 using the credits on the vertices

of Z0. Pay for any liabilities between the vertices of Zi − Ai and each vertex of |W −⋃

Zi| using

the at least 4 credits on each vertex of W −⋃

Zi.

The above scheme will allow us to pay for all liabilities except in the case that |Z0 − A0| +

|Z1 − A1| ≥ 5, Z1 is out-critical, and W − ⋃

Zi is non-empty. If |Z0 − A0| = 4, then there are

10 + 4ω
5 credits on the vertices of Z0. Use these along with ω

5 credits from the vertices of Z1 to

pay for the liabilities of Z0 and pay for the liabilities of Z1 as described in Case 1a. Otherwise, if

|Z0−A0|+ |Z1−A1| ≥ 5 but |Z0−A0| < 4, it must be the case that |Z0−A0| = 3 and |Z1−A1| = 2.

In this case, there may be 5 liabilities involving each vertex of W −⋃

Zi, and we only have 4 credits

to pay for them. However, we have 23+2ω credits from the pass-up and the credits on Z0, Z1, and

the first vertex of W−⋃

Zi. This gives us enough credits to pay for the entering liabilities of Z1 and

either the entering liabilities of Z0 or the leaving liabilities of Z1, depending on which alternates

with W , leaving 3 credits left over, which will be enough to pay for any remaining liabilities to the

first vertex of W −⋃

Zi. There will be at most 3 liabilities to the remaining vertices of W −⋃

Zi,

which can be paid for by the credits on those vertices.

Case 2: Both sets have an alternation

For the cases where both sets have an alternation, assume that W is out-critical. Also note

that if x ≥ 7, then there will be enough credits on the vertices of W to pay for all liabilities of Z0

and Z1, so assume that x ≤ 6.

In all cases, note that if |W ′ −W | > 1 or if W ′ does not exist, conservative path payment

87

returns k credits. Therefore, if conservative path payment does not return k-credits, this implies

that W ′ exists. Because W ′ is a critical subset, W ′ 6= V .

Case 2a: |Z0 −A0| = |Z1 −A1| = 1

If |Z0 − A0| = |Z1 − A1| = 1, then we will have 4x + 12 + 2ω credits on the vertices and

from the the pass-up. We will consider the cases where |W ′−W | ≤ 1 and where conservative path

payment returns k credits.

In the case that |W ′−W | ≤ 1, then we will have 4x+2 liabilities to the vertices of W ′−⋃

Zi

and 2 between Z0 and Z1 for a total of 4x + 4 liabilities, less than our 4x + 12 credits.

In the case that conservative path payment returns k credits, we will have 20 + 2ω liabilities

entering Z0 and Z1, 2 between the vertices of Z0 and Z1, and 2x to the vertices of W −⋃

Zi. We

will have 4x + 22 + 3ω credits, enough to pay for our 2x + 22 + 2ω liabilities.

Case 2b: |Z0 −A0| = 1, |Z1 −A1| = 2

In this case, we have 4x + 14 credits from the vertices and the pass-up. We will consider the

case where conservative path payment returns k-credits, then several subcases if |W ′ −W | ≤ 1.

If conservative path payment returns k credits, then there are 4x + 24 + 3ω credits, which is

less than the 3x + 4 + 20 + 2ω potential liabilities.

In the case that |W ′ −W | ≤ 1 and at least one of Z0 or Z1 is 1-way critical, then our total

liabilities are 5x + 4 + 3 which is less than our 4x + 14 credits when x ≤ 7.

In the case that |W ′ −W | ≤ 1 and there are at least three children of W , use the pass-up

from Z2 to obtain a total of 4x + 18 + 4ω credits. If x ≤ 5, this is less than our potential 6x + 7

liabilities. If x ≥ 6, then we have at least 24 + 18 + 4ω > 4k credits, enough to cover all liabilities.

If none of the above cases hold, then |W ′−W | ≤ 1, there are only two children, and both Z0

and Z1 are 2-way critical. Consider the case where W is 2-way critical. We have 6x + 4 liabilities,

less than our credits if x ≤ 5. Because Z0 and Z1 are both 2-way critical, W −Z0−Z1 is tricritical,

so by Lemma 5 x 6= 5 or 6. Next, consider the case where |W ′ −W | = 1. We may have 6x + 4 + 3

liabilities, less than our credits when x ≤ 3. If W ′ 6= W , the fact that Z0 and Z1 are both 2-way

88

critical implies that both W − Z0 − Z1 and W ′ − Z0 − Z1 are tricritical. Thus, Lemma 5 implies

x 6= 4, 5, or 6. Therefore, either, x ≤ 3 or x ≥ 7, and in either case, we can pay for all liabilities.

Case 2c: |Z0 −A0| = |Z1 −A1| = 2 and W has exactly 2 children

Again, we will have separate cases if conservative path payment returns k credits or if |W ′−

W | ≤ 1. In the case that |W ′ −W | ≤ 1, we will either have a lemma that allows us to pay for all

liabilities or we will be guaranteed a tricritical set. Further subcases will depend on exactly what

this tricritical set is.

In the case that conservative path payment returns k credits, then we have 4x + 26 + 3ω

credits. We have at most 20 + 2ω entering liabilities. Our leaving liabilities depend on the first

in-critical set of Z1. If Z1 or B1 is in-critical, then at least 2 of the 8 potential edges between Z0

and Z1 are entering liabilities of Z1. Thus, we have only 6 + 4x leaving liabilities and 4x + 26 + 2ω

total liabilities. If the first in-critical set of Z1 is A1, then Z1 didn’t actually have any entering

liabilities and we only have 4x+18+2ω total liabilities. In either case, we can pay for all liabilities.

If |W ′ −W | ≤ 1, recall that W ′ exists, W ′ is a critical subset, and therefore W ′ 6= V . We

need the following lemma:

Lemma 16. If W has exactly two children and |Zi − Ai| = 2 for all i ∈ 0, 1, then we can pay for

all edges if any of the following hold:

a) x ≥ 6

b) There are no more than 2 in-special vertices (vertices with in-degree greater than k) in

W ′ − Z0 − Z1.

c) At least one of the Zi is 1-way critical and does not have a Bi which alternates with it.

Proof. For part (a), observe that we have

(4 +
ω

5
)x + (12 +

4ω

5
) + (4 + 2ω) ≥ 40 + 4ω

credits when x ≥ 6. For part (b), let there be t special vertices. Then our liabilities will be

8 + 4x + 4t, less than our 4x + 16 credits when t ≤ 2. For part (c), say Z0 is our 1-way critical

89

set, and B0, if it exists, does not alternate with Z0. Use k credits to pay for the liabilities of Z0,

leaving at least 4x + 6 to pay for the liabilities of Z1. There are potentially 4 remaining liabilities

between the vertices of Z0 and Z1. There will be at most 2 liabilities between Z1 and W ′ −W .

There could be as many as 4x liabilities between Z1 and W − Z0 − Z1. This gives us a maximum

of 4x + 6 liabilities, which we can pay for with our remaining credits.

If the condition in (c) does not hold, then for i ∈ {0, 1}, either Bi or Zi alternates with W ′.

Thus, we are guaranteed that one of the following sets (illustrated in Fig. 4.10) is tricritical:

(1) W ′ − Z0 − Z1

(2) W ′ − Z0 −B1

(3) W ′ −B0 − Z1

(4) W ′ −B0 −B1

If (2) is tricritical, then either part (b) of Lemma 16 holds or we are guaranteed that that

the tricritical set has at least 3 special vertices and 4 total vertices, because we have 1 vertex in

Z1 −B1 and at least the 3 in-special vertices in W ′ − Z0 − Z1. Therefore, by Lemma 6 it must be

larger than 8, giving us x + 1 + 1 ≥ 8, so x ≥ 6. A parallel argument holds for (3).

Say that (4) is tricritical, but (2) and (3) are not. If part (b) of Lemma 16 does not hold,

(4) has more than 3 vertices, at least 3 of which are special, so Lemma 6 implies x + 2 + 1 ≥ 8,

or x ≥ 5. Also, in this case, we are guaranteed that both Zi are in-critical, so W − Z0 − Z1 is

tricritical. Thus x 6= 5 or 6, and so x ≥ 7.

Say that (1) is tricritical, but none of the other three are. In this case, we are guaranteed

that both Zi are out-critical (possibly 2-way critical), and the Bi, if they exist, are only in-critical.

If W ′ = W , then if none of the other sets are tricritical, neither Bi can exist. In this case, we have

20 + 2ω = 2k credits on the vertices of Zi and from the pass-up. Use these to pay for the leaving

liabilities of both Zi. There may be an additional 4x liabilities to the vertices of W −⋃

Zi, which

can be paid for using the credits on the vertices of W −⋃

Zi.

90

Otherwise, |W ′ −W | = 1. We know that (1) has cardinality x + 1. If part (b) of Lemma 16

does not hold, the set has at least 3 in-special vertices, and thus x + 1 ≥ 8 or x + 1 = 3, implying

x ≥ 7 or x = 2. If x ≥ 7, part (a) of Lemma 16 holds, so assume x = 2.

If x = 2 and neither Bi exists, we have 4x + 20 credits and 8x + 4 + 8 liabilities. Our credits

are less than our liabilities when x ≤ 2.

If at least one Bi, say B0, exists, then it is not possible that x = 2. If A1 is out-critical,

W ′−Z0−A1 is tricritical. If A1 is in-critical, W −B0−A1 is tricritical. Whether A1 is out-critical

or in-critical, we have a tricritical set of cardinality x + 3. Thus, by Lemma 5, x 6= 2 or 3.

Case 2d: |Z0 −A0| = |Z1 −A1| = 2 and W has 3 or more children

In this case, we will want to pay for the liabilities of Z0, Z1, and Z2 using the credits on

the vertices, the pass-up, and the bonus share of Z2. For any Zi, i > 2, we will make use of the

following lemma:

Lemma 17. Suppose that |Zi −Ai| = 2 for all children of a non-chain node W . Consider a child

Zi for some i > 2. Using only Zi’s bonus share and the credits on its vertices, we can pay for all

liabilities of Zi and any edges from Z0, Z1, or Z2 to Zi.

Proof. Use 2k credits from the bonus share to pay for entering and leaving liabilities of Zi. In order

to prove that there are enough credits to pay for edges from the first three subpaths, look at the

last in-critical set of Zi’s subpath.

If Zi is the last in-critical set, then all edges that enter Zi are liabilities of Zi and were already

paid for.

If Bi is the last in-critical set, there may be 6 unpaid edges from Z0, Z1, and Z2 to |Zi−Bi|.

These can be paid for using the 6 credits on the vertices of |Zi −Bi|.

If Ai is the first in-critical set, then the path didn’t actually have any entering liabilities.

Therefore, k credits from the bonus share can be used to pay for additional edges. This gives us

at least 16 credits, more than enough to pay for the 12 possible entering edges from Z0, Z1, and

Z2.

91

A0

B0

Z0 Z1

B1

A1

W’

W

(a) W ′ − Z0 − Z1

A0

B0

Z0 Z1

B1

A1

W’

W

(b) W ′ − Z0 − B1

A0

B0

Z0 Z1

B1

A1

W’

W

(c) W ′ − B0 − Z1

A0

B0

Z0 Z1

B1

A1

W’

W

(d) W ′ − B0 − B1

Figure 4.10: Tricricial sets in the proof of Case 2c. If condition (c) in Lemma 16 does not hold,
one of the sets shown must be tricritical.

92

This lemma insures that we do not need to worry about any leaving liabilities of Z0, Z1, and

Z2 that may be incident to any other Zi, so we will be able to ignore the Zi, i > 2 for the rest of

the proof.

For Z0, Z1, and Z2, we will first try to pay for the 3k entering liabilities of all sets, then pay

for the edges between the three of them and to the vertices of W −⋃

Zi. Note that we have

2k + 4(2 + ω) + 18 + 4x = 4k + 6 + 2ω + 4x

credits. When x ≥ 4 this is at least 4k + 22 + 2ω, enough to pay for all 6k potential liabilities,

so we can assume x ≤ 3. We will have 4 cases, depending on where each subpath has its largest

in-critical set.

Case 1: Ai is the largest in-critical set for at least 2 subpaths. In this case, there are at

most 4k entering and leaving liabilities over all 3 subpaths and at least 4k + 6 credits.

Case 2: If Ai is the largest in-critical set for exactly 1 subpath. After paying for the 2k

entering liabilities of the other 2 subpaths, we will have at least 26 + 4x credits remaining. In this

case, there may be 16 liabilities between the vertices of Z0, Z1, and Z2 and 6x to the vertices of

W −⋃

Zi. We have enough credits to pay for all liabilities when x ≤ 5.

Case 3: None of the subpaths have Ai as their largest in-critical set, but at least one, say

Z0, has Zi as its largest in-critical set. Each vertex of Z0 may have 2 leaving liabilities to the other

subpaths, and each vertex of Z1 and Z2 may have 1 leaving liability to the other subpaths. This

gives us a total of 8 liabilities between the subpaths and 6x to the vertices of W − ⋃

Zi. After

paying for the 3k entering liabilities, we will have at least 16 + 4x credits, which is enough to cover

our liabilities when x ≤ 4.

Case 4: All 3 subpaths have Bi as their largest in-critical set. In this case, there may be 12

liabilities between the subpaths and 6x to the vertices of W − ⋃

Zi. As in the previous case, we

have at least 16 + 4x credits after paying for all entering liabilities, which may be 2 less than our

remaining liabilities when x = 3. However, recall from the proof of Lemma 10 that the reason that

we have 3 and not 4 credits on the vertices is that we already paid for an edge between the vertex

93

of |Zi −Bi| and the vertex of |Bi −Ai|. Assuming that this edge exists, it is one of the k entering

liabilities of Bi. Because it was already paid for, we only need to pay for k− 1 additional edges. If

this edge doesn’t exist, then we have an additional credit on the vertices of |Zi − Ai|. Either way,

we will have 3 additional credits, enough to cover all liabilities.

Chapter 5

An introduction to computational biology and protein-protein interaction

networks

Computers and computer science are acquiring an ever more important role in modern biology.

With new lab techniques, biologists are able to generate an exponentially increasing amount of data.

This data must be processed and analyzed if it is to be used in further biological research. The need

to process this data has spurred on the field of computational biology, the science of developing

new algorithms for biological data and finding ways to apply existing algorithms to new biological

problems.

Many types of biological data can be represented as graphs making graph theory one of

the subfields of computer science with significant applications to computational biology. Some of

these graphs of biological data, usually called biological networks, include metabolic networks that

model the various chemical reactions in the cell, genetic co-expression networks that have edges

between genes that are expressed together, and protein-protein interaction networks that contain

information about which proteins bind to each other.

5.1 Protein-Protein Interaction Networks

Protein-protein interaction (PPI) networks are graphs designed to represent protein

interactions in the cell. Vertices represent proteins, and there is an edge between two vertices if

the corresponding proteins have been shown to interact physically (or sometimes just predicted to

interact) in some study [22]. Examples are shown in Fig. 5.1 and 5.2. Several different types of

95

assays determine interactions. Much of the interaction data comprising PPI networks are generated

from high throughput assays which identify many interactions in a relatively short period of time.

Two common high throughput methods are yeast 2-hybrid (Y2H) and affinity purification

[23]. Y2H assays use tagged proteins to determine binary interactions. The tags on the proteins are

part of the GAL4 protein from the yeast Saccharomyces cerevisiae, a protein involved in regulating

transcription. The protein is divided into two parts, an activation domain and a DNA binding

domain. When the two parts are brought into close proximity, they activate the transcription of

a reporter gene [24]. See Fig 5.3. Affinity purification also uses a tagged protein to determine

interactions. A particular protein, the “bait,” is tagged in such a way that it will make it easy to

remove from the cell, and that the tag does not interfere with the natural level of protein expression

in the cell. Affinity purification removes this bait protein from the cell along with anything attached

to the bait. A subsequent assay, usually mass spectrometry, determines which proteins have been

brought out [25]. See Fig. 5.4. However, mass spectrometry only determines which proteins are in

the sample, not the binary interactions within it. Therefore, interactions from affinity purification

can either be modeled using a “hub-and-spoke” pattern where there is an edge between the bait

protein and each protein pulled out with it, or a clique where there is an edge between each protein

pulled out [26]. See Fig. 5.5.

Figure 5.1: A small example of a protein-protein interaction graph.

96

Figure 5.2: An example of a protein-protein interaction network. Image is from “Yeast Proteomics”,
Genome News Network, 1-18-02 [27].

Figure 5.3: An example of yeast 2-hybrid. Blue shapes are proteins. Red shapes are tags. When
the two proteins with different tags bind to each other, the tags are brought close enough together
to initiate transcription of a reporter gene that indicates an interaction has occurred. Image is from
Gibson and Goldberg [28].

Both types of assays to determine the edges are error-prone, and have both false positives

(proteins that don’t interact but appear to) and false negatives (proteins that do interact, but

whose interaction has not been captured). Nonetheless, protein-protein interaction networks are

97

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Tag

Target Protein

Figure 5.4: An example of affinity purification. The blue protein is tagged to allow it to be removed
from the cell. When it is removed, the magenta, yellow, and green proteins are removed with it. The
resulting combination of proteins is disassembled and run through mass spectrometry to determine
which proteins were pulled out.

A A
C

D
E

B

AB

B

CDDE

E

C

A OR

Figure 5.5: An example of affinity purification. Protein A is the bait. When it is pulled out,
proteins B, C, D, and E are brought out with it. In the PPI network, this is modeled as either the
“hub-and-spoke” graph on the left or the 5-clique on the right.

valuable tools for studying the proteome of an organism.

5.1.1 Topology of PPI networks

There are many reasons to study PPI network topology. We can compare the topology of

PPI networks to the topology of other, well-studied networks. This comparison will demonstrate in

what ways PPI networks are similar to these other networks, and therefore which knowledge about

these networks can be used in our study of the PPI network. Patterns in the edges may provide

evidence to discern the difference between edges that represent true interactions and those that are

98

false positives and allow us to assign an improved confidence score to individual edges. Looking

at edge topology can also help determine the nature of the interactions those edges represent; are

these interactions long-term interactions, such as those that are part of a complex, or transitory

interactions that occur only briefly under special circumstances. Studying PPI network topology

also allows scientists to evaluate existing models of how protein interaction works and create better

models. Understanding the topology of the PPI network can give a better understanding of the

underlying evolutionary mechanisms that created that network.

Due to the fact that network theory is a relatively new field, there are very few analytic

methods for determining the significance of a network’s properties. Therefore, in order to determine

which topological properties are significant in a PPI network, the properties are usually compared

against those in random networks. The question is, what is the appropriate way to create random

networks for comparison? The number of vertices and edges are usually held constant so that we

can determine which properties are significant and which are expected given the number of vertices

and edges in the graph, but determining the appropriate distribution of edges is more difficult.

Traditionally, the random model used for graphs is the Erdős-Rényi random graph [29]. Erdős-

Rényi graphs have n vertices, and between any two vertices, there is an edge with probability p.

By setting n equal to the number of vertices in the PPI network and p equal to the edge density,

a graph with the same number of vertices and roughly the same number of edges is obtained.

The properties of this random graph can be compared with those of the PPI network in order to

determine the significance of these properties.

Because the properties of Erdős-Rényi graphs differ significantly from those of PPI networks,

it is now considered to be an inappropriate random model for determining the significance of PPI

network properties. Several other random models have been developed. One common method is to

generate a random network with the same number of vertices of each degree as the target network.

Another method is to hold the network itself constant and randomly reassign labels (protein or

gene names) to the vertices; this method is effective if we want to study the properties vertices

connected by an edge (i.e., whether or not two proteins with similar function are more likely to

99

interact), but it is useless if the topological features of the network as a whole are being assessed.

There are many topological properties often studied in connection with PPI networks. Some

of the most common are listed below:

Edge Density: For the network or a subgraph in the network, the number of actual inter-

actions divided by the possible interactions.

Degree Statistics: The maximum and mean degrees in the network.

Degree Distribution: How many vertices of each degree are present in a network.

Clustering Coefficient (CC): A measure of how many of a vertex’s neighbors are neighbors

of each other. For a single vertex, the clustering coefficient is the edge density among the vertex’s

neighbors. We also want to look at clustering coefficient over a graph or subgraph. Clustering

coefficient over a graph was originally defined as the average of the clustering coefficient of the

vertices, and this definition is still used occasionally. However, this definition is problematic when

the network contains degree 1 vertices, which have undefined clustering coefficients. This definition

also overemphasizes low-degree vertices. Therefore, an alternate definition is usually used: cluster-

ing coefficient in a graph is defined as 3 times the number of triangles divided by the number of

length 2 paths. See Fig. 5.6.

Mutual Clustering Coefficient (MCC): For a pair of vertices, a measure of how many

neighbors they share. This is often a ratio; the top number in the ratio is always the number of

shared neighbors, but there are several possible denominators including the size of the union of

their neighborhoods, the size of the minimum neighborhood, or some way of combining the two.

An alternative to the ratio method looks at the overlap and calculates the probability that this

overlap is due to chance. These various methods are evaluated in Goldberg and Roth [30].

Motifs: Particular subgraphs, such as cycles or cliques of a particular size, in the network.

Depending on the application, motifs can either be arbitrary subgraphs or may be forced to be

induced subgraphs. There are two connected motifs of size 3 (a path and a triangle), six connected

motifs of size 4 (a path, a Y-shape, a 4-cycle, a 4-cycle with a chord, a triangle with an additional

vertex, and a 4-clique), twenty-one of size five, etc.

100

Path length statistics: The maximum and mean length (called the characteristic path

length) of the shortest path between any two vertices in the network.

Betweenness Centrality: Betweenness centrality is defined on either a vertex or an edge

and is the number of shortest paths of which that vertex or edge is a part. To calculate betweenness

centrality, all shortest paths between all pairs of vertices should be calculated. Then, determine

how many of those shortest paths the desired vertex or edge is on. That number is the betweenness

centrality of the vertex or edge. Betweenness centrality is often used to divide the graph; edges

or vertices of high betweenness are removed in order to divide the graph into multiple connected

components.

k-core: A subgraph of the network where every vertex in the subgraph has degree at least k

within the subgraph. Note that this is a weaker condition than k-edge or k-vertex-connectivity; a

k-core is not necessarily k-edge- or k-vertex-connected, but a k-connected graph must be a k-core.

There are many topological features common to protein-protein interaction networks across

species. PPI networks tend to have high clustering coefficients when compared to equivalent random

networks; an edge between two vertices a and b and another edge between b and c greatly increases

the probability that there is an edge between a and c [31]. Despite this high clustering, however,

PPI networks tend to have short average path lengths; although the network is large, there tends

to be a short path between any two vertices in the network [32, 33]. Graphs that have both of

these properties, high clustering coefficients and short average path lengths, are often referred to

as small-world networks [34]. PPI networks are also said to have a power-law degree distribution:

rather than the degrees of nodes having a Poisson distribution like Erdős-Rényi random graphs [29],

there are a small but significant number of very high degree nodes [35, 36]. This type of network

is usually referred to as a scale-free network. See Fig. 5.7.

5.2 Studying PPI networks

Protein interaction network research can help determine the function of proteins, divide the

network into functional modules, and find protein complexes. These goals are closely related, and

101

Figure 5.6: Clustering coefficients on vertices and graphs. Vertex A has a clustering coefficient of
0.4 because 4 of the 10 possible interactions between its 5 neighbors are present. The entire graph
has a clustering coefficient of 0.46 because it has 6 triangles and 39 length 2 paths.

(a) Degree distribution from an Erdős-
Rényi random graph.

(b) Log-log plot of the degree distribu-
tion in (a).

(c) Degree distribution from the Yeast
Y2H interaction network.

(d) Log-log plot of the degree distribu-
tion in (c). Note that it is roughly linear.

Figure 5.7: The difference in degree distributions between a random graph and a PPI network.
While the random graph has a bell-curve distribution around the average degree, the PPI network
has many low degree nodes and a small but significant number with very high degrees.

102

many of the same techniques are used for more than one of these tasks.

5.2.1 Predicting protein function

One common goal of studying the PPI network is to predict the function of proteins which

have not been completely characterized yet. Proteins are more likely to interact with other proteins

of similar function, so the function of a target protein can be predicted by examining the pattern

of functions of proteins in its surrounding neighborhoods.

There are many published methods to predict the functions of unknown proteins. Some of

these are as simple as counting the neighbors of a target protein and assigning the most common

function of the neighbors to the target [37, 38, 39], assuming that proteins are more likely to

interact with those with the same function. This method is often called guilt by association.

Other methods involve coming up with heuristics to approximate the solutions to NP-complete

graph theory problems such as the multiway cut [40, 41, 42], under the assumption that proteins

with similar functions are likely to have more edges between them than they do to proteins of

other functions. Still others use probability and Markov random fields [43, 44], again assuming the

proteins are more likely to interact with those of similar function. See Sharan et al. [45] for a more

complete survey of the methods used to determine protein function based on interaction data.

5.2.2 Determining functional modules

Functional modules are subgraphs of the PPI network whose proteins are linked by common

biological traits. Functional modules may be proteins with the same function, proteins that are

all part of the same signaling network, or proteins that are co-located in the cell. In order for our

algorithms to be able to distinguish them, these subgraphs need to be relatively isolated from the

rest of the network, but it is widely believed that they will be, given the theory that proteins interact

densely within the same functional group and only minimally with proteins of other function. Many

biological functions occur with the interaction of multiple molecules, and learning the function of

individual proteins may not be as useful as learning the function of a module [46].

103

One example of a functional module is a protein complex. Methods for finding protein

complexes are discussed below. More information on finding other types of functional modules can

be found in the review papers by Sharan et al. [45] and Qi and Ge [47].

5.2.3 Finding protein complexes

Rather than performing their function alone, many proteins form protein complexes,

groups of proteins that bind together to perform a specific task. Examples of protein complexes

include the proteasome, a complex for breaking down proteins, and the DASH complex, which

stabilizes the spindle during cell division. In addition to complexes such as the proteasome and

the DASH which are composed entirely of proteins, there are also complexes which include both

proteins and RNA. Examples of these include the ribosome, responsible for building proteins from

RNA, and the various snRNPs (small nuclear ribonucleoproteins, pronounced “snurps”) which are

responsible for splicing the RNA prior to protein synthesis. See Fig. 5.8. Some of these complexes,

such as the proteasome, are well-characterized, but others are not, and scientists believe that there

are many protein complexes in the cell that have not yet been identified. Complexes play an im-

portant role in the function of the cell, and by discovering new complexes and learning more about

their structure, we can gain insights into cellular biology.

There have been many previous attempts to find protein complexes using many different

techniques. Complexes are functional modules, so the methods used to find complexes are a subset

of the methods discussed in Section 5.2.2. Determining whether or not a given protein is part of a

complex also helps determine that protein’s function, so these methods are applicable to that task

as well. We discuss a few of the more prominent methods here.

5.2.3.1 MCODE

One of the best known algorithms for predicting complexes in the PPI network is the MCODE

algorithm of Bader and Hogue [49]. MCODE combines degree statistics, clustering coefficient, and

edge density to find subgraphs that may be complexes.

104

(a) The ESCRTII complex, in-
volved in protein sorting (made
from PDB code 1w7p).

(b) An RNA polymerase II
elongation complex (made
from PDB code 1y1v).

(c) The 20S proteasome, in-
volved in breaking down pro-
teins (made from PDB code
1jd2).

(d) The ribosome, a complex
involved in building proteins.
Unlike the other complexes
here, it contains both proteins
and RNA (made from PDB
code 3fih).

Figure 5.8: Examples of protein and protein-RNA complexes. The ESCRTII, RNA polymerase
elongation complex, and proteasome are pure protein complexes, while the ribosome contains both
proteins and RNA. These are surface pictures, showing the surfaces of all the proteins involved,
but not their atoms or individual structure. Structure information for images is from the protein
data bank, and images made using PyMOL [48].

105

MCODE works in three stages: vertex weighting, complex prediction, and post-processing.

In the vertex weighting stage, the algorithm looks at the neighborhood of each vertex. Within the

neighborhood, the algorithm looks for the maximum k-core, a graph where every vertex has degree

at least k, for the highest possible value of k. The edge density of this k-core multiplied by k is the

weight of the vertex. Note that this is similar to the clustering coefficient of the vertex, except that

MCODE only considers the clustering among the neighbors in the k-core rather than all neighbors.

In the complex prediction stage, the algorithm starts with the highest-weighted vertex not

yet assigned to a complex as a seed. The algorithm moves out from the seed vertex, adding vertices

to the complex if their weights are at least a certain fraction of the weight of the seed vertex. This

fraction is an input parameter to the algorithm.

In the post-processing stage, complexes that do not contain at least a 2-core are eliminated.

There are also two optional operations that may occur in the post-processing stage. The “fluff”

operation adds neighboring vertices to the complex if the vertex’s neighborhood has an edge density

above an input threshold. The “haircut” operation recursively eliminates all vertices of degree 1,

leaving a 2-core.

Although the MCODE algorithm dates back to 2003, it still has an influence on the develop-

ment of other complex-finding algorithms. Software for running MCODE is still actively maintained

and updated. Algorithms developed in 2010 still compare their performance to MCODE.

5.2.3.2 Edge density methods

Edge density-based algorithms are some of the most common algorithms for predicting protein

complexes. It is widely believed that complexes will have many edges within the complex and

relatively few edges outside the complex. A common theory takes this a step further and asserts

that if all real interactions were present, a complex would appear in the data as a clique, a subset

of vertices where all possible interactions are present within the subset; therefore, complexes will

appear as subgraphs with high edge density.

Most algorithms based on edge density try to find subgraphs above a certain density threshold.

106

The algorithm of Spirin and Mirny, for example, starts by searching for all maximal cliques (while

this problem is NP Hard, it is feasible in a sparse graph). They then look for additional complexes

by trying to find a set of nodes with maximum edge density using a monte carlo algorithm [50].

Other methods try to include as many cliques as possible. The CFinder algorithm of Adamc-

sek et al. looks for all k-cliques for a given value of k (usually 4-6). They define adjacent k-cliques

as k-cliques that share k − 1 vertices. The potential complexes returned by CFinder are what

they call k-clique percolations; two vertices are in the same k-clique percolation if there is a path

between them going through adjacent k-cliques [51].

Cui et al. have a similar method to CFinder, but they consider the idea of adjacent cliques to

be too strict. Rather than adjacent cliques, their algorithm returns what they call “near-cliques.”

They give three possible near-cliques: first, a clique and a vertex outside the clique where the vertex

has at least two neighbors in the clique; second, two cliques that share at least one protein; finally,

two cliques and a vertex outside those cliques such that the vertex has at least two neighbors in

each of the cliques [52].

Bu et al. are also looking for subgraphs with high edge density, though they use a different

method. They find “quasi-cliques” by looking for eigenvectors of the adjacency matrix with positive

eigenvalues (negative eigenvalues indicate “quasi-bipartite” subgraphs, which are not believed to

correspond to complexes). These quasi-cliques are returned as potential complexes [53].

King et al. use edge density as a filtering method. They first use a randomized algorithm

on the graph to find a low-cost partition of the vertex sets, where the cost is related to the number

of edges between elements of the partition and the number of edges not present within an element.

Then, they look at the elements of the partition to determine whether or not those elements might

be complexes. An element of the partition is considered a complex if it has a high enough edge

density (usually between 0.65 and 0.75) and enough vertices (the cutoff point varied with the size

of the network) [54].

Zotenko et al. use edge density in their algorithm to find and separate overlapping complexes.

They first modify the graph by adding an edge between any two vertices that share all their

107

neighbors, as well as adding one edge across all 4-cycles. Then, if the graph is a chordal graph

(one for which any cycle of length greater than 3 contains a chord), they build the “clique tree”

representation which shows the maximal cliques and their relationship to each other. The maximal

cliques are predicted to be functional groups or complexes in the interaction network [55].

5.2.3.3 Betweenness methods

Most methods for finding complexes try to find the edges and vertices that are most central

to a complex, but a few methods turn this around. Rather than trying to find the edges and vertices

that are most central and group those together into complexes, they try to find those that are least

central and remove them under the theory that what remains will give us a much better idea of

the structure of complexes in the graph. The methods that work under this theory usually use the

property of betweenness described in Section 5.1.1 as a method for finding less central edges. The

theory for the betweenness methods is the same as the theory for edge density, that complexes will

have many edges within the complex and relatively few edges outside the complex, but betweenness

methods look for the edges outside rather than those within. According to this theory, any shortest

path between two vertices in different complexes will be forced to go through a small number of

edges, so these edges between complexes will have high betweenness.

The first attempt to apply this theory to biological networks was Girvan and Newman’s

algorithm for hierarchical clustering [56]. They calculated the betweenness centrality of all edges

in the graph, removed the edge with the highest betweenness, then recalculated the betweenness

after removing the edge. This procedure was repeated until there were no more edges. The result

is a tree where closely related vertices are grouped together.

Since Girvan and Newman introduced betweenness centrality to biological networks, there

have been several attempts to apply betweenness to the protein-protein interaction network. Chen

and Yuan run a similar algorithm to Girvan and Newman’s on the PPI network to find complexes

and other modules. There were two major modifications that Chen and Yuan made to the Girvan-

Newman method. First, they weighted each edge of the PPI network based on the “dissimilarity”

108

of the expression of the genes that create the proteins represented by each endpoint. These weights

were taken into account when calculating the shortest paths to determine betweenness. Chen and

Yuan also removed “redundant” paths from their calculation that contained the same start or end

vertices; for a given edge, if the calculation of its betweenness used the shortest path between

vertices u and v, the calculation could not include any other shortest paths starting with u or

ending with v [57].

Betweenness of vertices has also been looked at in the PPI network with mixed results. Joy

et al. examined the betweenness values of vertices in the PPI network, and found a significant

number of vertices with high betweenness, but low degree, something not predicted by the standard

scale-free model of PPI networks [58]. They suggest that these high betweenness are likely between

complexes or other modules. Del Sol and O’Meara, however, looked at betweenness on vertices in

protein complexes and found that many complexes had a vertex with high betweenness, suggesting

that it was a central protein in the network [59]. Because these high betweenness vertices were

found as part of complexes, this result cautions against simply removing high betweenness vertices

in order to find complexes.

5.2.3.4 Clustering methods

Another common technique for finding modules in biological networks is a technique known

as hierarchical clustering. In hierarchical clustering, there is a value between every two vertices

that measures their similarity. The two most similar vertices are merged into a cluster, and the

cluster receives a similarity measure with every vertex (or cluster). This process of merging the

most similar vertices or clusters and calculating similarity values of the new cluster with existing

elements is repeated until all elements are merged into a single cluster. The end result is a tree

that can be divided to find the modules.

Hierarchical clustering was first used on genomic data in connection with gene expression and

genetic interaction networks. In 1998, Eisen et al. gave some clustering methods that might be used

for gene expression data and demonstrated its usefulness. Adarichev et al. used clustering methods

109

on the gene expression data in arthritis [60]. Tong et al. developed a large genetic interaction

network [61], which has been used in subsequent interaction studies. They then clustered the

network by using the number of shared neighbors as their measure of closeness. Parsons et al. used

a similar method to Tong in order to cluster both genetic interaction data and gene-chemical

interactions in order to find pathways that might be used in drug development [62].

Hierarchical clustering has also been applied to PPI networks to search for complexes and

other modules. Rives and Galitski find modules in the PPI network by grouping vertices according

to their shortest paths [63]. They give each edge a weight of 1, and as with the betweenness

algorithms, calculate the shortest paths between all pairs of vertices. Unlike the betweenness

algorithms, however, they are not concerned with the number of shortest paths a given vertex or

edge might be part of, but with the relationships between vertices with short paths between them.

For each pair of vertices, they calculate an association value, 1
d2 , where d is the length of the shortest

path between the vertices. They then do a hierarchical clustering algorithm: the algorithm starts

by merging the two vertices with the highest association value. At each subsequent stage of the

algorithm, the two entities with the highest association, be they vertices or clusters, are merged.

The end result is a tree that can be divided to find the modules.

Like Rives and Galitski, Ravasz et al. also use hierarchical clustering to divide biological

networks into modules [64]. Rather than using the shortest path to determine how closely two

vertices are related, however, they use a property they call topological overlap, based on the number

of shared neighbors that a vertex has. This is essentially the same as one of the mutual clustering

coefficient metrics of Goldberg and Roth [30]. Otherwise, the algorithm is the same. It should

be noted however, that the Ravasz algorithm is not designed specifically for protein complexes or

even PPI networks, but for finding modules in all biological networks; the authors applied their

algorithm to metabolic networks.

110

5.2.3.5 The core-attachment model

A small scale study by Dezso et al. [65] and a larger study by Gavin et al. [66] suggest that the

proteins in a complex are not uniformly important but consist of a “core” of essential proteins as

well as an additional “attachment” of less important proteins whose interactions with the complex

may be transitory. Algorithms that use the core-attachment model first look for the core, then try

to determine other proteins that may be attached.

One algorithm based on this model was developed by Leung et al. [67]. This algorithm

starts by looking at pairs of vertices v1 and v2 with degrees d1 and d2. They look at whether or

not there is an edge between v1 and v2 and how many neighbors they share. This is then compared

to the probability of an edge between the vertices and the expected number of shared neighbors

if the edges of v1 and v2 were randomly distributed, similar to the mutual clustering coefficient.

This comparison gives a p-value p(v1, v2) with lower p-values indicating a greater relationship than

would be expected by chance.

The Leung algorithm finds cores by looking at p-values. Two vertices v1 and v2 are placed in

the same core if p(v1, v2) is lower than all other p-values involving v1 or v2. A vertex v is added to

an existing core C if the largest p-value between v and a vertex of C is smaller than the smallest

p-value between v and a vertex not in C. Once no more vertices can be added to the core, the

attachments are found by looking for vertices with edges to at least half the core proteins.

A second algorithm based on the core-attachment model, COACH, was developed by Wu

et al. [68]. COACH finds preliminary cores by looking at the neighborhood of a vertex v and

designating as core vertices those vertices with high degree in the neighborhood. Preliminary cores

are maximal subgraphs of core vertices with an edge density above a given threshold. The final list

of cores is obtained by discarding preliminary cores that are too similar to cores that are already on

the list. As in the Leung algorithm, the attachments are found by looking for vertices with edges

to at least half the core proteins.

A major difference between the Leung algorithm and COACH is whether or not a protein

111

can be part of multiple cores. In the Leung algorithm, every protein is in at most one core. In

the COACH algorithm, a protein with high degree has the potential to be in a core for each of its

neighbors.

5.2.3.6 A minimum cut method

While we are unaware of any algorithms that use vertex-connectivity in the PPI network,

there is one complex-finding method that includes minimum cuts and thus makes some use of edge-

connectivity: Pržulj et al. applied the Hartuv and Shamir algorithm to connected components

of the PPI network in order to find modules [69]. Hartuv and Shamir look for a minimum cut

in a graph of n vertices. If the value of the cut is at least n
2 , the graph is considered a module;

otherwise, the algorithm is run recursively on each side of the cut until the condition is met.

This leads to components that have an edge-connectivity at least half the number of vertices they

contain. However, because the minimum edge-connectivity requirement for this algorithm is stated

in terms of the number of vertices, this “edge-connectivity” measure is more closely related to the

edge-density methods. It will produce small, dense modules; a subgraph could be k-connected for

relatively high values of k, but if it was also large, it would not be found by this algorithm.

5.2.3.7 Other methods

There have been many other attempts to find complexes in the protein-protein interaction

network using many different properties and models other than the ones discussed above. We give

some well known methods here.

The Pereira-Leal et al. algorithm first converts the PPI interaction network into a line graph

by switching the vertices and edges. An interaction from the original PPI network becomes a vertex

in the line graph, with an edge between two vertices if they share a protein. The line graph gives

the network more structure as well as allowing a protein to be part of multiple complexes. The line

graph is then divided into modules using an algorithm based on flow simulation [70].

Chu et al. developed an algorithm to recover complexes from affinity purification data.

112

Their measure of closeness between two proteins was a statistic called the von Neuman diffusion

kernel, which is based on the number of short paths between a pair of vertices. To calculate the

diffusion kernel, the number of paths of a given length l is calculated, and this number is multiplied

by a diffusion factor γl so that the importance of longer paths decays exponentially. The kernel

is the limit of the sum of this number over all path lengths. This measure was then normalized

and applied to a probabilistic model to determine the likelihood of two vertices being in the same

complex.

Rungsarityotin et al. [71] also try to find complexes from affinity purification results. Rather

than building an interaction, graph, however, they use Markov random fields directly on the inter-

action data. This allows them to more accurately model the possible errors in the interaction data

as well as not relying on using either the hub-and-spoke or clique model for affinity purification.

Qi et al. used an artificial intelligence program to find complexes. They looked at known

complexes and calculated several properties including edge density, various degree statistics, cluster-

ing coefficients, and the presence of various motifs including triangles and 4-cycles. These statistics

were then compared with random collections of proteins and used to train a Bayseian Network [72].

5.3 My work

5.3.1 k-Connectivity and Independent Paths in the PPI Network

The concept of graph connectivity has not often been applied to protein-protein interaction

networks. Hartuv and Shamir looked for subgraphs with n vertices that were n
2 -connected, but

because their threshold for connectivity was based on the number of vertices, their connectivity

measure is largely a measure of edge density. There has not been an attempt to discover if connec-

tivity might be a relevant statistic even if the graph in question has low edge density.

There are some reasons to be skeptical as to whether or not k-connectivity is meaningful in

the context of PPI networks. The idea of k-connectivity is built around the notion of independent

paths in a graph. Many of these paths may be very long. What is the meaning of a “path”,

113

especially a long path, in the context of a PPI network? Does it have any meaning at all?

Despite these reservations, there are also some reasons to suspect that connectivity might be

biologically meaningful in PPI networks. The first reason is that k-connectivity implies a certain

amount of stability in a network. A network with high connectivity could remain connected even

in the event of edge loss or vertex loss. Contrast this with edge density, which is simply a measure

of the percent of pairs of proteins that interact; a graph could have an edge density of almost .5

while still being only 1-connected and therefore vulnerable to becoming disconnected in the case of

a lost interaction. In subgraphs of PPI networks, stability may be important because it represents

how durable the subgraph is in case of mutations. Mutations can cause either edge loss or vertex

loss. Edge loss implies one of the proteins involved in an interaction mutates in such a way that

the interaction can no longer occur, while vertex loss implies that a protein is either missing or so

badly mutated that it cannot function.

We initially investigated connectivity in connection with protein complexes, where we felt

that the stability of the overall complex would be an important feature. While it might at first

appear that a mutation in one of its component proteins might cause a complex to become non-

functional, the complex still might be able to function if it could maintain its basic structure. In the

case of a mutation that prevents an interaction from occurring (edge loss), two adjacent proteins

may no longer be able to bind, but the basic form of the complex may still remain the same due

to other connections. Even mutations that cause the loss of a protein may be survivable as long as

the basic structure of the complex remains intact. Some experimental studies have been done on

complexes missing one or more proteins [73, 74, 75, 76]. While in some of these studies, the partial

complex was not able to function at all, in other cases the partial complexes demonstrated at least

partial function. In some cases, submodules of complexes were able to form independent of the rest

of the complex [77] and even perform some functions [74].

The stability of a subgraph might also be important in signaling networks. In signaling

networks, the loss of a connection or protein might cause one signal path to fail, but if there are

multiple independent paths, the signal could still be passed through the network. Stability might

114

also be important in other molecular machines or biological processes. In general, stability would be

a factor in any subgraph of the network where the fact that the subgraph is connected is important

and it is possible that the subgraph might be able to function without all of its edges or vertices.

The second reason that connectivity and the presence of independent paths might be signifi-

cant is that even if the paths themselves are not meaningful, they may be indicative of things that

are. For example, signaling pathways often include many redundant pathways between the different

layers of the network. These paths are short, but not independent. When looking at these paths in

the undirected protein interaction network, they will appear as a large number of long independent

paths between all vertices in the network. Despite the fact that these paths themselves are not

used in the network, their presence is an indication of significance.

A similar argument can be made for complexes. If each protein in the complex binds to some

number of adjacent proteins, then as the number of proteins in the complex increases, the edge

density will decrease because it isn’t possible for a single protein to bind to all others. The k-

connectivity, however, will stay roughly constant as long as each protein remains bound to roughly

the same number of neighbors. Thus, the k-connectivity would be significant even if the individual

paths were not.

Finally, research on articulation points of a PPI network has suggested a connection between

essential proteins and connectivity. Articulation points are vertices whose removal disconnects the

network. There has been some experimental evidence suggesting that articulation points of any

component in the PPI network are more likely to be essential proteins; mutations in these proteins

tend to prove lethal to the organism [69]. This suggests that connectivity and the presence of paths

does play a role in the network, even if we don’t fully understand what that role might be.

In general, PPI networks are not connected. They do, however, have a large connected

component, and subgraphs of that component have higher connectivities still. In order to test

the theory that connectivity would be indicative of biological significance, we wanted to find the

most highly connected subgraph (MHCS) of the network. While the literature contains some

discussion of k-connected subgraphs for fixed values of k, I did not find an algorithm to find the

115

MHCS of a graph.

5.3.2 Looking for an MHCS in PPI networks

We developed an algorithm to find a most highly connected subgraph (MHCS) and applied it

to the yeast and human PPI networks. We found several different subgraphs with high connectivity

values that appear to have biological significance. The subgraphs that we found were distinct from

those found by previous methods to find complexes or other functional groups based on edge density

and similar statistics. Previous algorithms found modules that were small and dense. We found

some of these small and dense modules as well, because large cliques have both high edge density

and high k-connectivity. However, we also found sparser modules that were much larger than those

found by other algorithms. The most highly connected subgraph of the yeast Y2H graph was a

16-connected subgraph, consisting of 49 membrane proteins. This subgraph has not been identified

by any previous method.

5.3.3 Protein complexes

While the common theory says that protein complexes should appear as cliques or “near-

cliques” in the PPI network, there are reasons to doubt this theory especially in the larger com-

plexes. There is no reason why two proteins on opposite sides of a large complex should necessarily

interact directly. We hypothesized that graph connectivity might be a better indicator of complexes,

because it is important for a complex to retain its structure even if a protein has a mutation that

causes it to lose an interaction (edge connectivity) or is missing altogether (vertex connectivity).

Also, each protein in a complex is likely to interact directly with several nearest neighbors, which

would result in high k-connectivity.

In addition, most of the previous algorithms for finding protein complexes use data about

known protein complexes to evaluate their performance. However, the actual complexes do not

influence the parameters used in the algorithm. In other words, these algorithms are based on

intuition of what protein complex topology ought to look like or tuned to best find complexes

116

rather than being based on a systematic examination of the properties of actual complexes. The

only instance of which we are aware where known protein complexes were used to determine which

parameters should be used to find new complexes was in Qi et al. [72], summarized in Section

5.2.3. Before developing further complex-finding algorithms, we believed that we should have a

better understanding of what to look for and which properties differentiate complexes from other

subgraphs of the PPI network.

In order to assess the common theory as well as test the hypothesis that connectivity is a

useful property in looking at complexes, we conducted a principled survey of the known protein

complexes in Saccharomyces cerevisiae and looked at several different graph theoretic properties

including edge density and k-connectivity. Our survey suggests that the edge density of complexes

is not as high as the clique theory would imply and that other properties may be better indicators

of protein complexes. Graph connectivity is one of those properties. While most complexes were

not even 2-connected, this was generally due to a small number of degree 1 vertices (these may be

the “attachments” from the core-attachment model). We used the most highly connected subgraph

algorithm to find the MHCS of each complex and found that many complexes contained a 3-

connected or 4-connected subgraph. In a survey of random comparable subgraphs of the PPI

network that we called pseudocomplexes, very few pseudocomplexes had a 3-connected subgraph,

and almost none had a 4-connected subgraph. We therefore believe that vertex connectivity will

be a valuable tool in future development of complex-finding algorithms.

Chapter 6

Edge and Vertex Connectivity in the Protein-Protein Interaction Network

As mentioned in Chapter 5, neither vertex nor edge connectivity has been used much in the

study of PPI networks. It is far more common to determine clusters in the interaction data based

on edge density. For reasons mentioned in Chapter 5, however, we theorize that in some biological

processes, connectivity may be a better indicator of a biological module than edge density. There is

some evidence to support this in certain modules. For example, the interactions between proteins

in the 20S proteasome [78] form the 4-connected graph shown in Fig.6.1 whose edge density is only

0.35. This edge density is far too low to be considered significant. The fact that it is 4-connected,

however, is significant; it is extremely unlikely that a randomly chosen set of proteins would be

4-connected. It is far more likely that this subgraph would be correctly identified as a module by

an algorithm searching for connectivity.

The study of connectivity in the PPI network is complicated by the fact that the network as

a whole is not connected. It does, however, have a large connected component, and there are many

subgraphs with even higher connectivity values. We find these subgraphs by iteratively finding a

most highly connected subgraph (MHCS) of a given network.

A subgraph H of a graph G is a most highly connected subgraph if H is k-connected for

some integer k and G does not have a subgraph that is (k + 1)-connected. It should be noted that

an MHCS H is not necessarily a maximum clique of a graph G, or even a clique at all. In fact, H

can be quite sparse but still have a high connectivity value. While finding a maximum clique of a

graph is an NP complete problem, a MHCS can be found in polynomial time.

118

Figure 6.1: A graph representing the interactions between the proteins in the 20S proteasome. The
graph has an edge density of only 0.35, but is 4-connected.

119

6.1 The Most Highly Connected Subgraph Problem

A search of the literature found some previous discussion of subgraphs with connectivities

distinct from the connectivity of the parent graph. Multiple papers have discussed looking for

k-connected subgraphs for fixed values of k [5, 79, 80, 81]. Matula [80] examined subgraphs of

various connectivities. He referred to the connectivity of the most highly connected subgraph of a

graph G as the strength of the graph and notated it as σ(G). In the same paper, Matula looked

at subgraphs that he called clusters, k-edge-connected subgraphs that do not contain (k + 1)-

edge-connected subgraphs, including clusters with connectivity σ(G). Matula also discussed what

he called slicings of a graph, partitions of the edges into cuts. He showed a relationship between

k-connected subgraphs, clusters, the strength of the graph, and certain types of slicings that he

called narrow slicings. He gave an algorithm to find a narrow slicing of a graph, along with some

discussion of how this algorithm might be used to find k-connected subgraphs, clusters, and the

strength of the graph.

There has also been discussion of the idea of “graph communities,” where the community of

a subgraph H in a graph G is the most highly connected subgraph of G that contains H [82].

Algorithmically, the work most similar to our problem is the Hartuv and Shamir edge con-

nectivity clustering algorithm mentioned in the previous chapter. They cluster biological networks

by looking for what they call highly connected subgraphs, subgraphs with connectivity greater

than n/2, using an algorithm very similar to ours [83]. However, as mentioned in Chapter 5, be-

cause their definition of “highly connected” relies on the number of vertices, it is much closer to an

edge density measure than to our metric; it is possible that the components would actually have

a lower connectivity than the graph as a whole. Also, their algorithm tends to find many small

subgraphs while our algorithm often finds much larger subgraphs.

We developed algorithms to find both a most highly edge-connected subgraph and a most

highly vertex-connected subgraph. In cases where there were multiple most highly connected sub-

graphs, our algorithm returned an MHCS with the maximum possible number of vertices. We ran

120

these algorithms on large PPI networks and on graphs representing protein complexes. In both

cases, our results are interesting and biologically relevant. Our results on complexes are discussed

in the next chapter. In this chapter, we give the algorithm for finding an MHCS and discuss the

MHCS of the overall yeast Y2H graph.

6.2 The Algorithm

We first give the algorithm for finding a most highly edge-connected subgraph in a simple

graph. We then modify the algorithm to work on multigraphs or to search for a most highly

vertex-connected subgraph.

The overall algorithm (Algorithm 1) takes a graph G and returns two values, a subgraph

of G and the connectivity of that subgraph. Algorithm 1 will return a subgraph with the highest

connectivity value; if two or more subgraphs have the same connectivity, the one returned will be

one with the greatest number of vertices. The basis for the algorithm is a procedure described

in Algorithm 2 that works by taking both a graph G and an integer k. Algorithm 2 looks for an

MHCS of G assuming that G has a subgraph with connectivity at least k; we are uninterested

in subgraphs that aren’t at least k-connected. In order to search for these subgraphs, we find a

minimum cut of the graph, then recursively run the algorithm on the subgraphs on each side of the

cut. Algorithm 1 calls Algorithm 2 on the entire graph with a k value of 0.

Algorithm 1 MostHighlyConnectedSubgraph(G)

return MaxConSubgraph(G, 0)

Algorithm 2 MaxConSubgraph(G, k)

if |V | ≤ k then
Let G0 be an empty graph
return (G0, 0)

end if
k′,H1,H2 ←MINCUT (G)
knext ←MAX(k, k′ + 1)
G1, k1 ←MaxConSubgraph(H1, knext)
G2, k2 ←MaxConSubgraph(H2, knext))
return MAX((G, k′), (G1, k1), (G2, k2))

121

We use a minimum cut algorithm that gives both the value of the cut, k′, and the subgraphs

on both sides of the cut, H1 and H2. We next calculate the minimum connectivity that we would

be looking for in a subgraph, knext, as the higher of k or k′ + 1. Note that it is possible that a

subgraph could have a smaller minimum cut than its parent graph, so this calculation is necessary

to ensure that the value of k never decreases. We then recursively call the algorithm on H1 and

H2 with k values in both cases of knext in order to look for a subgraph of higher connectivity.

Finally, we return the maximum of (G, k′), the value returned by the recursive call on H1,

and the value returned by the recursive call on H2. Here, we define “maximum” by ordering the

subgraphs first by connectivity, then by the number of vertices.

There is one trivial case of the algorithm worth mention here: the case where G consists

of a single vertex. Single vertices are sometimes considered “connected,” such as when looking at

the connected components of a graph. However, because the definitions of k-edge- and k-vertex

connectivity require at least 2 vertices, for our purposes we do not consider a single vertex to be

1-connected.

Readers familiar with the Hartuv and Shamir HCS Algorithm [83] will note a strong similarity

between that algorithm and Algorithm 2. Both algorithms search for a minimum cut in a graph or

component of a graph, remove the edges that cross the cut, then recursively call the algorithm on

each side of the cut. However, the differences between the algorithms, though small, are significant.

The two algorithms have different goals. The HCS Algorithm partitions the graph into many

small subgraphs. Our algorithm finds one particular subgraph. The HCS Algorithm searches for

subgraphs with connectivity greater than n
2 , then returns those subgraphs when they are found.

Our algorithm requires us to continue searching until we are certain that there is no more highly

connected subgraph. Our algorithm also contains an additional step after the recursion where we

compare subgraphs in order to find the most highly connected, while the HCS Algorithm contains

no further steps after the recursion. Our algorithm also requires a proof of correctness to insure

that it does in fact return a MHCS. Because the only requirement of the HCS algorithm is that the

subgraphs it finds are n
2 -connected, it is simple enough that the algorithm itself suffices without

122

any further proof of correctness. The results given by the two algorithms are different, with the

HCS finding smaller subgraphs while our algorithm is more likely to find large subgraphs. The

subgraphs found by our algorithm are also likely to have higher connectivity values; as mentioned

earlier, because the connectivity that the HCS algorithm looks for is based on the number of vertices

in the subgraph, its idea of “highly connected” is actually more closely related to edge density.

There are also strong similarities between our algorithm and the Matula Narrow Slicing

Algorithm [80]. The narrow slicing algorithm partitions the edges of a graph G into a series of cuts

C = {C1, . . . , Cm} such that each Ci is a minimum cut of a connected component of G−⋃i−1
j=1 Cj .

Like both Algorithm 2 and the HCS Algorithm, the Narrow Slicing Algorithm repeatedly looks for

minimum cuts, then divides the graph by removing edges that cross the cut. The Narrow Slicing

Algorithm, however does this iteratively on the connected components of the graph rather than

recursively. The stopping conditions of the algorithm are different. The Narrow Slicing Algorithm is

designed to partition the edges into a series of minimum cuts; it continues creating cuts until every

edge is included in some cut, then returns the entire set of cuts C with no further modifications or

comparisons. Matula proved that the strength of G is equal to the cardinality of the largest cut in

C, and that each cluster is a connected component divided by some cut in C. It would therefore

be possible to find an MHCS using the Narrow Slicing Algorithm, but this is not the primary goal

of the algorithm and would require additional steps.

6.2.1 Proof of Correctness

By definition, the empty graph is 0-connected, so every graph must have at least a 0-connected

subgraph. Therefore, the entire algorithm will work correctly if MaxConSubgraph(G, 0) correctly

returns an MHCS with connectivity greater than or equal to 0.

We use induction to prove that if G has a subgraph that is at least k-connected,

MaxConSubgraph(G, k) will return an MHCS of G with the greatest number of vertices; if G

does not have a subgraph that is at least k-connected, MaxConSubgraph(G, k) will return some

subgraph of G with a correct connectivity value, but it may not be an MHCS.

123

For the base case, for any value of k, consider a graph with at most k + 1 vertices. There are

two possible cases here. If the graph is a complete graph on k + 1 vertices, then it is k-connected

and does not have a more highly connected subgraph. A minimum cut with value k will be found,

which by Menger’s theorem is also its edge-connectivity ([2]; summarized in [84]). The recursive

step will then call the algorithm on (H1, k + 1) and (H2, k + 1) where both H1 and H2 are proper,

non-empty subgraphs of G. Because both H1 and H2 will have fewer than k + 1 vertices, the

recursive steps will return empty subgraphs with connectivities of 0, causing the entire algorithm

to correctly return that G is its own MHCS with connectivity k. If the graph is not a complete

graph on k + 1 vertices, it is not k-connected and has no k-connected subgraph. In this case,

the MINCUT subroutine will return its minimum cut k′ (which again by Menger’s theorem is its

edge-connectivity). Because G is not k connected, k′ < k, so knext = k, and the recursive step will

call the algorithm on (H1, k) and (H2, k). As in the previous case, because both H1 and H2 have

at most k vertices, the recursive steps will return empty subgraphs with connectivities 0, causing

the entire algorithm to return G with its connectivity of k′ < k.

For the inductive step, assume that for any value of k and any graph G with k + i or fewer

vertices, the algorithm will perform correctly. Look at a graph G with k + i + 1 vertices. We find

its minimum cut (H1, H2), which gives us the connectivity of G, k′. If G has a subgraph H with

connectivity greater than the connectivity of G, then H must lie entirely on one side of the cut;

otherwise, we can take the cut (H ∩ H1, H ∩ H2) in H, which will be less than or equal to (H1,

H2), contradicting that H has a greater connectivity than G. Therefore, one of the following must

be an MHCS of G: G itself, an MHCS of H1, or an MHCS of H2. Since both H1 and H2 have fewer

vertices than G, and knext ≥ k, MaxConSubgraph(H1, knext) and MaxConSubgraph(H2, knext)

will both return a correct value by the inductive hypothesis. If G was k-connected, the algorithm

will return either G itself or, in the case that one of the recursive calls found a more connected

subgraph, the larger of the two; if there was a tie, our definition of “maximum” will cause it

to return a subgraph with the highest number of vertices. If G was not k-connected, then the

algorithm will return either G and its connectivity, or the largest of MaxConSubgraph(H1, k) and

124

Figure 6.2: A worst case example. It’s possible that at each stage of the algorithm, the minimum
cut found is one that divides the graph into subgraphs of 3 and n−3 vertices. In this case, it would
take n/3 recursive calls to find a most highly connected subgraph.

MaxConSubgraph(H2, k), both of which will either return an MHCS of connectivity at least k, or

a subgraph with a correct connectivity. In either case, the algorithm returns correctly.

6.2.2 Complexity

The algorithm depends on the efficiency of the algorithm used to obtain the minimum cut.

Let kmin be the weight of a minimum cut and kmax be the connectivity of the MHCS. Gabow

has an algorithm that calculates the min cut in O(m + k2
minnlog n

kmin
) [85]. In the worst case, the

recursive step might need to be run O(n) times. See the example in Fig.6.2. This gives us a total

running time for the algorithm of O(nm+k2
maxn2log n

kmax
)) if we use Gabow’s algorithm. Note that

this time bound is not tight and could possibly be improved by further analysis.

6.2.3 Haircut

We have made an improvement to the basic algorithm that we call the haircut step, similar

to the haircut operation of MCODE [49] except instead of removing vertices of degree 1 we allow

vertices with degrees less than an arbitrary k to be removed. In MaxConSubgraph(G, k), before

we call the minimum cut function, we recursively remove all vertices of degree less than k, leaving

behind a k-core, a graph where all vertices have degree at least k. We call this operation, shown

in Algorithm 3, the haircut and refer to the subgraph it produces as G’s k-haircut. The Hartuv

and Shamir HCS Algorithm [83] also includes the idea of removing low-degree vertices. However,

because the HCS algorithm does not know in advance the connectivity for which it is looking, the

algorithm may inadvertently remove vertices that are part of a highly connected subgraph. In our

algorithm, by contrast, because we have a minimum connectivity k for which we are searching, we

125

can safely remove vertices with degree less than k without affecting the correctness of the algorithm.

Although the haircut is not guaranteed to improve the time bound of the algorithm, we

have found in practice that it considerably speeds up the performance by shrinking the number

of vertices that we need to work with and also lessening the possibility that we will find a trivial

minimum cut later in the algorithm. Also, if the haircut eliminates all vertices in the graph, we

can end our algorithm there without needing to look further for a minimum cut.

Algorithm 3 Haircut(G, k)

toCheck ← V
while toCheck 6= ∅ do

A← ∅
for all v ∈ toCheck do

if v ∈ V and Deg(v) < k then
for nbr ∈ Adj(v) do

Add nbr to A
end for
Delete v from G

end if
end for
toCheck ← A

end while

Note that in line 5 of the algorithm, it is necessary to check that v ∈ V . It is possible that

v may have been added to the list toCheck in an earlier iteration of the loop, but deleted from

V before it reached this check. Thus, in order to avoid an error, we verify that v ∈ V before

proceeding.

The haircut is done as the first step of the MaxConSubgraph algorithm, leaving us with the

modified version of Algorithm 2 shown in Algorithm 4.

6.2.3.1 Proof of Correctness

Only a few modifications need to be made to the previous proof. In the base case, if we have

a complete graph with k+1 vertices, the haircut will not remove anything, we will find a minimum

cut of value k, then on the subsequent recursive call, both graphs will have degree less than k, and

all vertices will be eliminated by the haircut, causing the recursive step to return empty graphs of

126
Algorithm 4 MaxConSubgraph(G, k)

Haircut(G, k)
if V = ∅ then

return (G, 0)
end if
k′,H1,H2 ←MINCUT (G)
knext ←MAX(k, k′ + 1)
G1, k1 ←MaxConSubgraph(H1, knext)
G2, k2 ←MaxConSubgraph(H2, knext))
return MAX((G, k′), (G1, k1), (G2, k2))

connectivity 0 and the entire algorithm to return the complete graph with connectivity k. If the

graph is not complete or has fewer than k+1 vertices, all vertices will be eliminated by the haircut,

causing the algorithm to return an empty graph with connectivity 0.

In the inductive step, simply note that any vertex with degree less than k cannot be part of

any subgraph that is at least k-connected. Therefore, the removal of these vertices does not affect

the algorithm in the case that there is a k-connected subgraph. All other steps of the proof are the

same.

6.2.3.2 Complexity

The worst-case example in Fig.6.2 is not helped by the haircut, so we know that the haircut

cannot decrease the worst-case analysis of the timing of the algorithm. We also show that it does

not increase it.

The haircut operation to remove all vertices of degree k or less takes O(kn) time. In the

initial pass through the algorithm, all vertices must be examined to check if they have a degree

less than k. In subsequent passes, however, only those vertices adjacent to vertices deleted in the

previous pass must be examined; if the previous step deleted ni vertices, the algorithm will have

to check at most (k− 1)ni vertices. Because each vertex can only be deleted once, this will lead to

a maximum of n + (k − 1)n = kn < O(nm) steps. Because this is less than the time taken for the

minimum cut phase, adding the haircut does not affect the overall complexity of the algorithm.

127

6.2.4 Variants on the Basic Algorithm

We consider two variants on the basic algorithm: edge-connectivity on multigraphs and

vertex-connectivity.

Very few changes are required in the basic algorithm in order for it to work on multigraphs.

Both the haircut and the Gabow minimum cut algorithm will work on multigraphs. If using the

variant of the algorithm with the haircut, no changes to the algorithm are required. If using the

variant of the algorithm without the haircut, the base case of the recursion needs to be changed

to |E| < |V |k
2 rather than |V | ≤ k because a multigraph with k or fewer vertices can still be k-

connected. In both cases, the proof of correctness needs to be modified so that the base case is a

graph of k edges or fewer.

Vertex connectivity presents a greater challenge. There are two issues that must be consid-

ered. The first is that a cut does not cleanly divide the graph into two pieces; in addition to the

vertex sets on both sides of the cut, we also have the vertices that are part of the cut. We will want

these vertices to be included in both subgraphs. The second issue is that vertex cut algorithms

do not work well on complete graphs because they require both sides of the cut to be non-empty.

For our purposes, we will define the vertex connectivity of a complete graph with n vertices to be

n − 1, but we will need to deal with complete graphs separately from other cases. Dealing with

these issues requires further modifying Algorithm 2 to the procedure shown in Algorithm 5.

Algorithm 5 MaxV ConSubgraph(G, k)

Haircut(G, k)
if V = ∅ then

return (G, 0)
end if
if G is a complete graph then

return (G, |V | − 1)
end if
k′,H1,H2, C ←MINV CUT (G)
knext ←MAX(k, k′ + 1)
G1, k1 ←MaxV ConSubgraph(G[VH1

∪ C], knext)
G2, k2 ←MaxV ConSubgraph(G[VH2

∪ C], knext))
return MAX((G, k′), (G1, k1), (G2, k2))

128

As before, k′ represents the value of the minimum cut, and H1 and H2 represent the subgraphs

on either side of the cut, but we also have a fourth return value C which is those vertices that are

part of the cut. Those are added to the vertex sets of H1 and H2. We make the recursive calls on

the subgraphs induced by the two vertex sets VH1
∪ C and VH2

∪C, G[VH1
∪ C] and G[VH2

∪ C].

The proof of correctness is still much the same. In the base case, we look at a graph with k+1

or fewer vertices. If the graph is not a complete graph with k+1 vertices, it will still be emptied by

the haircut, and if it is a complete graph with k +1 vertices, it will be returned with a connectivity

k by our check for complete graphs. In the inductive step, we assume that the algorithm returns

correctly if the graph has k + i or fewer vertices and examine a graph with k + i + 1 vertices.

The proof of this step remains the same as in the edge connectivity case as long as we note that

neither H1 nor H2 can be empty. Thus, the size of the graph decreases with each recursive step,

while k either increases or remains the same. Therefore, the remaining steps of the proof are still

valid. Both recursive calls to the algorithm will return correctly, and the comparison will give us

an MHCS with connectivity at least k if such a subgraph exists.

When looking at the running time for MaxV ConSubgraph, the haircut still takes kn steps,

and checking for a complete graph takes m steps, so the running time still depends on the speed

of the minimum cut algorithm. Gabow gives a vertex cut algorithm that runs in O(kminn(n +

min{k
5

2

min, kminn
3

4})) [86], where kmin is the size of the minimum vertex cut. The number of

recursive calls needed is not as obvious as in the edge connectivity case because of the fact that

vertices in the cut are present in both recursive calls. A similar example to the one in Fig.6.2 shows

that O(n) is a lower bound for the maximum number of recursive calls. We will prove that O(n) is

also an upper bound on the worst case. This bound on the number of recursive calls gives a time

bound of O(kmaxn2(n + min{k
5

2
max, kmaxn

3

4})), where kmax is the connectivity of the MHCS.

Lemma 18. Algorithm 5 requires a maximum of O(n) recursive calls when run on a graph of n

vertices.

Proof. Look at the recursion tree formed by the recursive calls to the function, so the initial call

129

to the function is the root, the calls it makes are its children, the calls its children make are its

grandchildren, etc., and the base cases are the leaves. This tree is a binary tree, and so if it has ℓ

leaves, then there are 2ℓ− 1 nodes in the graph. We will show that the number of leaves, and thus

the total number of recursive calls, is O(n). To show this, we make the following claim.

Claim 2. Let N(G, k) be the node representing a call to the function on a graph G searching for a

subgraph of connectivity at least k.

a) If |G| ≤ k, N(G, k) is a leaf.

b) If |G| = k + r for some r > 0, N(G, k) is the ancestor of at most r + 1 leaves.

To show the first part of the claim, simply note that if G has k or fewer vertices, all vertices will

be eliminated by the haircut, and the algorithm will return without making any further recursive

calls. Thus, the node representing such a call is a leaf.

The second part of the claim will be proved inductively. For the base case, we look at r = 1.

For a graph with k + 1 vertices, if the graph is not complete, the haircut will eliminate all vertices,

and the call will be a leaf. Otherwise, the algorithm will find a minimum cut, then make two

recursive calls on graphs G1 and G2, each of which will have fewer vertices than G. Because

knext ≥ k, |G1| ≤ knext and |G2| ≤ knext. By the first part of the claim, then, N(G1, knext) and

N(G2, knext) are both leaves, and N(G, k) is the ancestor of 2 leaves.

For the inductive step, assume that for all j ≤ i − 1, a node representing a call on a graph

with k + j vertices is the ancestor of at most j + 1 leaves. Look at N(G, k) with |G| = k + i.

Assuming that the call is not itself a leaf, the algorithm will find a minimum cut and divide the

graph into two subgraphs, G1 and G2. The algorithm will then make recursive calls on (G1, knext)

and (G2, knext) where knext ≥ k. Suppose that one of the subgraphs, WLOG say G1, has fewer

than knext + 1 vertices. Then, N(G1, knext) is a leaf, and because |G2| < |G| and knext ≥ k, the

inductive hypothesis implies that N(G2, knext) is the ancestor of at most i leaves. Thus N(G, k) is

the ancestor of at most i + 1 leaves. Now suppose that both |G1| and |G2| are greater than knext.

Let C be a minimum vertex cut of G with H1 and H2 the subgraphs on either side C. Let |C| = c,

130

|H1| = h1, and |H2| = h2. There are two cases depending on the size of C.

Case 1: c = k − x vertices for some x > 0.

In this case, we have i + x vertices that are not part of the cut. Thus, |G1| = k− x + h1 and

|G2| = k−x+h2 for some h1+h2 = i+x and h1, h2 > 0, and knext = k. By the inductive hypothesis,

N(G1, knext) is the ancestor of at most h1−x+1 leaves and N(G2, knext) is the ancestor of at most

h2 − x + 1 leaves. This implies N(G, k) is the ancestor of at most h1 + h2 − 2x + 2 = i − x + 2

leaves, which given our initial assumption x > 0, is less than or equal to i + 1.

Case 2: c = k + x vertices for some x ≥ 0.

In this case, we have found a cut of size at least k, so the connectivity of the subgraph we are

looking for in the next iteration will change to knext = k + x + 1. We will have i − x vertices not

in the cut. Therefore, the two subgraphs will have |G1| = knext + h1 − 1 and |G2| = knext + h2 − 1

for some h1 + h2 = i− x and h1, h2 > 0. By the inductive hypothesis, N(G1, knext) is the ancestor

of at most c1 leaves and N(G2, knext) is the ancestor of at most c2 leaves. This implies N(G, k) is

the ancestor of at most c1 + c2 = i− x leaves, which is less than i + 1 given our assumption x ≥ 0.

This completes the proof of the claim. Thus, if our root is a call on a graph with n vertices

and k = 0, we can have at most n leaves, which implies fewer than 2n calls to the function, and

the bound is proved.

6.3 Highly Connected Subgraphs in Yeast Two-Hybrid Networks

We obtained protein-protein interaction data from Biogrid [87] and ran our algorithms for

both edge and vertex connectivity on the yeast Y2H interaction graph and the human Y2H inter-

action graph. Both algorithms produced exactly the same result, so we give only the results for the

stronger condition, vertex connectivity.

We implemented algorithms to find both the most highly edge-connected and most highly

vertex-connected subgraphs. In both cases, we implemented the variants of the algorithms that

use the haircut. We implemented the algorithms to work on simple graphs, though in both cases

131

they could be modified to work on multigraphs. In implementing the algorithms, we used the edge

connectivity algorithm of Stoer and Wagner, which is a simplification of the Nagamochi and Ibaraki

algorithm [88]. The vertex connectivity algorithm we used is the Even and Tarjan connectivity

algorithm [89]. Our implementation is based upon transforming the graph G into a directed graph

G′ where each vertex v from the original graph becomes two vertices in the new graph, vin and

vout, with an edge of capacity 1 between them. The implementation then calculates the minimum

cut of G from one of its vertices v ∈ V . This will give the global minimum cut unless v happens to

be a part of all minimum cuts. In order to ensure that we find a global minimum cut, therefore,

we must run the algorithm multiple times, until the number of times we have run the algorithm is

greater than the calculated value for the minimum cut, kmin.

6.3.1 Testing the Implementation

6.3.1.1 Small-Scale Testing

We first tested the algorithms on the small graphs shown in Fig. 6.3. For the initial testing

of the algorithms, these small graphs had several advantages over larger ones. These small graphs

have an obvious most highly connected subgraph. The algorithms runs quickly on these graphs, so

we can have multiple runs of the algorithms in order to determine any errors in the implementation.

The small size of the graphs allows us to print debugging information which can be interpreted by

a human operator. Finally, because of the small size of the graphs, we were able to check the input

files by hand to be sure that any errors we encountered were errors in the implementation rather

than errors in the input.

Each of the graphs in Fig. 6.3 was designed to test a different aspect of the algorithm. The

graph in Fig. 6.3(a) was designed to test the haircut function’s ability to remove vertices of various

degrees, as well as to insure that the recursive aspect of the haircut worked correctly. The pentagon

in Fig. 6.3(b) insures that the algorithm will work correctly even if a graph is its own MHCS. The

graph in Fig. 6.3(c) is designed to test how the algorithm handles multiple subgraphs with the

132

same connectivity and insure it returns the one with the most vertices. The bow-tie graph in

Fig 6.3(d) serves the same function as (b) in testing the edge-connectivity version of the algorithm.

However, the bow-tie is designed primarily to test the vertex connectivity version of the algorithm

and insure that it finds the most highly vertex-connected subgraph even if that is different from the

most highly edge-connected subgraph. The graph in Fig. 6.3(e) is also designed primarily for the

vertex connectivity version of the algorithm, insuring that the algorithm can handle a vertex cut

that divides the graph into more than two connected pieces. The graph in Fig. 6.3(f) was designed

to see if the algorithm would work when the order of the vertices in the input file was permuted,

something that unfortunately does not show up in the figure; the input file for this graph listed

the vertices in a different order from the order they appeared in the edge list. Finally, the graph

of Fig. 6.3(g) is designed to be a general test of the implementation, insuring it can find highly

connected subgraphs with connectivities up to 4.

6.3.1.2 20-Connected Subgraphs

After testing the implementation on small graphs, we then tested its ability to find highly

connected subgraphs in large graphs. We generated two 20-connected subgraphs. The first was a

21-clique. The second was a 95-vertex graph consisting of five 19-cliques linked together with 19

cycles. We then ran both the edge and vertex connectivity algorithms on these graphs in order to

verify that the algorithms would return that these graphs were their own MHCS, and that they

were 20-connected.

Next we embedded these subgraphs into a larger graph to see if the algorithm would find

them. We started with the yeast Y2H network. This graph does not have a 20-connected subgraph,

which was demonstrated by doing a 20-haircut and observing that it removes all vertices from the

graph. We then added the vertices and edges of the 21-clique to the yeast Y2H graph, as well as

adding 19 randomly chosen edges between the 21-clique and the Y2H graph. We ran both the vertex

and edge connectivity versions of the algorithm on this new graph. Both algorithms successfully

returned the 21-clique as the most highly connected subgraph. The process was repeated with the

133

95-vertex graph. Again, both algorithms were successful at finding the embedded 20-connected

graph.

Finally, in order to be sure that the embedding procedure did not produce any unintended

effects, we chose 21 proteins in the yeast Y2H network at random and added edges to make a

21-clique from these proteins. Again, both vertex and edge connectivity algorithms successfully

returned this 21-clique as the most highly connected subgraph. We did the same thing with the

95-vertex graph, choosing 95 proteins at random and adding edges to make these proteins into

a 20-connected subgraph. Once more, both vertex and edge connectivity algorithms successfully

returned this 20-connected graph as the most highly connected subgraph.

6.3.2 Subgraphs with High Connectivity

We found several interesting subgraphs in the entirety of the yeast Y2H network. The most

highly connected subgraph was a set of 49 membrane proteins that were 16-connected (Fig. 6.4). All

interactions in this subgraph came from a study of membrane proteins [90]. This subgraph is much

more highly connected than the next most highly connected subgraph, which is 8-connected, so we

considered the possibility of study bias; the membrane study was biased to maximize the chance of

observing an interaction. However, this 16-connected graph contains only a small subset of proteins

in the study; other proteins in the study had a higher average degree than other membrane proteins

in the composite Y2H network, but not high enough to expect such a highly connected subgraph.

The study contained 535 membrane proteins which had an average degree of 7.26 (2.30 excluding the

49 proteins in the MHCS). Excluding this study left 154 membrane proteins with an average degree

of 1.55. This leads us to conclude this subgraph is not simply the result of study bias. We examined

GO annotations for these 49 proteins using the FuncAssociate program [91]. FuncAssociate gives

shared functions of these proteins as well as a p-value that gives the probability that these shared

functions would be seen by chance, and an adjusted p-value that takes into account the fact that

we are looking at multiple hypotheses simultaneously. Of the 49 proteins, 48 had GO annotations;

the remaining protein had no annotated function. GO annotations indicate that almost all of

134

these membrane proteins are related to the endoplasmic reticulum (34 proteins, p-value = 3.9e-29,

adjusted p-value < .001) and that many are involved in transport processes (27 proteins, p-value =

1.4e-08, adjusted p-value < .001). We do not believe this subgraph represents a single complex, but

it appears to be biologically significant, and we theorize that it may be either several overlapping

complexes or a type of signaling network. Collaborating biologists find this subgraph intriguing

and are analyzing it to discover its function and significance.

While the MHCS algorithm is only designed to find a single, most highly connected subgraph

in any given graph, it is possible to find more subgraphs by eliminating the vertices in the MHCS

and re-running the algorithm on the remaining graph. This allows us to find multiple subgraphs

with high connectivities, but it precludes the possibility of finding overlapping subgraphs.

Excluding the 49 membrane proteins, the next most highly connected subgraph was an 8-

connected subgraph consisting of 9 proteins, PAT1 and the 8 proteins LSM1-8 shown in Fig. 6.5.

These are all proteins involved in the spliceosome, and it appears that this subgraph is the combi-

nation of two highly overlapping complexes. PAT1 and LSM1-7 form a critical decapping complex

which also serves to protect the 3’ end of mRNA [92]. LSM2-8 together with PRP24 form the

protein components of the U6 snRNP, a complex comprised of both proteins and RNA; in the U6

snRNP, the LSM proteins form a ring with PRP24 at a set distance from them [93], so it is not

surprising that PRP24 was not part of our subgraph.

The third most highly connected subgraph was a 6-connected subgraph of 9 proteins shown

in Fig. 6.6. Eight of these proteins are contained in the DASH complex, a 10-protein complex

which plays a role in the chromosome separation of mitosis by stabilizing the spindle as part of the

kinetochore [94, 95]. The ninth protein, SLI15, is not known to be part of the DASH complex, but

has a closely related function, related to spindle and kinetochore attachment [96].

The fourth most highly connected subgraph was a 5-connected subgraph with 131 vertices

(Fig. 6.7). We were unable to find a unified GO annotation for this subgraph. Despite the fact

that we were unable to find a unified function for this subgraph, we still believe that it may be

significant. While a 5-connected graph is not as notable as a 16-connected graph, it is still unusual,

135

and the fact that there are 5 paths between any pair of vertices is likely significant. Because this

subgraph contains 131 vertices and has an edge density of only 0.06, it is unlikely that any other

algorithm would be able to identify this as a module.

We also ran our algorithm on the human Y2H network and found that the MHCS was a

7-connected graph of 52 proteins (Fig. 6.8). Due to the limited number of well-annotated human

proteins, however, we were not able to discover the biological significance of this graph. The

second MHCS was a 6-connected graph of 73 proteins (Fig. 6.9), and we were also unable find

a common function for this graph. The third MHCS, however, was a 6-connected graph with 15

proteins (Fig. 6.10), which had a common function in DNA replication initiation (11 proteins, p-

value = 4.8-23, adjusted p-value < .001). The fourth MHCS was 4-connected and had 23 proteins

(Fig. 6.11), most of which were involved in transcription regulation (20 proteins, p-value = 6.2e-19,

adjusted p-value < .001). They appeared to be mostly involved in the regulation of various sex

hormones (3 were part of estrogen receptor signaling pathways while 9 were involved with steroid

receptors). The fifth MHCS, 4-connected with 8 proteins (Fig. 6.12), also had common functions

in transcription regulation activity (7 proteins, p-value = 2.6e-7, adjusted p-value = .001) and

regulation of RNA metabolism (p-value = 9.1e-7, adjusted p-value = .001). We did not have any

data on human complexes, so we were not able to compare these subgraphs to existing complexes.

6.3.2.1 Verification of Subgraph Connectivity

For all subgraphs whose connectivity could not be easily verified with the naked eye (the

first and fourth most highly connected subgraphs in yeast and all human subgraphs), we verified

the edge-connectivity of the subgraphs using three different algorithms: the Hao-Orlin [97], the

Karger-Stein [98], and the Nagamochi-Ibaraki [88]. We used implementations of these algorithms

done by Chekuri et al. [99] and available at http://www.columbia.edu/~cs2035/code.html. All

three algorithms verified the connectivities reported above.

136

6.3.3 MHCS and Other Methods of Finding Modules in the PPI Network

The MHCS technique is not intended as a replacement for MCODE or other methods of

finding modules in a network. Rather, it is meant to complement existing methods. Existing

methods often find small, dense modules. These small modules are only occasionally found by

looking for the MHCS of a graph. Instead, the MHCS technique is capable of finding large,

relatively sparse graphs that would not be identified as modules by other methods. Many of

these large, sparse subgraphs are likely meaningful, as evidenced by the fact that many of them

contain proteins with a common function.

6.3.3.1 Comparisons with MCODE

We ran MCODE on the entire yeast Y2H network. MCODE successfully found the 9-clique

associated with the U6 snRNP and the 9-vertex, 6-connected subgraph associated with the DASH

complex but did not find the 16-connected subgraph or any significantly overlapping clusters, nor

the 5-connected subgraph. In the case of the two subgraphs that MCODE found, however, it found

the exact same subgraphs as our method.

When we run MCODE on just the 16-connected subgraph from the yeast network, however,

it found the clusters shown in Fig. 6.4. There are two reasons why we would see clusters in the 16-

connected subgraph when MCODE was given just that, but not see clusters that overlap with the

16-connected subgraph when MCODE is run on the entire yeast Y2H network. Perhaps the most

important reason is that the weights on the vertices (described in Section 5.2.3.1) were determined

using only vertices in the 16-connected graph, causing the vertices in the subgraph to have higher

weights than they would have otherwise. The fact that seeds could only be chosen from within the

16-connected subgraph also helped MCODE find clusters entirely within this subgraph.

Running MCODE on the entire human Y2H network produced even less overlap with the

MHCS algorithm than in the yeast. Of the five subgraphs discussed in the results section, only one,

the fifth MHCS consisting of 8 4-connected proteins, had any significant overlap with the MCODE

137

results; MCODE found a subgraph with 6 proteins, all 6 of which were in the fifth MHCS. The

other two proteins that our algorithm found, however, had multiple shared functions with the other

proteins in the modules, suggesting that they ought to be considered with the others.

On both networks, MCODE did not find any of our large subgraphs. The largest subgraph

of ours that was found by MCODE had only 9 vertices, while most of our subgraphs were very

large, with the largest ones having 131, 73, 52, and 49 proteins. This suggests that our algorithm

will find large subgraphs that MCODE will not.

6.3.3.2 Comparisons with Other Methods

While we have not compared the results of the MHCS algorithm with the results from any

complex-finding algorithms other than MCODE, we have reason to believe that other algorithms

would be even less successful at finding these large subgraphs. The 16-connected subgraph in

the yeast network has an edge density of only 0.49, too low to be considered significant by most

algorithms looking for edge density (for comparison, the King et al. algorithm looks for subgraphs

with an edge density of at least 0.7 [54]). For other subgraphs not found by MCODE, the situation is

similar. The 5-connected yeast subgraph has an edge density of only 0.06, and the four most highly

connected subgraphs for human have edge densities of 0.23, 0.13, 0.61, and 0.24. In addition, many

have too low a ratio between their connectivity and the number of vertices (16 vs. 49, 5 vs. 131, 7

vs. 52, 6 vs. 73, 6 vs. 15, 4 vs. 23) to be found by the Hartuv and Shamir technique.

Most of the other algorithms not based on edge density would also have trouble finding

these subgraphs. Because of the way these subgraphs were found, there are many paths between

their vertices, which could cause problems for algorithms based on betweenness; vertices within

the subgraph would be on many short paths between other vertices in the subgraph. The presence

of these paths could cause the algorithm to split the high-connectivity subgraphs. For example,

simply within the 49-vertex 16-connected subgraph, there are 10 vertices with betweenness values

higher than 20 and one with a betweenness of 33.0, all of which would be possible candidates for

splitting the network. Clustering algorithms that work on methods other than betweenness tend

138

to find small, dense modules. Likewise, the “cores” found by algorithms using the core-attachment

model are small by design, because they are meant to be part of a complex, and complexes are

rarely as large as the modules we have found here. Because the significance of our large highly-

connected modules is spread throughout the module, not only are these modules unlikely to have

a small subgraph that would qualify as a “core”, but it is unlikely that there are nodes within

our highly-connected subgraph that would have a large number of edges to any small subgraph

(potential core) of the module, as the “attachment” phase of these algorithms require.

6.4 Conclusion

We have developed a new algorithm to look for biologically significant subgraphs in protein-

protein interaction networks. Connectivity is a common graph theory concept but has seldom been

used to study biological networks. We show that the most highly connected subgraph of the overall

Y2H network, as well as some other subgraphs with high connectivity, are biologically significant.

Of the four yeast subgraphs discussed here, one corresponded to a known complex, another to a pair

of overlapping complexes, and one subgraph whose proteins share GO annotations and whose exact

function is being determined by biologists. The fourth subgraph has not yet been demonstrated

to have a common function, but its large size makes it significant and shows that our algorithm is

capable of finding subgraphs that might be overlooked by other methods.

The algorithm performed even better on the human Y2H network. While we could not find

a common function for the two most highly connected subgraphs, the algorithm produced 3 other

subgraphs that clearly shared a function, 2 of which were not found by other methods. It should be

emphasized here that we believe that the two most highly connected subgraphs have a biological

significance, but the fact that only a small fraction of the functions of human proteins have yet

been determined hinders us in our attempts to classify these large subgraphs of human proteins.

The algorithm does have some drawbacks, most notably the fact that our algorithm does not

cluster the PPI network. The yeast PPI network does not contain multiple maximal subgraphs

for a given connectivity. While our algorithm can be modified to give more than one subgraph by

139

removing the vertices of the MHCS and running the algorithm again, this method still gives only

a small number of relevant subgraphs. Of the subgraphs we investigated in the PPI network, only

the first three clearly appeared to be biologically significant; the fourth was too large to easily see

any common themes, but the fact that our algorithm was able to find such a large subgraph and

identify it as a module is noteworthy and suggests that our algorithm may be able to find large

modules that would go undetected by other methods that are primarily based on edge density. We

feel that our algorithm will be a valuable tool for studying PPI networks. The algorithm found the

MHCS of the Y2H network, which is a biologically significant subgraph that wasn’t found using

existing methods. The algorithm can also be run on subsets of proteins, such as co-complexed

or co-located proteins, to give insight into the subgraph structure of these subsets. In the next

chapter, we discuss the results of running the algorithm on co-complexed proteins.

The most highly connected subgraph is worth particular note here: the fact that it was so

large, had such a high connectivity, and contained so many proteins known to share functions means

that it is almost certainly biologically significant. No other technique has previously identified this

subgraph as a module. Computational techniques alone cannot determine the exact function of

this module, but it has been given to biologists who do have the tools to decipher the nature of

this module.

Of the subgraphs discussed here, the 9-clique and the 9 proteins associated with the DASH

complex were also identified as modules by MCODE. However, none of the modules identified by

MCODE even had a significant overlap with the 16-connected subgraph, and it is unlikely that any

of the traditional clustering algorithms would find it. Its edge density is not impressive, and only

the high connectivity of this subgraph causes it to stand out. The same was true of the fourth

MHCS as well as most of the highly connected subgraphs found in the human Y2H network.

Algorithms to look for high connectivity can be a valuable addition to the set of tools used to

study protein-protein interaction networks. While our algorithm does not produce many clusters

as other algorithms do, we have demonstrated here that subgraphs with high connectivities are

biologically relevant, and some wouldn’t be found by other methods. We believe that looking for

140

highly connected subgraphs in other biological networks will continue to give biologically interesting

results. As data density increases, this technique will become even more valuable.

141

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.3: Graphs used for small-scale testing of MHCS algorithm.

Figure 6.4: The most highly connected subgraph of the Y2H network for yeast. It is a 16- connected
subgraph of 49 membrane proteins. MCODE did not find this module or any submodules when run
on the entire Y2H network. Running MCODE on just this subgraph found four modules (circled),
one of which overlaps two others, while the fourth is disjoint.

142

Figure 6.5: Subgraph representing the U6 snRNP and the 8-connected subgraph of 9 proteins found
by our algorithm. Proteins in yellow are in the U6 snRNP, proteins in blue are in the subgraph
found by the MHCS algorithm, while those in green are part of both. The proteins in the U6
snRNP are circled in orange. Also note that those proteins circled in blue, all found by the MHCS
algorithm, form a separate decapping complex.

Figure 6.6: Subgraph representing the DASH complex and the 6-connected subgraph of 9 proteins
found by our algorithm. Proteins in yellow are in DASH, proteins in blue are in the subgraph found
by the algorithm, while those in green are part of both. The DASH complex is circled in red.

Figure 6.7: The fourth MHCS of the yeast network, which is 5-connected. The function of this
subgraph is unknown.

143

Figure 6.8: The MHCS of the human network, which is 7-connected. The function of this subgraph
is unknown.

Figure 6.9: The second MHCS of the human network, which is 6-connected. The function of this
subgraph is unknown.

Figure 6.10: The third MHCS of the human network, which is 6-connected. Proteins in this
subgraph are involved with DNA replication initiation.

144

Figure 6.11: The fourth MHCS of the human network, which is 4-connected. Proteins in this
subgraph are involved with transcription regulation of various sex hormones.

Figure 6.12: The fifth MHCS of the human network, which is 4-connected. Proteins in this subgraph
are involved with transcription regulation and regulation of RNA metabolism.

Chapter 7

Connectivity and other properties in protein complexes

As discussed in Chapter 5, protein complexes are sets of proteins that bind together to

perform their function, and one of the purposes of studying protein-protein interaction networks

is to find these complexes. Protein complexes are one of the areas where we feel that connectivity

can make a significant contribution because of the importance of the structure of complexes and

stability in the complex as a whole. It is important a complex retains its structure even if a protein

has a mutation that might cause it to lose an interaction (edge connectivity) or is missing altogether

(vertex connectivity). Due to steric constraints, most proteins cannot interact directly with more

than 4-6 proteins within a complex, so as the number of proteins in a complex increases, the edge

density decreases, but the k-connectivity may remain largely constant.

There are many theories as to what a complex should look like in the interaction data. A

common theory is that complexes will appear as cliques or near cliques in the interaction data.

In order to test this theory and discover if connectivity might be a better indicator of complexes

than edge density, we conducted a survey of topological properties for the known protein complexes

in Saccharomyces cerevisiae. We looked at both graph connectivity and edge density as well as a

number of other properties. We then compared these to the properties of random complex-like

subgraphs that we called pseudocomplexes in order to discover the relevance of these properties.

146

7.1 Methods

7.1.1 Data

We looked at protein complexes in Saccharomyces cerevisiae from two different sources. The

first source was iPFam, where we were able to obtain data about protein complexes and which

proteins interact within the complex [100]. This data was obtained via x-ray crystallography, which,

while not perfectly accurate, should be considered reliable. Unfortunately, only 13 complexes with

at least three distinct proteins are included in this database. The second source of data on known

complexes was the MIPS database [101]. The MIPS database is far more extensive, but only

contains the proteins present in the complex, not the interactions that occur within the complex.

We obtained yeast two-hybrid (Y2H) interaction data from Biogrid and created an interac-

tion graph using a composite of all Y2H studies in yeast available on Biogrid[87]. We used Y2H

data rather than an affinity purification method because the Y2H data are based only on binary

interactions and determine interactions without being biased towards complexes. For the same

reason, we did not want to use the PCA binary interactions from Tarassov [102] because that study

used complexes to filter the results. The high-throughput Y2H data, however, has a high error rate

and includes both false positives (proteins that don’t interact but appear to in some study) and

false negatives (proteins that do interact but whose interaction has not been captured in a Y2H

study).

We considered using the Y2H Union subset of interactions [103], but there aren’t enough

interactions in this data set between proteins in the same complex to give us meaningful results;

only 25 of the 154 complexes in MIPS induced a connected graph, and of those 25, only 4 had more

than 3 proteins in the data. We did not believe that this was enough data to give a meaningful

picture of complexes, so we decided it was better to accept the lower quality but higher number of

interactions from the composite data set. It is worthwhile to discover metrics that would allow us

to find protein complexes in the abundantly available data. We therefore decided to accept a lower

specificity and a higher number of false positives in order to increase the sensitivity.

147

In order to avoid confusion, for the rest of the chapter, we will refer to the entire collection

of proteins and interactions determined by Y2H interactions as the “network.” The collection of

proteins and interactions in a complex will be a “graph” while a subset of those interactions will

be a “subgraph.”

For the complexes from iPFam, we looked at both the interactions determined by the x-

ray crystallography on isolated complexes and also the graph induced in the Y2H network by the

proteins determined to be in the complex. See Fig. 7.1. The x-ray crystallography data gives us an

idea of how complexes might look in a complete and accurate interaction network, while the Y2H

data gives us an idea of how complexes look in our real error prone data. For the complexes from

MIPS, we were only able to look at the induced graphs from the Y2H data.

7.1.2 Graph Properties

In addition to edge density and edge and vertex connectivity, we also looked at the following

statistics:

Degree Statistics: The maximum, minimum, and mean degrees for each graph, along with

the standard deviation of the mean. In order to compare these statistics between complexes with

differing numbers of proteins, we normalize by dividing the degree statistics by the number of

vertices in the graph.

Clustering Coefficient (CC): A measure of how many of a vertex’s neighbors are neighbors

of each other. Over a graph or subgraph, clustering coefficient is defined as 3 times the number of

triangles divided by the number of length 2 paths.

Mutual Clustering Coefficient (MCC): For a pair of vertices, the percentage of their

neighbors that they share. There are several different ways of defining the mutual clustering

coefficient between two vertices, but for our purposes, we define it as the number of shared neighbors

divided by the minimum number of neighbors. This method was the best of the ratio methods from

Goldberg and Roth [30] for assessing confidence in PPI networks. We calculate the MCC between

all pairs of vertices in a complex, and as with degree, we report the maximum, minimum, mean,

148

(a) The 20S proteasome, sur-
face view.

(b) The graph constructed by
looking at the proteins of the
20S proteasome and their inter-
actions with x-ray crystallogra-
phy.

(c) The subgraph of the Y2H
network induced by the pro-
teins from (b).

(d) The edges from (b) and (c).
Interactions appearing only in
x-ray crystallography are in
blue, those appearing only in
Y2H data are in red, and those
appearing in both are in pur-
ple.

Figure 7.1: The 20S proteasome and the graphs that represent it. Figure (a) shows a surface image
of the proteasome itself. The graph in (b) represents the interactions from the isolated complex
(from iPFam), while the graph in (c) contains the same proteins but gets its edges from the Y2H
network (from Biogrid).

and standard deviation.

Motifs: Particular subgraphs in each complex. We were interested in the number of triangles

and 4-cycles.

149

Betweenness Centrality: For a vertex, the number of shortest paths between all other pairs

of vertices that contain that vertex. Again, we report the maximum, minimum, mean, and standard

deviation. As with the degree statistics, we normalize by dividing by the number of vertices in the

graph. Because complexes are expected to be well-connected, we expect betweenness values to be

small.

7.1.3 Subgraphs

For each graph of a complex, we looked at three subgraphs: 1) the original graph, which

includes vertices representing all proteins in the complex; 2) a “haircut” subgraph, where we re-

cursively eliminate all vertices of degree 1 or less, ensuring the subgraph has a minimum degree of

2 (this is the same as the haircut part of the algorithm of Bader and Hogue [49]); and 3) the most

highly connected subgraph (MHCS).

The reason that we look at these additional subgraphs is that we believe that several proper-

ties will be more discernible in these subgraphs, so that these subgraphs are more likely to be able

to be discovered by a complex-finding algorithm. The single vertices eliminated by the haircut are

unlikely to be discovered by any complex-finding algorithm, and including them lowers the edge

density, clustering coefficient, and connectivity of the graph, as well as raising the betweenness

of the adjacent vertex. The MHCS is primarily designed to highlight connectivity, of course, but

many other properties are also higher in the MHCS than in the original graph.

7.1.4 Assessment

In order to assess the significance of motifs in the complexes and the Y2H network as a whole,

we used two different methods of generating random graphs. For the Y2H network, we generated

networks with the same number of vertices and the same edge distribution by “switching.” Switching

works by choosing two random edges with different endpoints, (A,B) and (C,D), removing those

edges, and replacing them with edges (A,D) and (C,B). We used the method recommended by

Milo et al. : for a network with n vertices, the process is repeated 100n times to ensure proper

150

mixing [104]. The end result is a random network with the same degree distribution as the original

network [105]. This process is repeated 10 times, giving us 10 random networks for comparison.

A somewhat different method was used to assess the significance of the properties of the

complexes. Switching would only allow us to compare a protein complex graph with another graph

of the same degree distribution, when what we really want is to compare it to other graphs from

the Y2H network. Our question is “how likely are we to see this result in the actual network

where there is not a complex?” so we seek graphs that are similar to our complexes. For each

complex with at least 4 proteins, we found a “matched” graph that we call a pseudocomplex. A

pseudocomplex P that matches a complex with n proteins is generated by taking a random triangle

T from the Y2H network and letting P3 = T . For i > 3, we generate Pi from Pi−1 by taking a

random edge in the Y2H network attached to Pi−1 and adding the vertex at the other end and all

edges from this vertex to Pi−1. Repeat this process until we have the same number of vertices as

the original complex and let P = Pn. We chose a random edge rather than a random neighbor so

that nodes connected by multiple edges would be more likely to be chosen, making the final graph

more “complex-like.” We started with a random triangle rather than a random edge for the same

reason, because most (though not all) complexes contained at least one triangle. We calculated the

same measures for pseudocomplexes as we did for the complex graphs, and compared our results

with the real complexes.

7.2 Results

We calculated all of the statistics mentioned in the previous section for graphs generated by 13

different complexes from iPFam and 154 complexes from MIPS. Full results are in the appendices.

We present some of the highlights here.

7.2.1 iPFam Complexes

There were 35 studies in iPFam that involved complexes with at least 3 proteins. Some of

these studies were of the same or similar complexes; we grouped studies together if they produced

151

the exact same graph, i.e. the same proteins with the same set of interactions. All graphs are

illustrated in Fig. 7.2 and 7.3, along with the subgraphs they induced in the Y2H data. In some

cases, it is possible that two different studies of the same complex may have produced different

graphs, but we will treat all distinct graphs as separate entities. This grouping gave us 13 distinct

graphs. Full statistics for the complexes from iPFam are in Table 7.1; because we had interaction

data from x-ray crystallography, we were able to analyze a reliable graph representation for these

complexes. In all except two cases (Fig. 7.2(m) and 7.3(c)), the interactions from the x-ray crystal-

lography produced connected graphs. In general, the edge density could be closely correlated with

the number of vertices in the complex; complexes with only 3 proteins produced cliques while those

with 12 or more tended to have edge densities closer to 1
3 . See Fig. 7.4. Most complexes were only

1-connected due to the presence of a small number of degree 1 vertices; in all cases except one, the

haircut subgraphs were 2-connected. About half the complexes had a subgraph that was at least

3-connected.

When we look at the iPFam complexes in the Y2H data, we see that 9 of the 13 have all

of their proteins present, 3 have slightly more than 60 percent, and 1 has only 1 out 4 proteins

present. Only in one (Fig. 7.2(c-d)), a complex with 3 proteins, were all of the interactions from

the x-ray crystallography present in the Y2H data. With the exception of that complex, none of

the complexes induced connected graphs, and they all had edge densities of less than 0.1. In all

except two cases, the haircut produced an empty subgraph. Only two complexes had a subgraph

that was at least 2-connected. Comparing these results with the results obtained using the x-ray

crystallography data, as is done in Table 7.1, gives us an idea of how many interactions have not

been detected using a Y2H assay and how these false negatives make it difficult to detect complexes.

Looking at statistics other than edge density and connectivity in the iPFam complexes, we

see that clustering coefficients had a similar pattern to edge density in that the value was closely

correlated with the number of vertices in the complex. Mutual clustering coefficients were more

scattered, but also tended to decrease as the number of vertices increased. See Fig. 7.4-7.6. In the

Y2H data, most graphs had clustering coefficients of 0. Average mutual clustering coefficients were

152

higher, between 0.14 and 0.63.

n m Edge Dens. Max Degree

PDB
ID

x-
ray

Y2H x-
ray

Y2H x-
ray

Y2H x-
ray

Y2H

1nh2 3 3 3 1(1) 1 0.33 2 1
1w7p 3 3 3 3(3) 1 1 2 2
1id3 4 1 4 0(0) 0.67 N/A 2 0
1p84 8 5 15 1(1) 0.54 0.1 5 1
1kb9 8 5 16 1(1) 0.57 0.1 5 1
1kyo 9 6 17 1(1) 0.47 0.07 6 1
1nt9 10 10 10 5(4) 0.22 0.11 5 4
1k83 10 10 18 6(5) 0.4 0.13 7 4
1sfo 10 10 19 6(5) 0.42 0.13 8 4
1pqv 12 12 11 7(5) 0.17 0.11 6 4
2b63 12 12 22 8(7) 0.33 0.12 8 4
1y1v 13 13 25 8(8) 0.32 0.10 9 4
1jd2 14 14 32 11 0.35 0.12 6 3

CC Ave MCC Ave Bet. Connect.

PDB
ID

x-
ray

Y2H x-
ray

Y2H x-
ray

Y2H x-
ray

Y2H

1nh2 1 N/A 1 N/A 0 0 2 0
1w7p 1 1 1 1 0 0 2 2
1id3 0 N/A 0.33 N/A 0.5 N/A 2 N/A
1p84 0.61 N/A 0.71 N/A 2 0 1 0
1kb9 0.68 N/A 0.77 N/A 1.75 0 1 0
1kyo 0.554 N/A 0.72 N/A 2.44 0 1 0
1nt9 0.26 0 0.63 0.64 3.5 1.3 0 0
1k83 0.47 0 0.83 0.30 2.9 1.3 1 0
1sfo 0.52 0 0.89 0.30 2.8 1.3 1 0
1pqv 0.13 0 0.37 0.26 4.17 1.17 0 0
2b63 0.45 0 0.71 0.16 4.42 1.17 1 0
1y1v 0.42 0 0.66 0.16 4.85 1.08 1 0
1jd2 0.48 0 0.36 0.14 5.93 3.21 4 0

Table 7.1: Statistics for iPFam complexes. The number of proteins (n) and interactions (m),
edge density (Edge Dens.), maximum degree (Max Degree), clustering coefficient (CC), average
mutual clustering coefficient (Ave MCC), average betweenness (Ave Bet.), and vertex connectivity
(Connect.) for each iPFam complex. The IDs given are from the Protein Data Base. x-ray =
complex as determined by x-ray crystallography, Y2H = induced subgraph in yeast 2-hybrid data.
The number in parentheses in the m Y2H column is the number of interactions from the x-ray
crystallography that also occur in the Y2H network. “N
A” means that there were not enough vertices to calculate a given statistic.

153

(a)
Actual
1nh2.

(b) 1nh2
in Y2H
data.

(c)
Actual
1w7p.

(d)
1w7p
in Y2H
data.

(e)
Actual
1id3.

(f) 1id3
in Y2H
data.

(g)
Actual
1p84.

(h) 1p84
in Y2H
data.

(i)
Actual
1kb9.

(j) 1kb9
in Y2H
data.

(k)
Actual
1kyo.

(l) 1kyo
in Y2H
data.

(m)
Actual
1nt9.

(n) 1nt9
in Y2H
data.

(o)
Actual
1k83.

(p) 1k83
in Y2H
data.

Figure 7.2: Complexes from iPFam, and those same proteins in Y2H data. IDs are from the RCSB
Protein Data Base.

154

(a)
Actual
1sfo.

(b) 1sfo
in Y2H
data.

(c)
Actual
1pqv.

(d) 1pqv
in Y2H
data.

(e)
Actual
2b63.

(f) 2b63
in Y2H
data.

(g)
Actual
1y1v.

(h) 1y1v
in Y2H
data.

(i)
Actual
1jd2.

(j) 1j2d
in Y2H
data.

Figure 7.3: More complexes from iPFam and the same proteins in Y2H data. IDs are from the
RCSB Protein Data Base.

Figure 7.4: Comparison of edge density and the number of vertices in complexes from iPFam with
interactions determined by x-ray crystallography.

155

Figure 7.5: Comparison of clustering coefficient and the number of vertices in complexes from
iPFam with interactions determined by x-ray crystallography.

Figure 7.6: Comparison of average mutual clustering coefficient and the number of vertices in
complexes from iPFam with interactions determined by x-ray crystallography.

156

7.2.2 MIPS Complexes

Of the 154 complexes in the MIPS database, there were 42 complexes with no edges be-

tween their component proteins in the Y2H data, 73 complexes that had interactions between the

component proteins in the Y2H network but did not induce a connected graph, and 39 complexes

that induced a connected graph between all the proteins that were present in the data. We report

combined statistics for all 112 complexes with some interactions. For each statistic, we calculated

the percentage of complexes that have values above a given threshold.

7.2.2.1 Edge Density and Connectivity

Results on edge density are in Table 7.2 and Fig. 7.7. Table 7.3 gives a comparison between

edge density in real complexes and pseudocomplexes. It should be noted that the real complexes in

Table 7.3 are a subset of those in Table 7.2; at least 4 proteins are needed to create a pseudocomplex.

Edge
Den-
sity

Full graph
(112)

Haircut
(46)

MHCS
(112)

1 0.08 0.46 0.5
0.9 0.08 0.46 0.52
0.8 0.1 0.59 0.55
0.7 0.11 0.63 0.59
0.6 0.25 0.76 0.85
0.5 0.33 0.85 0.9
0.4 0.36 0.89 0.95
0.2 0.63 1 0.99

Table 7.2: Fraction of complexes with edge density above a given threshold in the Y2H data.
Numbers in parentheses are the number of graphs in each category.

Results on vertex connectivity for the full complexes, their haircuts, and their most highly

connected subgraphs are summarized in Fig. 7.8 and Table 7.4. Virtually all complexes had the same

edge connectivity as vertex connectivity, so we only give results for the stronger vertex connectivity.

Comparisons with pseudocomplexes can be found in Table 7.5. Note that none of the haircut graphs

had a connectivity of 1. Eliminating vertices of degree 1 is not by itself enough to guarantee that a

157

Figure 7.7: Fraction of complexes with an edge density above the given threshold. “Connected” are
those complexes that induce a connected subgraph in the Y2H data and “Not connected” are the
other complexes (the “Full graph” column in Table 7.2 is a combination of these 2). “All” refers
to all connected components of complexes.

Edge
Den-
sity

Real Pseudo

1 .05 0
.9 .05 .05
.8 .15 .15
.7 .20 .15
.6 .45 .35
.5 .8 .65
.4 .85 .75
.2 .95 1.00

Table 7.3: Fraction of real complexes which induce a connected graph on at least 4 proteins in the
data and comparable pseudocomplexes which have an edge density greater than the given threshold.
Statistics based on 20 different graphs.

graph will be at least 2-connected, so this result is significant. It indicates that removing all degree

1 vertices from complexes also eliminates all articulation points, vertices whose removal disconnects

the graph, leaving behind a graph where no one vertex can be removed to disconnect the graph.

7.2.2.2 Other statistics

The results for clustering coefficient and mutual clustering coefficient from MIPS are in

Tables 7.6 and 7.7 and Fig. 7.9 and 7.10. As seen in Tables 7.6 and 7.7, average mutual clustering

coefficient is much higher than clustering coefficient. The reason for this is that there are many

158

Figure 7.8: Number of complexes, their haircut graphs, and their most highly connected subgraphs
with given vertex connectivity values.

Connect. Full graph
(112)

Haircut
(46)

MHCS
(112)

5 0 0 0.01
4 0 0 0.02
3 0.02 0.03 0.12
2 0.09 0.35 0.34

Table 7.4: Fraction of complexes with at least the given vertex connectivity value. Numbers in
parentheses are the number of graphs in each category.

Connect. Real Pseudo

5 .05 0
4 .10 0
3 .40 .15
2 .75 1.00

Table 7.5: Fraction of real complexes which induce a connected graph on at least 4 proteins in
the data and comparable pseudocomplexes which have a subgraph of at least the given vertex
connectivity. Statistics based on 20 different graphs.

more 4-cycles than triangles. While triangles are overrepresented in the Y2H network as compared

to a random network of the same degree distribution produced by switching (4681 v. 1609.8, 2.9

times as many), 4-cycles are even more overrepresented (98166 v. 24045.0, 4.1 times as many). The

frequencies of triangles and 4-cycles relative to random networks has been calculated for a previous

yeast PPI network, also with the result that both were overrepresented and 4-cycles were even

more overrepresented, though this was not stated explicitly [106]. It does not, however, appear to

159

hold true for all PPI networks; specifically, in Drosophila melanogaster, triangles appear to be more

overrepresented than 4-cycles [32].

In the complex graphs, 4-cycles seem to be even more overrepresented than they are in the

Y2H network as a whole. While results varied, 4-cycles were overrepresented in 50% of complexes

compared to pseudocomplexes, as opposed to triangles, which were only overrepresented in 29% of

complexes. The overrepresentation of triangles in the real complexes was notable also, however,

especially considering that all pseudocomplexes started with at least one triangle.

Comparisons between clustering coefficient and mutual clustering coefficients in real and pseu-

docomplexes are in Tables 7.8 and 7.9. As with edge density and connectivity, the real complexes

in these tables are a subset of those in Tables 7.6 and 7.7 respectively.

CC Full graph
(84)

Haircut
(46)

MHCS
(84)

1 0.13 0.46 0.33
0.9 0.13 0.46 0.35
0.8 0.15 0.54 0.36
0.7 0.19 0.65 0.39
0.6 0.3 0.74 0.45
0.5 0.35 0.83 0.48
0.4 0.39 0.87 0.49
0.2 0.5 0.96 0.51

Table 7.6: Fraction of complexes with clustering coefficient above a given threshold in the Y2H data.
Numbers in parentheses are the number of graphs in each category. Note that not all complexes
produced a graph with a valid clustering coefficient; those that did not were omitted from the
statistics.

The normalized results for maximum degree are in Table 7.10 with the comparison with

pseudocomplexes in Table 7.11. In many of the complexes we looked at, there was at least one

protein of high degree that had an interaction with all or almost all of the other proteins in the

complex, forming a “star” or a “hub and spoke” in the graph. This has been previously suggested by

Bader and Hogue as a way to model the interactions in complexes that were found experimentally

using affinity-purification [26]. However, there are some problems with using this idea to search for

complexes in the data. The first is that we did not notice a strong correlation between proteins

160
MCC Full graph

(86)
Haircut
(46)

MHCS
(84)

1 0.49 0.57 0.73
0.9 0.51 0.63 0.75
0.8 0.53 0.74 0.8
0.7 0.6 0.76 0.82
0.6 0.62 0.78 0.83
0.5 0.66 0.83 0.93
0.4 0.7 0.91 0.93
0.2 0.84 1 1

Table 7.7: Fraction of complexes with mutual clustering coefficient above a given threshold in the
Y2H data. Numbers in parentheses are the number of graphs in each category. Note that not all
complexes produced a graph with a valid mutual clustering coefficient; those that did not were
omitted from the statistics.

Figure 7.9: Fraction of complexes with a clustering coefficient above the given threshold. “Con-
nected” are those complexes that induce a connected subgraph in the Y2H data and “Not con-
nected” are the other complexes (the “Full graph” column in Table 7.6 is a combination of these
2). “All” refers to all connected components of complexes.

CC Real Pseudo

1 .05 0
.9 .05 0
.8 .10 .05
.7 .25 .15
.6 .45 .35
.5 .80 .55
.4 .85 .75
.2 .95 1.00

Table 7.8: Fraction of real complexes which induce a connected graph on at least 4 proteins in the
data and comparable pseudocomplexes which have a clustering coefficient greater than the given
threshold. Statistics based on 20 different graphs.

161

Figure 7.10: Fraction of complexes with an average mutual clustering coefficient above the given
threshold. “Connected” are those complexes that induce a connected subgraph in the Y2H data and
“Not connected” are the other complexes (the “Full graph” column in Table 7.7 is a combination
of these 2). “All” refers to all connected components of complexes.

Ave. MCC Real Pseudo

1 .40 .40
.9 .45 .40
.8 .55 .65
.7 .85 .75
.6 .85 .85
.5 .90 .85
.4 .95 .90
.2 1.00 1.00

Table 7.9: Fraction of real complexes which induce a connected graph on at least 4 proteins in the
data and comparable pseudocomplexes which have an average mutual clustering coefficient greater
than the given threshold. Statistics based on 20 different graphs.

with high degree and proteins that appear in known complexes; roughly 30% of proteins of degree

3 or higher in our data set appeared in at least one complex, and this number remained roughly

constant as we increased the degree threshold until it eventually started decreasing due to the

limited number of proteins with degrees above 20. The second problem is that if we look at the

protein in a complex with the most interactions with other proteins in that complex, the majority

of its interactions in the Y2H data are not within the complex. Therefore, the strategy of looking

for a protein of high degree and taking it and all of its neighbors as a complex seems unlikely to

produce meaningful results for finding protein complexes in Y2H data.

Results for maximum betweenness are summarized in Table 7.12 with the comparison with

162
Max Deg.
%

Full graph
(112)

Haircut
(46)

MHCS
(112)

1 0.27 0.72 0.86
0.9 0.27 0.72 0.86
0.8 0.32 0.8 0.88
0.7 0.37 0.83 0.9
0.6 0.45 0.91 0.97
0.5 0.63 0.96 0.98
0.4 0.64 1 1
0.2 0.9 1 1

Table 7.10: Fraction of complexes with a vertex with edges to at least the given percentage of other
vertices in the protein complex graph. Numbers in parentheses are the number of graphs in each
category.

Max Deg % Real Pseudo

1 .55 .40
.9 .55 .40
.8 .75 .70
.7 .90 .85
.6 .95 .90
.5 1.00 .95
.4 1.00 1.00
.2 1.00 1.00

Table 7.11: Fraction of real complexes which induce a connected graph on at least 4 proteins in
the data and comparable pseudocomplexes which have a vertex with edges to at least the given
percentage of other vertices in the protein complex graph. Statistics based on 20 different graphs.

pseudocomplexes in Table 7.13. Note that for these tables, unlike the others, we report the number

of complexes that were less than a given threshold rather than greater than the threshold. Some

graphs did not have enough vertices (at least 3 in a connected component) to make a valid measure

of betweenness; these were not included in the statistics. Betweenness statistics are not given for

unconnected complexes because not all pairs of vertices have paths between them. Traditionally,

betweenness has been used as a way to divide the PPI network into functional modules by identifying

edges with high betweenness as edges between distinct modules or complexes, so it may seem odd

that we are looking at betweenness within a complex. Our goal in looking at the betweenness

statistics was to confirm that betweenness values on these nodes were low as we would expect given

that we expect there to be few if any “bottleneck nodes” between any two vertices in the complex

163

that large numbers of shortest paths must go through. Although the minimum betweenness was

almost always 0, and average betweenness was relatively small, the maximum betweenness varied

quite widely, and there were some vertices with very high normalized betweenness. The maximum

betweenness in fact tended to be higher in the real complexes than in the pseudocomplexes.

Max Bet. % Full graph
(37)

Haircut
(21)

MHCS
(37)

0 .19 .48 .32
.1 .19 .48 .51
.2 .27 .81 .57
.3 .30 .86 .57
.4 .43 1.00 .61
.5 .46 1.00 1.00
.6 .49 1.00 1.00
.8 .59 1.00 1.00

Table 7.12: Fraction of complexes for which all of their vertices have a normalized betweenness
centrality less than the given threshold. Numbers in parentheses are the number of graphs in each
category. Note that betweenness was calculated only for those graphs that produced a connected
subgraph.

Max Bet % Real Pseudo

0 .05 0
.1 .05 .15
.2 .20 .30
.3 .25 .60
.4 .50 .95
.5 .55 1.00
.6 .60 1.00
.8 .80 1.00

Table 7.13: Fraction of real complexes which induce a connected graph on at least 4 proteins in the
data and comparable pseudocomplexes for which all of their vertices have a normalized betweenness
centrality less than the given threshold in the Y2H data. Statistics based on 20 different graphs.

7.3 Discussion

As we carried out this analysis, we were always aware of the fact that our data is error prone.

We must keep in mind that the absence of an edge does not mean that there is no interaction. In

order to see that we have false negatives, we need only look at the complexes with their interactions

164

determined by x-ray crystallography and compare them to the interactions of those same proteins in

the Y2H data. Presumably, if all “real” interactions had been detected, all of the interactions that

we see in the x-ray crystallography studies would be present. False positives are a more difficult

matter to detect. Again, if we compare the x-ray crystallography to the Y2H data, we see edges in

the Y2H graph that weren’t in the x-ray crystallography. However, we cannot simply declare these

false positives. It is possible that they truly are false positives. It is also possible that while “false”

these interactions are significant due to the fact that they appear in the same complex (e.g. we are

incorrectly labeling as a neighbor what should actually be the neighbor of a neighbor). Finally, it

is possible that these are true interactions that simply do not appear as part of this complex. A

recent study suggests that there are many such binary interactions and that the false positive rate

for Y2H data is actually much lower than previously believed [107].

While false positives may cause problems in complex-finding algorithms, our survey suggests

that false positives may be less of a problem than false negatives. If we had used a cleaner data

set, we would have had fewer false positives but also fewer true positives, and we would have had

even more difficult discerning complexes. Even in the data we used, complexes often did not stand

out when compared to pseudocomplexes.

While the errors in the Y2H data are noteworthy, we do not feel that they represent a

weakness in our study. To the contrary, a complex-finding algorithm would also be working in this

same error-prone data. While it would be interesting to know how a complex would appear in an

idealized network, it is more useful to know how it appears in the data we have.

7.3.1 Connectivity and Edge Density

In our examination of edge density and connectivity, we found that edge density may have

been overrated as a property of complexes. We found that in Y2H data, the complexes were

not particularly clique-like and edge densities were nowhere near as high as most complex-finding

algorithms assumed. For example, the algorithm used by King et al. [54] looks for complexes with

an edge density of at least 0.7 with a minimum number of proteins. If such a technique were applied

165

to Y2H binary interaction data (the data King et al. used included multiple types of interactions,

some of which were not binary), our research suggests that such a technique would find all of the

proteins involved in a complex for just over a tenth of known complexes with 3 or more distinct

proteins (Table 7.2). An edge density threshold would find the MHCS of about 60% of known

complexes, thus finding at least part of the complex, but this still leaves more than a third of

complexes undetected. Also, on average, the edge densities in complexes were only slightly higher

than the edge densities in the pseudocomplexes, which suggests that edge density may produce

many false positives as well. Therefore, we believe that edge density has a role in developing

complex-finding algorithms, but we would be skeptical of methods that purport to find complexes

in Y2H data based solely on edge density.

The connectivity of complexes, on the other hand, stood out versus the connectivities of the

pseudocomplexes. Our results were mixed but promising. Most complexes were only 1-connected,

but this was due to a small number of degree 1 vertices. When these vertices were removed by

the haircut, a 2-connected subgraph usually remained, and many complexes had 3-connected or

4-connected subgraphs. The presence of 3-connected and 4-connected subgraphs is significant;

because of the way we generated our pseudocomplexes, they all had a 2-connected subgraph, but

very few had a 3-connected subgraph. None of the pseudocomplexes that were designed to mimic

the connected complexes had a 4-connected subgraph.

It should also be noted that while our results on connectivity in the error-prone data were

promising, our results in the more accurate x-ray crystallography data were even more so. In the

x-ray crystallography data, all complexes had at least a 2-connected subgraph, and the majority

of complexes had a 3-connected or 4-connected subgraph. This suggests that as our data becomes

more complete and accurate, highly connected subgraphs will play an even stronger role in searching

for complexes.

166

7.3.2 Other Properties

Other graph theory properties worth mentioning in connection with protein complexes are

clustering coefficient and mutual clustering coefficient. Clustering coefficient has not been as pop-

ular a parameter for complex-finding algorithms as edge density, but it has long been one of the

standard tools used to study the PPI network and its subgraphs. In absolute terms, clustering

coefficients were much lower than mutual clustering coefficients, but clustering coefficients in real

complexes were higher than those from equivalent pseudocomplexes. Clustering coefficients were

quite high in haircut graphs, but this is somewhat misleading. The haircut removes length 2 paths

from the graph without removing any triangles; therefore, we would expect to increase clustering

coefficient, but this increase is not necessarily significant. Mutual clustering coefficient is another

statistic that has not been used extensively in complex-finding algorithms, but we believe shows

promise. Many complexes had high average mutual clustering coefficients as seen in Table 7.7.

It should be noted that our pseudocomplexes also have high mutual clustering coefficients (Table

7.9), but there is still reason for optimism. The average MCCs for complexes which contain some

interactions between their proteins in the Y2H graph is, on average, .69, while the average over all

co-complexed pairs is .36; This average is lowered by a few unconnected complexes with a large

number of proteins. Another reason for believing that mutual clustering coefficient may perform

well in a complex-finding algorithm is that mutual clustering coefficient considers 4-cycles as well

as triangles in its calculation. As mentioned in the results section, we have found that 4-cycles

are overrepresented in the Y2H network as a whole, and seem to be even more overrepresented in

complexes. Both clustering coefficient and mutual clustering coefficient seem to have a correlation

with complexes and would likely have a role in a new complex-finding algorithm.

7.3.3 The Role of Connectivity in Future Complex-Finding Algorithms

By itself, vertex connectivity cannot be used as the basis of a complex finding algorithm,

because subgraphs with these connectivities are too common; it is easy to find 2- or 3-connected

167

graphs of almost any size in the PPI network. Starting with a triangle, it is possible by adding one

vertex at a time to build a 3-connected subgraph of any size up to 1689 vertices. Starting with a

4-clique, it is possible to build a 3-connected graph of any size up to 913 vertices. Nevertheless, we

feel these vertex-connectivity results are significant. The MHCS of graphs representing real com-

plexes were much more highly connected than those of pseudocomplexes. The presence of a highly

connected MHCS was one of the statistics that most differentiated real complexes from pseudo-

complexes, suggesting that connectivity has a role in complex-finding algorithms. The absence of

articulation points and the presence of highly connected subgraphs indicates something about the

structure of complexes, even if k-connectivity cannot be used as the sole basis of a complex-finding

algorithm.

However, connectivity could be used in conjunction with other properties in a complex-finding

algorithm. Several other properties examined in this survey, most notably clustering coefficient and

mutual clustering coefficient, were also highly correlated with complexes. A complex-finding al-

gorithm based on this data could try to build a 3- or 4-connected subgraph that also had high

clustering coefficients and mutual clustering coefficients. Several existing complex-finding algo-

rithms use multiple criteria, such as MCODE (k-core, clustering coefficient, and edge density) [49],

the algorithm of King et al. (clustering and edge density) [54], and the Bayesian network of Qi

et al. (multiple properties, including edge density, degree statistics, and clustering coefficients) [72].

Connectivity could also be used to evaluate candidate subgraphs produced by other complex-

finding algorithms. Subgraphs found by other methods could be examined to find their most highly

connected subgraph, with higher confidence scores being given to those with higher connectivity

values for their most highly connected subgraphs.

Finally, we hypothesize that the most highly connected subgraph of a complex graph may

correspond to the “core” of a protein-complex as described by Dezso et al. [65] and Gavin et al. [66].

We plan to examine this possibility in future work. If true, this would imply that connectivity could

be used in improvements to algorithms that use the core-attachment model [67, 68].

168

7.4 Conclusion

In order to discover whether connectivity might be helpful to discover protein complexes,

we conducted a principled and comprehensive survey of how known protein complexes appear in

protein-protein interaction networks. We looked at the graph induced in the Y2H network by

proteins contained in a complex and measured a number of properties. We also took random

“complex-like” graphs from the Y2H network and measured the same properties as we did for the

complexes in order to measure the significance of our results.

We found that although the property of edge density has been by far the most common

measure used when searching for complexes in the PPI network, it is not the only graph measure

that is unusually high in complexes, and in fact may not be the most significant measure. The

connectivity of the most highly connected subgraphs was one of the measures which was the most

different in complexes from pseudocomplexes. Other measures, such as clustering coefficient and

mutual clustering coefficient, show equally strong or stronger predictive power for complexes as

edge density.

We hope that this data can form the basis for new, principled algorithms. We believe that

algorithms based on several properties of real complexes and not solely on edge density can be a

more effective way to search for complexes in interaction data.

Chapter 8

Future Work

In this chapter, we discuss some future research areas related to our work. In Section 8.1,

we discuss some open problems related to our work on the LP algorithm in Chapter 3, while in

Section 8.2, we discuss open bounds on special edges as discussed in Chapter 4. Section 8.3 gives

an unsolved problem related to the k-ECSS problem in general, discussed in both Chapter 3 and

Chapter 4. Section 8.4 gives future work related to the MHCS algorithm discussed in Chapter 6,

and Section 8.5 gives future work related to our survey on protein complexes. Finally, Sections

8.6-8.8 give additional areas of research that can be applied to the work done in both Chapter 6

and Chapter 7.

8.1 Linear Programming Algorithm Bounds

8.1.1 Size of the Laminar Family

We have proved a bound on the size of a laminar family of critical sets in a k-connected simple,

undirected graph that is close to n
(

1 + 3
k + 3

k
√

k
+ O(1

k2)
)

. However, our lower bound example has

only n
(

1 + 3
k + 1√

2k
√

k
−O(1

k2)
)

sets. The upper and lower bounds are the same through the 1
k

term but differ in the 1
k
√

k
term, and the lower bound example has no positive O(1

k2) term. It may

be possible to close the gap between these, giving a bound that is closer to tight.

170

8.1.2 Further Refinement of the Rounding Method

There is also a gap between the best bound that we can prove for our improved rounding

method and the best known lower bound. The approximation bound for our algorithm is 1 +

1
2k + O(1

k2). While a careful analysis and a few modifications to the rounding method can improve

the constant on the O(1
k2) term (see Appendix A), the 1

2k term has resisted improvement. The

best lower bound example we have found, however, is the trivial example shown in Fig. 8.1. This

example is formed by starting with H, (k− 1)-edge-connected graph where every vertex has degree

k − 1 (such as Kk−1 or the example shown in Section 3.2). We take 3 copies of this graph, H,

H ′, and H ′′, and connect each vertex to its “matching” vertices in the other two copies. A basic

feasible solution to linear program could include all edges within H, H ′, and H ′′, and connect the

matching vertices using edges of weight 1
2 . This example will have an approximation no better than

1 + 1
3k because we will need to round at least 2 of the 3 edges connecting each v, v′, and v′′.

There is a significant gap between the 1 + 1
2k + O(1

k2) upper bound and the 1 + 1
3k lower

bound. Further analysis could close this gap by proving a better bound on the rounding algorithm

or a better lower bound example.

8.2 Bound on Special Edges for k < 10

8.2.1 The Case k = 9

As mentioned in Chapter 4, we conjecture that the nσ bound on the number of special edges

may apply in the case k = 9. All lemmas necessary for the proof of the k ≥ 10 case can be extended

to include k = 9. If k = 9 a share is equal to 33
4 (10)/2 = 181

2 = 2k + 1
2 credits, enough that a

non-chain node can fulfill its obligations under conservative path payment. It is therefore plausible

that we may be able to extend our proof of the nσ bound to k = 9.

171

H’

v’

H’’

v’’

H

v

Figure 8.1: A lower bound example for any LP rounding algorithm. H is a (k− 1)-edge-connected
graph in which every vertex has degree k. Dashed edges have weight 1

2 . Any rounding algorithm
must round 2 of the 3 edges between v, v′, and v′′.

172

8.2.2 The Case k ≤ 8

For k ≤ 8, there are example graphs with more than nσ special edges [13]. For 1 ≤ k ≤ 3,

there are example graphs with 2nσ special edges. The 2nσ bound is tight for these values of k. For

values of 4 ≤ k ≤ 8, however, there is not a tight bound on the number of special edges.

8.3 Approximation Bound for the Minimum k-ECSS Problem on Simple

Graphs

Currently, the best known approximation for the minimum k-ECSS problem on simple graphs

is the LP rounding algorithm described in Section 3.1, with an approximation of 1+ 1
2k+O(1

k2). How-

ever, recall from Section 2.3.4 that the proof that the minimum k-ECSS problem is MAXSNP-hard

on simple graphs allows for the possibility of an algorithm that achieves a 1+O(1
k2) approximation

guarantee. We would like to either find a 1 + O(1
k2) approximation algorithm or prove that it is

NP-hard to approximate the problem to within 1 + c
k for some constant c.

It should be noted that linear programing approximation methods are unlikely to provide a

1 + O(1
k2) approximation algorithm for the minimum k-ECSS problem. The example in Fig. 8.1

applies not only to our algorithm but to any LP method based on rounding fractional edges. Any

method of rounding the fractional edges in Fig. 8.1, no matter how clever, must round 2 of the 3

edges connecting each triple of matched vertices and thus cannot manage an approximation better

than 1+ 1
3k . We would therefore have to look at other methods to find a 1+O(1

k2) approximation.

8.4 MHCS Algorithm

8.4.1 Other Varients of the MHCS Algorithm

Other types of connectivity exist in addition to edge connectivity and vertex connectivity. Be-

sides edge and vertex connectivity, the most commonly studied variation of connectivity is element

connectivity. In this variation of the connectivity problem, we divide the vertices into terminals

and nonterminals. Connectivity requirements are specified only between two terminals, and paths

173

between two terminals must be element disjoint, meaning that no two paths may travel through

the same non-terminal. In some types of biological networks, it may make sense to look at element

connectivity rather than edge or vertex connectivity. Therefore, we would like to modify the MHCS

algorithm to look at element connectivity as well as other types of connectivity.

We would also like to modify the MHCS algorithm to look at connectivity in hypergraphs.

See Section 8.8.

8.4.2 Further Analysis of Vertex Connectivity Algorithm

As mentioned in Chapter 6, there has been some work on subgraphs with high edge-connectivity.

There have been algorithms similar to ours to find these subgraphs. Much less, however, has been

done with vertex connectivity. There are two improvements we would like to make to our algo-

rithm to find the most highly vertex-connected subgraph, improving the algorithm and finding

other applications for it.

A closer analysis of the MHCS algorithm for vertex connectivity will most likely improve

the time bound. While the connectivity of the MHCS, kmax affects the speed of the vertex cut

algorithm, it also affects the number of recursive calls necessary. A high value for kmax implies a

slower vertex cut algorithm but fewer recursive calls. Currently, our time bound only takes into

account the first effect. We would also like to take into account the second.

Another possible area of research on the vertex connectivity algorithm is looking at other

possible applications. The slicings discussed by Matula have applications not only to edge-connected

subgraphs but to chromatic number as well [80]. It would be interesting to see if our similar

algorithm also has applications in other areas of graph theory.

8.4.3 Subgraphs with High Connectivities

Further analysis needs to be done on the subgraphs we have found using the MHCS algorithm.

Some of our subgraphs obviously correspond to a known biological module. Others, however, seem

to have common biological functions but have not previously been identified as modules. We would

174

like to discover the signficance of these subgraphs. We would like to discover if they represent

modules and if so what type of module.

Currently, collaborating biologists are working on discovering the signficance of the MHCS in

yeast, the 16-connected subgraph of 49 membrane proteins. A similar analysis also could be done

on some of the other yeast subgraphs as well as all of the subgraphs we found in the human Y2H

data.

8.4.4 Cytoscape Plug-in

We believe that our MHCS algorithm is a valuable tool in studying PPI and other types of

biological networks. We would therefore like to make an implementation of our algorithm available

to the wider community. We are currently working on creating a cytoscape plug-in that will enable

users of cytoscape to calculate the most highly connected subgraph of a network. We hope to

implement versions of this plug-in for both edge and vertex connectivity. We also hope to implement

a variant of the plug-in capable of iteratively finding multiple highly connected subgraphs.

8.5 Protein Complexes

8.5.1 Complex-finding Algorithm

We would like to use the data we have obtained in our survey of yeast protein complexes in

Y2H data to build an algorithm to find unknown complexes in the data. This algorithm would

most likely be based on connectivity while also taking clustering coefficient and mutual clustering

coefficient into account.

8.5.2 MHCS in Complexes

In our survey of the known yeast protein complexes, we observed that many have a 3-

connected or 4-connected subgraph. This property was one of those that most differentiated com-

plexes from random subgraphs. What we have not discovered, however, is whether these subgraphs

have a biological significance within the complex.

175

One theory is that the MHCS of a complex may be related to the complex “cores” discussed

by Deszo and Gavin [65, 66]. We propose that a survey should be done to confirm or deny this

theory.

8.5.3 Pseudocomplex Generation

The method of generating pseudocomplexes described in Chapter 7 may be too strict. Because

not all complexes contain a triangle, we developed a second method of creating pseudocomplexes;

rather than starting with a random triangle, we start with a random edge of a random triangle,

then add vertices as described in the first method. By starting with an edge of a triangle, we greatly

increase the chance that a given pseudocomplex will contain a triangle but it is not guaranteed. We

hope to make comparisons with pseudocomplexes generated by this alternate method in the future

as well as making a study of the best method for finding pseudocomplexes and other “random”

subgraphs in PPI networks.

8.6 MHCS and Complexes in Other Yeast Data Sets

We ran the MHCS algorithm on protein interaction networks determined using yeast 2-

hybrid (Y2H) networks. The reason that we used Y2H data is that Y2H experiments are designed

to determine binary interactions. Other types of experiments, such as affinity purification (AP),

give sets of proteins which may not interact directly; if two proteins A and B are both found in an

affinity purification, this does not necessarily imply that A and B can bind together. For our initial

experiments, therefore, we used the binary Y2H data, which gives the type of binary relationships

usually implied by a graph. However, running the MHCS algorithm on AP or other data may

give interesting results. The same is true of our survey of protein complexes. When looking at

complexes, Y2H data has the advantage that not only is it binary, but it is not biased in favor of

known complexes the way that AP data is. However, AP and other types of data are also used

when looking for protein complexes. Therefore, it might be advantageous to look at complexes in

this other data, though we would need to be mindful of the bias.

176

8.7 MHCS and Complexes in Other Organisms

Just as we would like to apply our algorithms on other data sets, we would also like to apply

them to other species. Currently we have applied our MHCS algorithms to the Saccharomyces

cerevisiae and human Y2H networks. We would like to apply it to the protein interaction networks

of other species. We would like to apply it to both the Y2H network and more expansive data sets

for other organisms. Likewise our survey of known protein complexes was done only for complexes

from the yeast Saccharomyces cerevisiae. This survey could also be expanded to human protein

complexes as well as the complexes from other organisms.

An expanded survey of protein complexes could also discover if the features we observed in

the Saccharomyces cerevisiae complexes hold in other organisms. It is possible that the complexes

in different organisms follow different patterns. A comparision could be made of complexes in

different species in order to discover if similar features hold across all organisms.

8.8 Biological Hypernetworks

As mentioned in Section 8.6, affinity purification data does not give binary interactions. AP

data gives sets of proteins which were pulled out with a bait protein. Because AP data includes sets

of more than 2 proteins, it is not completely modeled by graphs. It might be better to model AP

interactions using hypergraphs. A hypergraph is a mathematical structure consisting of vertices

and hyperedges. It is similar to a graph, but unlike an edge which can only contain 2 vertices, a

hyperedge can have an arbitrary number of vertices.

We would like to look at protein interaction “hypernetworks” generated by affinity purification

or complex data. We would like to conduct similar studies to those we did on connectivity and

complexes in PPI networks in these hypernetworks.

Bibliography

[1] Cheriyan J, Thurimella R (2000) Approximating minimum-size k-connected spanning sub-
graphs via matching. SIAM JOURNAL ON COMPUTING 30: 528–560.

[2] Menger K (1927) Zur allgemeinen Kurventheorie. Fund Math 10: 96–115.

[3] Garey M, Johnson D (1979) Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman.

[4] Jothi R, Raghavachari B, Varadarjan S (2003) A 5/4-approximation algorithm for minimum
2-edge-connectivity. In SODA, 725–734.

[5] Mader W (1972) Ecken vom grad n in minimalen n-fach zusammenhägenden graphen. Archive
der Mathematik 23: 219–224.

[6] Mader W (1985) Minimal n-fach in minimalen n-fach zusammenhägenden digraphen. J Comb
Theory B 38: 102–117.

[7] Kortsarz G, Nutov Z (2007) Approximating minimum-cost connectivity problems. In Hand-
book of Approximation Algorithms and Metaheuristics, CRC Press, chapter 58.

[8] Jain K (2001) A factor 2 approximation algorithm for the generalized Steiner network prob-
lem. COMBINATORICA 21: 39–60.

[9] Vazirani V (2001) Approximation Algorithms. Springer-Verlag.

[10] Goemans MX, Williamson DP (1995) A general approximation technique for constrained
forest problems. SIAM Journal on Computing 24: 296–317.

[11] Gabow H (2005) On the L∞-norm of extreme points for crossing supermodular di-
rected network LPs. In Junger, M and Kaibel, V, editor, INTEGER PROGRAM-
MING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, volume 3509 of
LECTURE NOTES IN COMPUTER SCIENCE, 392–406.

[12] Gabow HN, Goemans MX, Tardos E, Williamson DP (2009) Approximating the Smallest
k-Edge Connected Spanning Subgraph by LP-Rounding. NETWORKS 53: 345–357.

[13] Gabow H (2004) Special edges, and approximating the smallest directed k-connected spanning
subgraph. In SODA, 227–236.

178

[14] Frank A (1993) Submodular Functions In Graph Theory. DISCRETE MATHEMATICS 111:
231–243.

[15] Khuller S, Raghavachari B, Young N (1995) Approximating the minimum equivalent digraph.
SIAM J Comput 24: 859–872.

[16] Khuller S, Raghavachari B (1996) Improved Approximation Algorithms for Uniform Connec-
tivity Problems. J Algorithms 21: 236–265.

[17] Gabow H (2005) An improved analysis for approximating the smallest k-edge connected
spanning subgraph of a multigraph. SIAM JOURNAL ON DISCRETE MATHEMATICS 19:
1–18.

[18] Fernandes C (1998) A better approximation ratio for the minimum size k-edge-connected
spanning subgraph problem. JOURNAL OF ALGORITHMS 28: 105–124.

[19] Alimonti P, Kann V (1997) Hardness of approximating problems on cubic graphs. In Bongio-
vanni, G and Bovet, DP and diBattista, G, editor, ALGORITHMS AND COMPLEXITY,
volume 1203 of LECTURE NOTES IN COMPUTER SCIENCE, 288–298.

[20] Czumaj A, Lingas A (1999) On approximability of the minimum-cost k-connected spanning
subgraph problem. In SODA, 281–290.

[21] Kortsarz G, Krauthgamer R, Lee JR (2004) Hardness of approximation for vertex-
connectivity network design problems. SIAM Journal on Computing 33: 704–720.

[22] Aittokallio T, Schwikowski B (2006) Graph-based methods for analysing networks in cell
biology. BRIEFINGS IN BIOINFORMATICS 7: 243–255.

[23] Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part I. Ex-
perimental techniques and databases. PLOS COMPUTATIONAL BIOLOGY 3: 337–344.

[24] FIELDS S, SONG O (1989) A NOVEL GENETIC SYSTEM TO DETECT PROTEIN PRO-
TEIN INTERACTIONS. NATURE 340: 245–246.

[25] Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, et al. (1999) A generic protein pu-
rification method for protein complex characterization and proteome exploration. NATURE
BIOTECHNOLOGY 17: 1030–1032.

[26] Bader G, Hogue C (2002) Analyzing yeast protein-protein interaction data obtained from
different sources. NATURE BIOTECHNOLOGY 20: 991–997.

[27] Winstead ER (2002) Yeast proteomics. Genome News Network .

[28] Gibson TA, Goldberg DS (2009) Questioning the Ubiquity of Neofunctionalization. PLOS
COMPUTATIONAL BIOLOGY 5.

[29] Erd˝ os P, Rényi A (1960) On the evolution of random graphs. Publications of the Mathe-
matical Institute of the Hungarian Academy of Sciences 5: 17–61.

[30] Goldberg D, Roth F (2003) Assessing experimentally derived interactions in a small world.
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED
STATES OF AMERICA 100: 4372–4376.

179

[31] Wagner A (2001) The yeast protein interaction network evolves rapidly and contains few
redundant duplicate genes. MOLECULAR BIOLOGY AND EVOLUTION 18: 1283–1292.

[32] Giot L, Bader J, Brouwer C, Chaudhuri A, Kuang B, et al. (2003) A protein interaction map
of Drosophila melanogaster. SCIENCE 302: 1727–1736.

[33] Yook S, Oltvai Z, Barabasi A (2004) Functional and topological characterization of protein
interaction networks. PROTEOMICS 4: 928–942.

[34] Watts D, Strogatz S (1998) Collective dynamics of ‘small-world’ networks. NATURE 393:
440–442.

[35] Albert R, Barabasi A (2002) Statistical mechanics of complex networks. REVIEWS OF MOD-
ERN PHYSICS 74: 47–97.

[36] Albert R (2005) Scale-free networks in cell biology. JOURNAL OF CELL SCIENCE 118:
4947–4957.

[37] Schwikowski B, Uetz P, Fields S (2000) A network of proteinprotein interactions in yeast.
Nature Biotechnology 18: 1257–1261.

[38] Hishigaki H, Nakai K, Ono T, Tanigami A, Takagi T (2001) Assessment of prediction accuracy
of protein function from protein-protein interaction data. Yeast 18: 523–531.

[39] Chua HN, Sung WK, Wong L (2006) Exploiting indirect neighbours and topological weight
to predict protein function from protein-protein interactions. Bioinformatics 22: 1623–1630.

[40] Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global protein function prediction
from protein-protein interaction networks. NATURE BIOTECHNOLOGY 21: 697–700.

[41] Karaoz U, Murali T, Letovsky S, Zheng Y, Ding C, et al. (2004) Whole-genome annota-
tion by using evidence integration in functional-linkage networks. PROCEEDINGS OF THE
NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 101:
2888–2893.

[42] Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome prediction of
protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21: i302–310.

[43] Deng M, Zhang K, Mehta S, Chen T, Sun F (2003) Prediction of protein function using
protein-protein interaction data. JOURNAL OF COMPUTATIONAL BIOLOGY 10: 947–
960.

[44] Letovsky S, Kasif S (2003) Predicting protein function from protein/protein interaction data:
a probabilistic approach. Bioinformatics 19: i197–204.

[45] Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. MOLEC-
ULAR SYSTEMS BIOLOGY 3.

[46] Hartwell L, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology.
Nature 402: C47–C52.

[47] Qi Y, Ge H (2006) Modularity and dynamics of cellular networks. PLOS COMPUTATIONAL
BIOLOGY 2: 1502–1510.

180

[48] Schrödinger, LLC (2010) The PyMOL molecular graphics system, version 1.3r1.

[49] Bader G, Hogue C (2003) An automated method for finding molecular complexes in large
protein interaction networks. BMC BIOINFORMATICS 4.

[50] Spirin V, Mirny L (2003) Protein complexes and functional modules in molecular networks.
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED
STATES OF AMERICA 100: 12123–12128.

[51] Adamcsek B, Palla G, Farkas I, Derenyi I, Vicsek T (2006) CFinder: locating cliques and
overlapping modules in biological networks. BIOINFORMATICS 22: 1021–1023.

[52] Cui G, Chen Y, Huang DS, Han K (2008) An algorithm for finding functional modules and
protein complexes in protein-protein interaction networks. JOURNAL OF BIOMEDICINE
AND BIOTECHNOLOGY .

[53] Bu D, Zhao Y, Cai L, Xue H, Zhu X, et al. (2003) Topological structure analysis of the
protein-protein interaction network in budding yeast. NUCLEIC ACIDS RESEARCH 31:
2443–2450.

[54] King A, Przulj N, Jurisica I (2004) Protein complex prediction via cost-based clustering.
BIOINFORMATICS 20: 3013–3020.

[55] Zotenko E, Guimaraes KS, Jothi R, Przytycka TM (2006) Decomposition of overlapping
protein complexes: A graph theoretical method for analyzing static and dynamic protein
associations. ALGORITHMS FOR MOLECULAR BIOLOGY 1.

[56] Girvan M, Newman M (2002) Community structure in social and biological networks. PRO-
CEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES
OF AMERICA 99: 7821–7826.

[57] Chen J, Yuan B (2006) Detecting functional modules in the yeast protein-protein interaction
network. BIOINFORMATICS 22: 2283–2290.

[58] Joy M, Brock A, Ingber D, Huang S (2005) High-betweenness proteins in the yeast protein
interaction network. JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY : 96–103.

[59] del Sol A, O’Meara P (2005) Small-world network approach to identify key residues in protein-
protein interaction. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS 58:
672–682.

[60] Adarichev V, Vermes C, Hanyecz A, Mikecz K, Bremer E, et al. (2005) Gene expression
profiling in murine autoimmune arthritis during the initiation and progression of joint in-
flammation. ARTHRITIS RESEARCH & THERAPY 7: R196–R207.

[61] Tong A, Lesage G, Bader G, Ding H, Xu H, et al. (2004) Global mapping of the yeast genetic
interaction network. SCIENCE 303: 808–813.

[62] Parsons A, Brost R, Ding H, Li Z, Zhang C, et al. (2004) Integration of chemical-genetic and
genetic interaction data links bioactive compounds to cellular target pathways. NATURE
BIOTECHNOLOGY 22: 62–69.

181

[63] Rives A, Galitski T (2003) Modular organization of cellular networks. PROCEEDINGS OF
THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
100: 1128–1133.

[64] Ravasz E, Somera A, Mongru D, Oltvai Z, Barabasi A (2002) Hierarchical organization of
modularity in metabolic networks. SCIENCE 297: 1551–1555.

[65] Dezso Z, Oltvai Z, Barabasi A (2003) Bioinformatics analysis of experimentally determined
protein complexes in the yeast Saccharomyces cerevisiae. GENOME RESEARCH 13: 2450–
2454.

[66] Gavin A, Aloy P, Grandi P, Krause R, Boesche M, et al. (2006) Proteome survey reveals
modularity of the yeast cell machinery. NATURE 440: 631–636.

[67] Leung HCM, Xiang Q, Yiu SM, Chin FYL (2009) Predicting Protein Complexes from PPI
Data: A Core-Attachment Approach. JOURNAL OF COMPUTATIONAL BIOLOGY 16:
133–144.

[68] Wu M, Li X, Kwoh CK, Ng SK (2009) A core-attachment based method to detect protein
complexes in PPI networks. BMC BIOINFORMATICS 10.

[69] Przulj N, Wigle D, Jurisica I (2004) Functional topology in a network of protein interactions.
BIOINFORMATICS 20: 340–348.

[70] Pereira-Leal J, Enright A, Ouzounis C (2004) Detection of functional modules from protein
interaction networks. PROTEINS-STRUCTURE FUNCTION AND GENETICS 54: 49–57.

[71] Rungsarityotin W, Krause R, Schodl A, Schliep A (2007) Identifying protein complexes di-
rectly from high-throughput tap data with markov random fields. BMC BIOINFORMATICS
8: 482.

[72] Qi Y, Balem F, Faloutsos C, Klein-Seetharaman J, Bar-Joseph Z (2008) Protein complex
identification by supervised graph local clustering. BIOINFORMATICS 24: I250–I258.

[73] Majka J, Burgers P (2005) Function of Rad17/Mec3/Ddc1 and its partial complexes in the
DNA damage checkpoint. DNA REPAIR 4: 1189–1194.

[74] Koschubs T, Seizl M, Lariviere L, Kurth F, Baumli S, et al. (2009) Identification, structure,
and functional requirement of the Mediator submodule Med7N/31. EMBO JOURNAL 28:
69–80.

[75] Reeves W, Hahn S (2003) Activator-independent functions of the yeast mediator Sin4 com-
plex in preinitiation complex formation and transcription reinitiation. MOLECULAR AND
CELLULAR BIOLOGY 23: 349–358.

[76] Balciunas D, Galman C, Ronne H, Bjorklund S (1999) The Med1 subunit of the yeast mediator
complex is involved in both transcriptional activation and repression. PROCEEDINGS OF
THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
96: 376–381.

[77] Zanton SJ, Pugh BF (2006) Full and partial genome-wide assembly and disassembly of the
yeast transcription machinery in response to heat shock. GENES & DEVELOPMENT 20:
2250–2265.

182

[78] Groll M, Koguchi Y, Huber R, Kohno J (2001) Crystal structure of the 20 S proteasome:
TMC-95A complex: A non-covalent proteasome inhibitor. JOURNAL OF MOLECULAR
BIOLOGY 311: 543–548.

[79] Matula DW (1969) The cohesive strength of graphs. In The Many Facets of Graph Theory
(Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), Springer, Berlin, 215–221.

[80] Matula DW (1972) k-components, clusters and slicings in graphs. SIAM Journal on Applied
Mathematics 22: 459–480.

[81] Yuster R (2003) A note on graphs without k-connected subgraphs. ARS COMBINATORIA
67: 231–235.

[82] Brinkmeier M (2003) Communities in graphs. In Bohme, T and Heyer, G and Unger,
H, editor, INNOVATIVE INTERNET COMMUNITY SYSTEMS, SPRINGER-VERLAG
BERLIN, HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY, volume 2877 of
LECTURE NOTES IN COMPUTER SCIENCE, 20–35.

[83] Hartuv E, Shamir R (2000) A clustering algorithm based on graph connectivity. INFORMA-
TION PROCESSING LETTERS 76: 175–181.

[84] Diestel R (1997) Graph Theory, Springer. Graduate Texts in Mathematics, second edition,
50–55.

[85] GABOW H (1995) A MATROID APPROACH TO FINDING EDGE-CONNECTIVITY
AND PACKING ARBORESCENCES. JOURNAL OF COMPUTER AND SYSTEM SCI-
ENCES 50: 259–273.

[86] Gabow HN (2006) Using expander graphs to find vertex connectivity. JOURNAL OF THE
ACM 53: 800–844.

[87] Stark C, Breitkreutz B, Reguly T, Boucher L, Breitkreutz A, et al. (2006) Biogrid: a general
repository for interaction datasets. NUCLEIC ACIDS RES 34: D169–D172.

[88] NAGAMOCHI H, IBARAKI T (1992) COMPUTING EDGE-CONNECTIVITY IN MULTI-
GRAPHS AND CAPACITATED GRAPHS. SIAM JOURNAL ON DISCRETE MATHE-
MATICS 5: 54–66.

[89] Even S, Tarjan RE (1975) Network flow and testing graph connectivity. SIAM Journal on
Computing 4: 507–518.

[90] Miller J, Lo R, Ben-Hur A, Desmarais C, Stagljar I, et al. (2005) Large-scale identifica-
tion of yeast integral membrane protein interactions. PROCEEDINGS OF THE NATIONAL
ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 102: 12123–12128.

[91] Berriz GF, Beaver JE, Cenik C, Tasan M, Roth FP (2009) Next generation software for
functional trend analysis. Bioinformatics 25: 3043–3044.

[92] Chowdhury A, Tharun S (2009) Activation of decapping involves binding of the mRNA and
facilitation of the post-binding steps by the Lsm1-7Pat1 complex. RNA 15: 1837–1848.

183

[93] Karaduman R, Dube P, Stark H, Fabrizio P, Kastner B, et al. (2005) Structure of yeast U6
snRNPs: Arrangement of Prp24p and the LSm complex as revealed by electron microscopy.
RNA 14: 2528–2537.

[94] Miranda J, Wulf PD, Sorger PK, Harrison SC (2009) The yeast DASH complex forms closed
rings on microtubules. Nature Structural and Molecular Biology 12: 138–143.

[95] Westermann S, Avila-Sakar A, Wang HW, Niederstrasser H, Wong J, et al. (2005) Formation
of a dynamic kinetochore- microtubule interface through assembly of the dam1 ring complex.
Molecular Cell 17: 277 – 290.

[96] Sandall S, Severin F, McLeod IX, Yates JR III, Oegema K, et al. (2006) A Bir1-Sli15 complex
connects centromeres to microtubules and is required to sense kinetochore tension. CELL 127:
1179–1191.

[97] HAO J, ORLIN J (1994) A FASTER ALGORITHM FOR FINDING THE MINIMUM CUT
IN A DIRECTED GRAPH. JOURNAL OF ALGORITHMS 17: 424–446.

[98] Karger D, Stein C (1993) An Õ(n2) algorithm for minimum cuts. In STOC 25, 757–765.

[99] Chekuri CS, Goldberg AV, Karger DR, Levine MS, Stein C (1997) Experimental study of
minimum cut algorithms. In SODA ’97: Proceedings of the eighth annual ACM-SIAM sympo-
sium on Discrete algorithms, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 324–333.

[100] Finn RD, Marshall M, Bateman A (2005) ipfam: visualization of protein-protein interactions
in pdb at domain and amino acid resolutions. BIOINFOMATICS 21: 410–412.

[101] Mewes HW, Frishman D, Mayer KFX, Münsterkötter M, Noubibou O, et al. (2006) Mips:
analysis and annotation of proteins from whole genomes in 2005. NUCLEIC ACIDS RES 34:
D169–D172.

[102] Tarassov K, Messier V, Landry CR, Radinovic S, Molina MMS, et al. (2008) An in vivo map
of the yeast protein interactome. SCIENCE 320: 1465–1470.

[103] Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, et al. (2008) High-quality binary
protein interaction map of the yeast interactome network. SCIENCE 322: 104–110.

[104] Milo R, Kashtan N, Itzkovitz S, Newman M, Alon U (2004) On the uniform generation of ran-
dom graphs with prescribed degree sequences, http://aps.arxiv.org/abs/cond-mat/0312028/.

[105] Roberts J (2000) Simple methods for simulating sociomatrices with given marginal totals.
SOCIAL NETWORKS 22: 273–283.

[106] Przulj N, Corneil D, Jurisica I (2004) Modeling interactome: scale-free or geometric? BIOIN-
FORMATICS 20: 3508–3515.

[107] Braun P, Tasan M, Dreze M, Barrios-Rodiles M, Lemmens I, et al. (2009) An experimentally
derived confidence score for binary protein-protein interactions. NATURE METHODS 6:
91–98.

[108] Khuller S (1997) Approximation algorithms for finding highly connected subgraphs. In Ap-
proximation Algorithms for NP-hard Problems, PWS Publishing.

184

[109] KHULLER S, VISHKIN U (1994) BICONNECTIVITY APPROXIMATIONS AND GRAPH
CARVINGS. JOURNAL OF THE ACM 41: 214–235.

[110] CAI M (1993) THE NUMBER OF VERTICES OF DEGREE-K IN A MINIMALLY K-
EDGE-CONNECTED GRAPH. JOURNAL OF COMBINATORIAL THEORY SERIES B
58: 225–239.

[111] Melkonian V, Tardos T (2004) Algorithms for a network design problem with crossing super-
modular demands. NETWORKS 43: 256–265.

[112] Lovász L, Plummer M (1986) Matching Theory. North-Holland Mathematics Studies 121.

Appendix A

Iterated Rounding Algorithms for the Smallest k-Edge Connected Spanning

Subgraph

By Harold Gabow and Suzanne Gallagher

A preliminary version of this paper appeared in Proc. 19th Annual ACM-SIAM Symp. on

Disc. Algorithms, 2008, pp.550–559. Full version accepted to SICOMP with minor revisions.

A.1 Introduction

Approximation algorithms for well-connected subgraphs are a central topic in network design

(see survey papers [108, 7]). Approximating the minimum cardinality k-edge connected spanning

subgraph (“smallest k-ECSS”) is one of the most basic of these problems. We start by reviewing

some of the past work. All graphs in this paper are undirected.

A number of authors have studied the problem for small connectivities k, especially k = 2

where the best known approximation ratio of Jothi et.al. is 5/4 ([4], which also reviews the history

of the problem). Our focus in this paper is on general values of k. When edge weights are arbitrary

nonnegative values, Khuller and Vishkin showed the minimum weight k-ECSS can be approximated

to within a factor 2 [109]. This bound has resisted improvement. However the bound of 2 was

extended to the more general Steiner network problem by Jain [8], who introduced the technique of

iterated rounding. Our focus in this paper is on unweighted problems, mainly the smallest k-ECSS

problem but also the smallest (minimum cardinality) Steiner network problem,

A factor 2 approximation for smallest k-ECSS is trivial. The best known approximation

186

bound for simple graphs is a combinatorial algorithm of Cheriyan and Thurimella with ratio 1 +

2/(k+1) [1]. For multigraphs the best known bound for a combinatorial algorithm is < 1+
√

1/e <

1.61[17]. Gabow et.al. showed iterated rounding achieves the bound 1 + 2/k ([12]; that paper also

reviews history of the k-ECSS problem for general k).

Regarding hardness, Fernandes showed that finding a minimum cardinality 2-ECSS is MAX-

SNP hard [18]. This was extended in [12] to show that there exists an absolute constant c > 0 such

that for any integer k ≥ 2, approximating the smallest k-ECSS on multigraphs to within a factor

1 + c/k in polynomial time implies P = NP .

We present the best known algorithms for approximating the smallest k-ECSS. First consider

simple graphs. We begin by showing that in any simple k-edge connected graph with k ≥ 7, any

laminar family of degree k sets is smaller than the general bound: the general upper bound of 2n

improves to n(1 + 3/k + O(1/k
√

k)). This immediately improves the bound for iterated rounding.

The precise form of our bound on the approximation ratio, for k ≥ 7, improves the above long-

standing bound of Cheriyan and Thurimella, 1 + 2/(k + 1) (e.g., for k = 7 the bounds are 5/4

and 17/14 respectively, and the gap widens as k increases). We also show that our analysis is

essentially tight – the bound for the laminar family is tight to within additive terms of O(1/k
√

k)

and the bound on the approximation ratio of iterated rounding is tight to within additive terms of

O(1/k2
√

k).

As a second step, we present a refined version of iterated rounding for simple graphs. It im-

proves the performance of straight iterated rounding for k ≥ 13. Asymptotically the approximation

ratio for straight iterated rounding, 1 + 1/k + O(1/k2), improves to 1 + 1/2k + O(1/k2).

Next consider multigraphs. We present an implementation of iterated rounding that achieves

approximation ratio 1 + 21/11k < 1 + 1.91/k (for even k the ratio is 1 + 17/9k < 1 + 1.89/k).

Although a slight improvement of the above 1 + 2/k bound, this result demonstrates that the

constant c in the above hardness result of [12] is < 2. Similarly it shows that the integrality gap of

the natural linear program for k-ECSS is < 1 + 1.91/k. Our approximation ratio actually holds for

the more general smallest Steiner network problem – here k denotes the average vertex demand.

187

Our approach, which we believe is novel, is based on the fact that the solutions to the first 2 linear

programs in iterated rounding have advantageous rounding properties. These properties seem to

disappear after the first two iterations. We also give an example indicating that something like our

approach is necessary: No round-the-highest type algorithm (a notion which captures most known

applications of iterated rounding) can improve the 1 + 2/k bound for k-ECSS.

The paper is organized as follows. Section 2 gives our results on laminar families for simple

graphs: Sec.2.1 proves the upper bound on laminar families. (Appendix A presents the correspond-

ing lower-bound example.) Sec.2.2 gives a simple version of our iterated rounding algorithm on

simple graphs, illustrating the techniques of all the algorithms of the paper. Section 3 discusses

multigraphs, and also the SN problem: Sec.3.1 gives the negative result for round-the-highest.

Sec.3.2 develops our principles for rounding edges. Sec.3.3 discusses a structure amenable to round-

ing, “c-singleton” vertices. Sec.3.4–5 present the approximation algorithm: Sec.3.4 gives a rounding

approach based on matching, which achieves our approximation ratio for even k. Sec.3.5 presents

a rounding approach based on covering, which combines with the previous approach to achieve our

general approximation ratio. Sec.4 gives our rounding algorithm for simple graphs, which draws on

the previous ideas of rounding “singletons” as well as Sec.3.2. We conclude this section with some

terminology and a review of Jain’s algorithm.

We usually simplify notation by not distinguishing between an element and the singleton set

formed from that element, e.g., we write A∪ v rather than A∪{v}. The given graph is G = (V,E),

and it has n vertices and m edges. The degree function is denoted by d, e.g., d(S) denotes the degree

of a set of vertices S, and d(S, T) denotes the number of edges between disjoint sets of vertices S

and T (so d(S) = d(S, V − S)). In multigraphs these expressions count each edge according to its

multiplicity. If the graph is unclear it is given as a subscript, e.g., we write dF (S), where F can be

just a set of edges. If x is a real-valued function on edges, a subscript of x (e.g., dx(S)) indicates

that we count each edge e according to its value x(e). Also if F is a set of edges then x(F) denotes

the sum of the values x(e), e ∈ F .

A graph is k-edge connected if every set of vertices other than ∅, V has degree ≥ k. This

188

definition extends to graphs with nonnegative real-valued edge weights. A central notion is a

critical set – one whose degree is exactly k.

A k-ECSS is a k-edge connected spanning subgraph. We are interested in approximating the

k-ECSS of minimum size, i.e., having the fewest number of edges possible. In the more general

Steiner network problem we are given a connectivity requirement r(v,w) ∈ Z for every pair of

vertices v 6= w. A Steiner network (SN) is a subgraph having at least ≥ r(v,w) edge disjoint

paths between v and w, for all pairs of vertices. We are interested in approximating the minimum

cardinality Steiner network. For any set of vertices S 6= ∅, V , let f(S) = max{r(v,w) : |S∩{v,w}| =

1}. (So f(S) = k for the k-ECSS problem.) The average vertex demand of an SN problem is

∑

v∈V f(v)/n. Special cases where we achieve better approximation ratios are the k-ECSS problem

with even k and its generalization, the even-SN problem, where the requirement function f is

even-valued.

If the desired subgraph is allowed to have nonintegral edge weights, a minimum cardinality

SN corresponds to a solution to the following linear program, which can be solved in polynomial

time:

(LP)

minimize
∑

e∈E xe

subject to dx(S) ≥ f(S) ∅ ⊂ S ⊂ V

xe ≤ ue e ∈ E

xe ≥ ℓe e ∈ E

Variable xe is the unknown weight of edge e. ℓe (ue) is a given integral lower (upper) bound on the

multiplicity of e in the solution. For simple graphs ℓe = 0, ue = 1.

For I ⊆ E, LP (I) is (LP) modified to make ue and ℓe equal to the same integral value for

each edge e ∈ I. This notation is not precise, since it doesn’t specify what the integral values are.

However the values will be clear from context and can safely be omitted.

Jain proposed the method of iterated rounding to approximate the optimum integral solution

to (LP) [8]. The method begins with I = ∅. Each iteration finds an extreme point solution x to

LP (I). Jain proves that some edge e /∈ I has xe ≥ 1/2. The algorithm adds e to I, and it fixes xe

189

to the ceiling of its current value by setting both ℓe and ue to that value. Then it continues with

the next iteration. The algorithm halts when I = E.

We also need to recall the first part of the proof of correctness: Jain shows that the fractional

values of x are uniquely determined as the solution to a system of linearly independent equations

dx(S) = f(S), S ∈ L.. Here L. is a laminar family of subsets of V . (A collection of sets is laminar

if any two of its sets are either disjoint or one is contained in the other.) The number of fractional

edges is exactly |L.|.

[12] draws the following conclusion about iterated rounding for k-ECSS. Let LP (∅) have

optimum objective value z∗. Let L. be the above laminar family for the extreme point solution

to LP (∅). Then iterated rounding finds a k-ECSS containing ≤ z∗ + |L.|/2 edges. (In proof,

each iteration of iterated rounding increases the objective function by ≤ 1/2, and there are ≤ |L.|

iterations, one for each fractional edge.) Any k-ECSS has ≥ max{z∗, kn/2} edges (the latter

because each vertex has degree ≥ k). Hence iterated rounding has an approximation ratio

≤ 1 + |L.|/kn. (A.1)

Since L. is a laminar family on a ground set of n elements, its size is ≤ 2n. This gives approximation

ratio ≤ 1 + 2/k for iterated rounding on the k-ECSS problem.

A.2 Simple Graphs

This section begins with our upper bound for the laminar families of degree k sets in k-edge

connected simple graphs. Then it presents a simplfied version of our rounding algorithm. This

illustrates the techniques of this paper.

A.2.1 The Laminar Family

Recall the approximation ratio (A.1) for iterated rounding on k-ECSS. We will show that

|L.| is small when the graph is simple. An improved approximation ratio for iterated rounding

immediately follows.

190

The bulk of the section is an analysis of laminar families of critical sets in k-edge connected

simple graphs. (The above L. is an example.) Actually for iterated rounding we need a slightly

more general result – the graphs of interest are weighted simple graphs, i.e., simple graphs where

every edge has a numerical weight in the interval [0, 1].

Consider a k-edge connected weighted simple graph G = (V,E). (As mentioned in Sec.1 the

meaning of k-edge connectivity is clear for such a graph.) An r-critical set is a set of vertices whose

complement is the disjoint union of r sets of degree k. For instance a critical set is 1-critical. And

we shall see that an r-critical set models a set of L. that has r − 1 children.

An r-critical set S of cardinality s has

rk ≥ s(k − s + 1). (A.2)

This follows since each vertex of S has ≤ s− 1 neighbors in S, and so it is joined to V −S by edges

of total weight ≥ k − (s− 1).

Lemma 19 (Criticality). An r-critical set has cardinality ≤ r or ≥ k − r + 1 if at least one of the

following conditions holds:

i) r = 1,

ii) r = 2 and k ≥ 7,

iii) r ≤
√

k − 1/2.

Remark Part (i) is a well-known fact about critical sets. Part (ii) appears in [13] for digraphs,

where the sets are called “bicritical”, and is also similar to [110, Claim 3].

Proof. The right-hand side of (A.2) is the quadratic function f(s) = s(k− s + 1), which is concave

down and symmetric about (k + 1)/2. So f(r + 1) = f(k − r) = (r + 1)(k − r), and to show an

r-critical set has the desired cardinality, it suffices to show f(r + 1) = (r + 1)(k − r) > rk. This

inequality is equivalent to

k > r(r + 1).

191

If r = 1 this amounts to k > 3. (i) follows, since the the claim for r = 1 is vacuous if k ≤ 2.

It is easy to see that (ii) and (iii) follow as well.

The key fact is a property of laminar families of critical sets in k-edge connected weighted

simple graphs. It turns out that singleton sets in the family are irrelevant. So we concentrate on a

laminar family N . of sets, each of which has cardinality > 1 and degree exactly k. (N . stands for

“nonsingleton”.) Assume k ≥ 7 so Criticality(ii) applies.

We use tree terminology to refer to sets of N .. So for instance the children of a set S ∈ N .

are the maximal proper subsets of S that are N .-sets. An N .-set is a leaf, chain node, or branching

node depending on whether it has 0, 1 or > 1 children, respectively.

The Criticality Lemma(i) shows a leaf S has |S| ≥ k. Similarly, Criticality(ii) shows a chain

node S with unique child C has |S − C| ≤ 2 or |S − C| ≥ k − 1. S is a small chain node in

the former case (|S − C| ≤ 2) and otherwise a big chain node. Note that the (unique) child of a

small chain node can be a small chain node. However a chain node whose child is a small chain

node, and whose (unique) grandchild is also a small chain node, must itself be a big chain node

(Criticality(ii)).

Theorem 2.6. In any k-edge connected weighted simple undirected graph, any laminar family of

nonsingleton sets of degree k has cardinality n(3
k + 3

k
√

k
+ O(1

k2)).

Proof: Let N . be a laminar family of nonsingleton sets of degree k. Assume k ≥ 7 as before.

Say that a set S ∈ N . has excess ∆ over sets Xi, 1 ≤ i ≤ ℓ, if

|S −
ℓ

⋃

i=1

Xi| ≥ ℓ + ∆

where the ℓ sets Xi are pairwise disjoint descendants of S in N .. We will concentrate on excess

values ∆ ∈ {−1, 0, 1, 2}. Note that any set S ∈ N . has excess −1 over itself (i.e., ℓ = 1 and

X1 = S).

The significance of this notion stems from the fact that excess 2 sets actually have a larger

excess, because of criticality. The following claim makes this precise, and will be a key property in

the proof.

192

Claim 1 For ℓ ≤
√

k − 3/2, an N .-set with an excess of 2 actually has an excess of k − 2ℓ, i.e.,

|S − ∪Xi| ≥ ℓ + 2 implies |S − ∪Xi| ≥ k − ℓ.

Proof: If S has excess 2 over {Xi}ℓi=1 then S − ∪Xi is an ℓ + 1-critical set of cardinality ≥ ℓ + 2.

So the claim follows from Criticality(iii). ♦

We will define excess numbers using a system of labels. Each N .-set will get a label ∆ ∈

{−1, 0, 1}. As mentioned above, a label ∆ = −1 simply means the set has excess −1 over itself.

Otherwise if S is a nonleaf N .-set, let X(S) denote the maximal proper descendants of S that are

labelled −1. A label ∆ ∈ {0, 1} means that S has excess ∆ over X(S). Additionally some sets with

label ∆ = −1 are actually guaranteed to have excess 2 over X(S).

We use a system of credits to bound |N .| as follows. We will traverse the sets S ∈ N . in

a bottom-up fashion. When visiting a set S we will pay 1 credit for S. We will get these credits

by charging a certain subfamily C. of N .-sets 3 credits each. We will also label S with a value

∆ ∈ {−1, 0, 1}. Depending on ∆ we may deposit credits in S. A set S ∈ N . is said to be clear at

a given point in the traversal if the following conditions all hold:

i) Every descendant of S (including S) has been paid for.

ii) C. contains the sets that have been charged 3 credits. Each set C ∈ C. is labelled −1. If

C is not a leaf then it has excess 2 over X(C).

iii) S is labelled by some ∆ ∈ {−1, 0, 1}. If ∆ ≥ 0 then S has excess ∆ over X(S).

iv) S holds a deposit of 1−∆ credits.

The traversal will end with all maximal N .-sets being clear. This implies |N .| ≤ 3|C.|. After

describing the traversal, we will deduce the bound of the theorem by analyzing |C.|.

The bottom-up traversal begins by clearing each leaf. The following claim indicates how this

is done.

Claim 2 Any leaf can be cleared. Any big chain node can be cleared if its child is clear. Any node

193

S having excess 2 over X(S) can be cleared if all its children are clear.

Proof: Suppose S is a leaf. Place S in C. and label it −1. This gives 3 credits. One credit pays

for S, and the other 2 are deposited in S. Now S is clear.

The same procedure clears a node S having excess 2 over X(S), if all its children are clear.

Finally suppose S is a big chain node. By definition its unique child C has |S − C| ≥ 3. So

S has excess 2 over X(S). ♦

The next 2 claims, applied inductively, show that every node can be cleared.

Claim 3 A small chain node can be cleared if its unique child is clear.

Proof: Let the small chain node S have unique child C. Let C be clear, with label ∆. S has

excess 1 + ∆ over X(S). (This follows since |S −C| ≥ 1, and either X(S) = X(C) or ∆ = −1 and

X(S) = {C}.)

Case 1 ∆ ≤ 0.

Label S by 1+∆, a valid excess by Case 1. Use 1 credit deposited in C to pay for S. Transfer

the remaining −∆ credits to S. This clears S.

Case 2 ∆ = 1.

S has excess 2 over X(S). So Claim 2 shows S can be cleared. ♦

Claim 4 A branching node can be cleared if all its children are clear.

Proof: Let S be a branching node. Let Ci, i = 1, . . . , c be the children of S (c ≥ 2).

Case 1 2 or more children are labelled −1.

The children of Case 1 have ≥ 2× 2 = 4 credits. This is more than enough to pay for S and

assign it a label of −1 with a deposit of 2. This clears S.

194

Case 2 At most one child is labelled −1.

Let Ci have label ∆i. S has excess ∆ =
∑c

i=1 ∆i over X(S). If ∆ ≥ 2 apply Claim 2. So

suppose ∆ ≤ 1. Label S with ∆. Case 2 implies ∆ ≥ −1 so this label is valid. The children have

a total of
∑c

i=1 1 −∆i ≥ 2−∆ credits. Use 1 credit to pay for S and deposit 1 −∆ credits in S,

thus clearing S. ♦

This completes the description of the traversal. We have shown

|N .| ≤ 3|C.|.

We will analyze |C.| by charging the vertices of the graph. A vertex will get charged

1

k
+

1

k(
√

k − 5/2)
=

1

k
+

1

k
√

k
+ O(

1

k2
) (A.3)

if it is in a leaf of N ., and if not,

1

k −
√

k + 3/2
≤ 1

k
+

1

k
√

k
. (A.4)

Since we will pay 1 for each set of C., this charging scheme implies |C.| is at most n times the

quantity of (A.3). The theorem follows.

Claim 5 We can pay for each set C ∈ C. by charging each vertex the quantity (A.3).

Proof: Recall that C. consists of the leaves of N . and other sets of excess 2. We consider 3 cases.

Case 1 C is a leaf of N ..

C contains ≥ k vertices (Criticality(i)). Hence we can pay for C by charging each of its

vertices 1/k.

Case 2 C is an excess 2 set with |X(C)| ≤
√

k − 3/2.

Claim 1 shows |C−∪X(C)| ≥ k−
√

k+3/2. Hence we can pay for C by charging each vertex

of C−∪X(C) the quantity of (A.4). The sets C−∪X(C) for C a nonleaf of C. are disjoint. Hence

195
k 7 8 9 100 200 400

ν(k) 0.500 0.462 0.429 0.0330 0.0161 0.0079

CT 1.250 1.222 1.200 1.0198 1.0100 1.0050

new 1.214 1.183 1.159 1.0058 1.0027 1.0013

Table A.1: Values for simple graphs: ν(k) = laminar family bound, CT = bound of [1], new = our
bound.

a vertex gets charged at most once. Also these sets are disjoint from the leaves of N ., so the charge

(A.4) is to nonleaf vertices.

Case 3 C is an excess 2 set with |X(C)| ≥
√

k − 3/2.

Recall that a tree with ℓ leaves, where each node x has c(x) children, has ℓ− 1 =
∑

c(x)− 1.

Hence for any r > 1, at most (ℓ− 1)/(r − 1) nodes have ≥ r children. It is easy to see this implies

the number of sets C in Case 3 is ≤ ℓ/(
√

k − 5/2), for ℓ the number of leaves in N .. Hence we can

pay for the Case 3 sets by charging each vertex in a leaf 1/(k(
√

k − 5/2)).

Cases 1 and 3 make (A.3) the total charge to a vertex in a leaf. ♦ 2

We give a slightly more precise version of the theorem’s bound, as it applies to iterated

rounding. Define

γ(x) =
x

(x− 1)(k + 2) + 3
, c = ⌊

√
k − 1/2⌋, ν(k) = 3γ(c).

We are only interested in these functions for k ≥ 7, for which
√

k > c ≥ 2. We will show that for

iterated rounding, |C.| ≤ γ(c)n, and so |N .| ≤ ν(k)n. To get a feel for this values of ν are given in

Table A.1, e.g., ν(7) implies N . is half of its size in general.

First note the following properties of the function γ(x).

Lemma 20. These properties hold for any k ≥ 7:

i) γ(x) is a decreasing function for x ≥ 1.

196

ii) γ(c) ≥ 1/(k − c + 1).

iii) 2
k+1 > 1+ν(k)

k .

Proof. Property (i) is trivial. To prove (iii) we start by replacing the quantity c in the right-hand

side expression ν(k) = 3γ(c) by the smaller quantity
√

k − 3/2. Property (i) shows this results in

a stronger inequality. Establishing the stronger inequality becomes a tedious exercise in calculus,

which we omit. (Note that (iii) is a reasonable inequality since the highest order term of the left-

and right-hand sides are 2/k and 1/k respectively. Also for k = 7 the left-hand side is 1/4 and the

right-hand side is smaller, 3/14.)

We now prove (ii). In contrast to (iii), the floors in the definition of c are crucial for (ii),

since the inequality fails for k = 7, 13, . . . if the floors are dropped.

The desired inequality amounts to c(k − c + 1) ≥ (c − 1)(k + 2) + 3, which simplifies to

k ≥ c2 + c + 1. Suppose this last inequality fails. Integrality gives k ≤ c2 + c. Thus

c = ⌊
√

k − 1/2⌋ ≤
√

c2 + c− 1/2.

But (c + 1/2)2 = c2 + c + 1/4 > c2 + c, which implies c + 1/2 >
√

c2 + c. This contradicts the

displayed inequality.

Corollary 2. Let N . be the laminar family of Theorem 2.6 and assume k ≥ 7. If every leaf of N .

contains > k vertices then |N .| ≤ ν(k)n.

Proof. The proof of Theorem 2.6 shows |N .| ≤ 3|C.|, and Claim 5 bounds |C.| by n times the charge

to each vertex. We refine the proof of Claim 5 so that each vertex is charged γ(c). This implies

|N .| ≤ 3γ(c)n = ν(k)n as desired. First observe that from integrality, Case 2 is defined by the

inequality |X(C)| ≤ ⌊
√

k − 3/2⌋ = c− 1. Hence Case 3 has |X(C)| ≥ c.

In Case 2, putting in the floors changes the charge to 1/(k− c+ 1). Lemma 20(ii) shows this

charge is ≤ γ(c) as desired.

Consider a set C in Case 3. By definition C has excess 2, i.e., |C − ∪X(C)| ≥ |X(C)| + 2.

The proof of Case 3 shows that C can be uniquely associated with |X(C)| − 1 leaves of N ..

197

We pay for C and its associated leaves by charging the vertices of those leaves and the vertices

of C − ∪X(C). The number of sets to pay for is |X(C)|. The number of vertices charged is

≥ (|X(C)| − 1)(k + 1) + |X(C)| + 2 = (|X(C)| − 1)(k + 2) + 3. So the charge to each vertex is

γ(|X(C)|). Lemma 20(i) with |X(C)| ≥ c shows this charge is ≤ γ(c).

We have now paid for the sets of Case 2, and the sets of Case 3 plus their associated leaves.

The remaining leaves, if any, are paid for by charging their vertices 1/(k + 1) as in Case 1. Lemma

20(ii) shows this charge is ≤ γ(c).

Next we apply the results to iterated rounding. Consider an execution of iterated rounding for

the smallest k-ECSS of a simple undirected graph with k ≥ 7. Take any iteration of the algorithm.

Corollary 3. Let N . be the family of nonsingletons in the laminar family that determines the

solution vector x of (LP). Then |N .| ≤ ν(k)n.

Proof. We need only establish the hypothesis of Corollary 2, i.e., every leaf of N . has > k vertices.

Consider a leaf L with exactly k vertices. Take any vertex x ∈ L. Let d(x) denote the

weighted degree of x. The hypothesis implies d(x,L) ≤ k− 1. So d(x) ≥ k implies d(x, V −L) ≥ 1.

Summing these last inequalities for all vertices x ∈ L gives d(L) ≥ k. We conclude that equality

holds in all of the preceding inequalities. So every fractional edge incident to a vertex x ∈ L is

actually incident to L. This implies that the constraint on fractional edges coming from the tight

LP constraint d(L) = k is the sum of the constraints coming from d(x) = k, x ∈ L. But this

violates the definition of L., which has all its constraints linearly independent [8].

We get an immediate improvement in the approximation ratio for iterated rounding:

Corollary 4. Iterated rounding approximates the smallest k-ECSS of a simple undirected graph to

within a factor of 1+ 1
k + 3

k2 + 3
k2

√
k

+ O(1
k3). More precisely for any k ≥ 7 the approximation ratio

is ≤ 1 + (1 + ν(k))/k.

Proof. Recall from (A.1) that iterated rounding has an approximation ratio ≤ 1 + |L.|/kn. If the

given graph is simple, the family L. consists of ≤ n singleton sets plus a laminar family N . to

198

which Theorem 2.6 and Corollary 3 apply. This gives the bounds of the corollary.

Lemma 20(iii) shows that whenever the corollary’s bound is valid, i.e., k ≥ 7, it improves the

approximation ratio of [1] for the smallest k-ECSS of a simple graph. Table A.1 shows the bound

of [1], and the values of this new bound for k = 7, 8, 9.

Recall the version of iterated rounding called round-the-highest in [111]. It is probably the

simplest version of iterated rounding. It uses the rule that each iteration rounds all the edges with

the highest fractional value. The Appendix concludes by indicating how the construction extends

to an example where round-the-highest comes close to the upper bound of Corollary 4. Specifically

round-the-highest gets approximation ratio 1 + 1
k + 3

k2 + 1√
2k2

√
k
−O(1

k3).

A.2.2 A Rounding Algorithm

Section A.4 presents an implementation of iterated rounding that improves our approximation

ratio for k-ECSS on simple graphs with k ≥ 13. (The entries of Table A.1 for k = 100, 200, 400 are

for that algorithm.) This section gives a simplified version that illustrates the techniques of the

algorithms in this paper.

The following terminology is used throughout the paper. Each iteration of iterated rounding

finds an extreme point solution x to LP (I). Fix such an x. The weight of an edge e is the value

xe. A fractional edge has weight strictly between 0 and 1. F denotes the set of all fractional edges.

A fractional edge is heavy if its weight is ≥ 1/2. So iterated rounding rounds heavy edges to 1.

The solution x determines a laminar family L. on ground set V . (We will also use the

following terms on arbitrary laminar families on V .) A vertex v ∈ V with {v} ∈ L. is a singleton;

any other vertex is a nonsingleton vertex. A nonsingleton set is an L.-set that is not a singleton.

(So “nonsingletons” come in 2 flavors, but there is only one type of singleton.) S. denotes the set

of all singletons and N . denotes the set of all nonsingleton sets (as in the previous section). Hence

we have a partition of L., L. = S. ∪ N ..

In the lower-bound example for round-the-highest discussed in Chapter 3, most vertices are

199

singletons of L., incident to exactly 2 fractional edges. We concentrate on these vertices to improve

the approximation. Towards this end partition S. into 2 sets:

S2 = {v : v ∈ S., dF (v) = 2}, S3 = {v : v ∈ S., dF (v) ≥ 3}.

(Recall dF (v) counts the number of fractional edges incident to v.) Call a heavy edge good if it

joins 2 vertices of S2.

The approximation algorithm is iterated rounding with one additional rule: Each iteration

rounds 1 edge. That edge is chosen as a good edge if possible; if there are no good edges then the

iteration rounds any heavy edge.

Theorem 2.7. The above version of iterated rounding approximates the smallest k-ECSS of a

simple graph to within a factor 1+1/2k +O(1/k2). More precisely for any k ≥ 7 the approximation

ratio is ≤ 1 + 1/2k + 5ν(k)/k.

Proof. Consider the first iteration in which there are no good edges. Define L. as the laminar

family corresponding to the extreme point found in this iteration. All terms like S., S2, F , etc. refer

to L..

Any good edge (v,w) that was previously rounded currently has dF (v), dF (w) ≤ 1 (since the

rounding destroys 1 fractional edge). Hence v and w are nonsingletons of L. (the total weight of

the fractional edges incident to an L.-set is a positive integer). So there are ≤ (n − |S.|)/2 such

edges (v,w). Thus all rounds of our algorithm increase the objective function by a total amount

≤ (n − |S.|)/4 + |L.|/2 = (n + |S.|)/4 + |N .|/2. We will show |S.| ≤ 8|N .|. Hence the objective

increases by ≤ n/4 + 5|N .|/2. The theorem follows, since the smallest k-ECSS has ≥ kn/2 edges

and |N .| ≤ ν(k)n (Corollary 3).

We first bound |S3|. The number of fractional edges is |F | = |L.| = |S.|+ |N .|. Thus

2|S2|+ 3|S3| ≤
∑

v∈V

dF (v) = 2(|S.| + |N .|). (A.5)

Recalling that |S.| = |S2|+ |S3|, this gives |S3| ≤ 2|N .|.

200

Next we bound |S2|. A vertex v ∈ S2 is incident to a heavy edge. So it is incident to a good

edge if both its fractional edges lead to vertices of S2. Since no good edge currently exists, every

vertex of S2 has a fractional edge leading to a vertex not in S2. This gives

|S2| ≤
∑

v/∈S2

dF (v) = 2(|S.|+ |N .|)− 2|S2| = 2(|S3|+ |N .|). (A.6)

So |S2| ≤ 6|N .| and |S.| ≤ 8|N .| as desired.

A.3 Multigraphs and Steiner Networks

This section begins with an example showing that an algorithm which can round all fractional

edges in the first iteration cannot improve the worst-case bound of iterated rounding. This motivates

looking at more focused rounding strategies. Section A.3.2 presents principles for such strategies,

and Section A.3.3 gives the properties of “c-singleton” vertices that are amenable to rounding. The

remaining sections give our approximation algorithm.

A.3.1 A Large Laminar Family

This section presents an example where round-the-highest (defined at the end of Sec.A.2.1)

does not outperform its worst-case bound: For any k, we exhibit a k-ECSS problem where round-

the-highest has approximation ratio that approaches 1 + 2/k as n →∞. The example also shows

that, unlike simple graphs, the laminar family for multigraphs can be essentially as large as the

general upper bound 2n. We give two related constructions, the first for even k and the second for

odd.

The desired example is a graph plus an optimum extreme point of (LP) that has 2n−Θ(1)

edges of weight 1/2. We will present the example in the following fashion. It suffices to describe

just the extreme point, say x – the graph is then implied. The requirements on x are that its

fractional edge weights are uniquely determined by some set of tight constraints; x gives a k-edge

connected spanning subgraph; and x(E) is minimum. We will describe x and prove the first two of

these properties. The last property will be obvious – every vertex v will have dx(v) = k.

201

h

(a) Module. All but 1 solid edge weighs h − 1.

b
h

a6
_

a10
_

a11a9a7a5

a2
_

a4
_

a8
_

a12
_

a1 b
_

v1 3a

(b) Deducing the fractional weights

a
h

h

h

b

b

b

a
a

(c) Example is formed from 3 mod-
ules.

ba

ba

(d) Fractional cycles for a module.

Figure A.1: Bad example for iterated rounding, k even.

202

Even k The example for even k is based on the “module” illustrated in Fig.A.1(a). Let h = k/2.

The module has a path of edges, drawn solid in Fig.A.1(a). The path can be arbitrarily long. The

first edge of the path weighs h and the remaining edges weight h − 1. Fig.A.1(a) also shows a

weight h− 1 edge at the beginning and at the end of the path – these edges go to other modules.

The remaining edges of the module, drawn dashed, are fractional. Four fractional edges go to other

modules. The remaining fractional edges form a path of “1 hop” edges and 2 paths of 2 “hop”

edges.

Fig.A.1(b) shows how we deduce the weights of fractional edges. Label the vertices of the

module as v1, v2, . . ., starting with the leftmost vertex v1 shown and proceeding rightwards. For

our extreme point we require that each vertex vi and each set {v1, . . . , vi} be tight. We will deduce

that each fractional weight is either a, ā, b or b̄, for some unknown values a, b. (As before the

notation ā is shorthand for 1− a.) We deduce the weights advancing from left to right, in order of

the weight’s subscript, as follows.

Let the edge labelled a1 weigh a. Edge ā2 weighs ā, since v1 is tight. Edge a3 weighs a, since

{v1, v2}, v3, and {v1, v2, v3} are all tight, and the last set is the union of the first 2. Edge ā4 weighs

ā, since v2 is tight. Now the pattern repeats starting with a5. This continues through ā12. The

last singleton has weights b and b̄ as shown.

Fig.A.1(c) shows the overall example, which is constructed from 3 modules. Only the solid

edges of a module, its first 2 vertices, and its last 2 vertices, are shown. The top horizontal line

represents one module and the 2 lower slanted lines represent the other modules. The remaining 3

lines are the weight h − 1 edges that join modules. Each module has 2 edges labelled “a” leaving

it – these correspond to the edges labelled a1 and ā12 in Fig.A.1(b). Similarly each module has 2

edges labelled “b” leaving it, corresponding to the edges labelled b and b̄ in Fig.A.1(b).

We have shown that the “b” edges of each module have complementary weights. So the cycle

of 3 “b” edges forces these edges to have weight 1/2. Similarly the 3 “a” edges are forced to have

weight 1/2. We conclude that all fractional edges have weight 1/2 as desired.

It remains to show that the example is k-edge connected. First we will show the vertices of

203

each module are k-edge connected. Once this is done, we can contract each module to 1 vertex.

Fig.A.1(c) shows that we get a graph of 3 vertices joined in a cycle of weight h edges. This graph

is k-edge connected, which implies the entire example is k-edge connected.

We show a module is k-edge connected by exhibiting 3 edge-disjoint cycles, each containing

all the module vertices, of weights h− 1, 1/2 and 1/2. The h− 1 cycle consists of the solid edges in

Fig.A.1(c). Fig.A.1(d) illustrates the two weight 1/2 cycles. Specifically, the heavy dashed edges

form one cycle. Notice that the figure indicates this cycle contains an a-b path outside the module.

Similarly the light dashed edges form a cycle, containing a second a-b path outside the module. It

is clear from Fig.A.1(c) that the 2 a-b paths exist and are edge-disjoint.

Odd k The example for odd k is illustrated in Fig.A.2. Let h = (k− 1)/2. Fig.A.2(a) illustrates a

module. As before there is a path of solid edges, with the vertical solid edges at the beginning and

end going outside the module. The path can be arbitrarily long. The difference is that the weights

alternate between h− 1 and h, with the exception of the first path edge but including the 2 joining

edges. As before the remaining dashed edges are fractional, with 4 going outside the module. The

remaining fractional edges form 2 paths of 2 hop edges and 1 path of edges that are alternately 1

hop and 3 hop.

Fig.A.2(b) shows how we deduce the weights of fractional edges. As before we require that

each vertex, as well as each set of consecutive vertices that starts with the first vertex, be tight.

We begin by deducing that each unlabelled fractional edge weighs 1/2. We will use the same

principle as before: 2 disjoint sets A and B with A ∪ B = C and dx(A) = dx(B) = dx(C) have

dx(A,B) = dx(A,V − C) = dx(B,V − C) = k/2. Observe that each unlabelled fractional edge

has a weight h edge at one of its ends such that the principle makes the 2 edges together weigh

k/2 = h + 1/2. This makes the fractional edge weigh 1/2. This applies to the (last) vertical

fractional edge too.

We have deduced that each vertex of the module except the penultimate vertex has 2 frac-

tional edges weighing 1/2+ 1/2 = 1. So the remaining fractional edges that stay inside the module

204

(a) Module. Solid edges weigh h (heavy) or h− 1
(light).

+ 1/2

a1
a2

_
4

_
a6

_

a7a53a

a

a8

_

(b) Deducing the fractional weights

z

a

1/2

1/2

b

a

(c) Example is formed from 2 mod-
ules and a vertex z.

(d) Fractional cycles for a module.

Figure A.2: Example for k odd.

205

form a path with weights alternating between a and ā, as shown. As for the 2 fractional edges that

leave the module from the penultimate vertex, the only thing we know is that their weights sum to

k − (h + (h− 1) + 1/2 + a) = 1/2 + ā.

Fig.A.2(c) shows the overall example, which is constructed from 2 modules and a new vertex

z. Only the first and last 2 vertices of each module are shown. The 2 edges labelled “a” correspond

to the fractional edge leaving the first vertex of the module. Vertex z is tight. So this makes the

“a” values of the two modules complementary. From the 3 other fractional edges we see that each

module satisfies ā + 1/2 = b + 1/2. This makes the 2 “a” values identical. Hence all fractional

weights – all a’s and b, equal 1/2.

As before, we show the example is k-edge connected by first showing the vertices of each

module are k-edge connected. Once this is done, contracting both modules to a vertex shrinks

Fig.A.2(c) into a triangle of weight h + 1/2 edges. This graph is k-edge connected, which implies

the entire example is k-edge connected.

We show a module is k-edge connected by exhibiting 4 edge-disjoint cycles, each containing

all the module vertices, where 1 cycle weighs h − 1 and the 3 others weigh 1/2. The h − 1 cycle

consists of the solid edges in Fig.A.2(c). A cycle of weight 1/2 consists of a path of 1 hop edges

through the module, with its ends joined by 2 weight 1/2 edges incident to z. (Some of these 1 hop

edges represent unused weight in h edges.) Fig.A.2(d) illustrates the two other weight 1/2 cycles.

The 1 hop edges in the previous cycle are not drawn. But we draw weight 1/2 edges representing

unused weight in h edges. The heavy dashed edges form one cycle. The first and last heavy edges

go to the same vertex in the opposite module, as shown in Fig.A.2(c). The light dashed edges form

the second cycle. Its edges alternate between 1 hop and 2 hop. Like the other cycle its first and

last edges go to the same vertex.

A.3.2 Rounding Cardinality LP’s

This section shows how iterated rounding can take advantage of a large collection of edges

that can be rounded cheaply. The problem considered in this section is the minimum cardinality

206

Steiner network (SN) problem, with one exception where we explicitly specialize to the k-ECSS

problem. Also the following discussion applies to both standard iterated rounding and our variant

(the only difference being that our algorithm rounds a large collection of edges simultaneously).

Recall the definitions of heavy edge, the fractional edge set F , etc. from the beginning of

Section A.2.2. Let I0 denote the set of integral edges in the solution to the initial LP (∅). In any

iteration we partition the set I (of edges fixed at the start of the iteration) into 3 sets,

I = I0 ∪R ∪ LR.

Here R is the set of all edges that the algorithm has previously rounded from a fractional weight

to 1, in some iteration. LR is the set of all edges that changed from a fractional weight to 0 or 1

when some LP (I), I 6= ∅, was solved. Thus F (the set of all currently fractional edges) is the set

E − I. ∆ denotes the total amount the objective value increases when we go from LP (∅) to the

current LP solution.

At any point in the execution of the algorithm, the lead of the algorithm is defined to be the

quantity

λ = 2n− |F | − 2∆.

To motivate this definition consider solving the k-ECSS problem using iterated rounding. First

observe that if the algorithm halts with lead λ∗ then the approximation ratio is 1 + 2/k − λ∗/kn.

In proof, the algorithm halts with F = ∅, so the total increase above optimality equals n−λ∗/2. In

terms of the notation used in deriving (A.1) this says the final objective value is ≤ z∗ + n− λ∗/2.

The rest of the calculation follows the derivation of (A.1). In fact the calculation is valid for any

SN problem with average vertex demand k (here k needn’t be integral). Our approach to improve

the 1 + 2/k approximation ratio for k-ECSS is to achieve a big lead.

We return to discussing the SN problem for the rest of this section. Observe these simple

properties of the lead: The algorithm has an initial nonnegative lead 2n − |F | right after solving

LP (∅). Rounding the weight of a heavy edge to 1 does not decrease the lead (since |F | decreases

by 1 and 2∆ increases by ≤ 1). Solving LP (I) changes the current solution but preserves the lead

207

(since immediately after rounding, the solution is feasible to LP (I), so switching to an optimal

solution does not increase ∆). In fact solving LP (I) can increase the lead, since each edge entering

LR increases the lead by 1.

Let greedy rounding be the version of iterated rounding where each iteration rounds every

heavy edge. We analyze greedy rounding using the following terminology. Throughout the rest of

the paper w denotes the “fractional weight” function, i.e., w(e) = xe if e is fractional and w(e) = 0

otherwise. The bias of a fractional edge e is |1 − 2w(e)|.1 The total bias of a set of fractional

edges S is the sum of the individual edge biases. This total bias is at least |S − 2w(S)| (since

|∑ 1− 2w(e)| ≤∑ |1− 2w(e)|, where both sums are over e ∈ S).

We are interested in algorithms that start off using some variant of iterated rounding and

then switch to greedy rounding. Suppose we switch to greedy rounding when the set of fractional

edges is F . (So F is the set of fractional edges after solving LP (I) for some I, possibly even I = ∅.)

Lemma 21. Greedy rounding solves the residual problem on F , increasing the lead by the total bias

of F .

Proof. First recall that if we start with a collection of fractional edges F having total weight w(F),

solving the residual problem by iterated rounding increases the objective function by ≤ w(F). (In

proof, rounding an edge of weight we to 1 increases the objective by ≤ we, since iterated rounding

guarantees e is heavy. The solution to the next LP, x′, has fractional weight w′(F − e) ≤ w(F − e),

since after rounding e, w remains a feasible solution to the residual problem on F − e. So the

objective function increases by ≤ w(F) over the entire execution of iterated rounding on F .)

Now consider greedy rounding. Divide F into the set of heavy edges H and L = F −H (the

“light” edges). Greedy rounding starts by rounding each e ∈ H to 1. Rounding e increases the lead

by its bias (F decreases by 1, ∆ increases by 1− w(e), so the lead increases by 1− 2(1 − w(e)) =

2w(e) − 1 = |1− 2w(e)|). Thus we have increased the lead by the total bias of H.

We must show that the rest of the execution increases the lead by the total bias of L. Each

1 When w(e) < 1/2, half this quantity is called the “halves complement of e” in [8, 9].

208

edge of L has bias 1− 2w(e), so we need to increase the lead by |L| − 2w(L).

Right after rounding H, w remains a feasible solution to the residual problem on L. So w(L)

does not increase when we solve the residual LP. Thus the opening remark implies iterated rounding

completes the solution of the problem, increasing the objective function by ≤ w(L). So it increases

the lead by ≥ |L| − 2w(L) (the number of fractional edges decreases by |L| and ∆ increases by

≤ w(L)).

Our algorithm will find edge sets with large bias by looking at vertices, so we need a vertex-

based version of this fact. Recall (from Section 1) that we have degree functions dF and dw, as

well as dx. The bias of a vertex v is defined to be the quantity |dF (v)− 2dw(v)|. This quantity is a

lower bound on the total bias of all fractional edges incident to v. The total bias of a set of vertices

S is the sum of the bias of each vertex in S.

Lemma 22. The total bias of F is at least half the total bias of any set of vertices.

Proof. Let S be a given set of vertices, with total bias B. Let H be the set of heavy edges incident

to at least 1 vertex of S. Define L similarly using the “light” edges (i.e., the fractional edges of

weight < 1/2). The edges of H have total bias 2w(H) − |H|, and the edges of L have total bias

|L| − 2w(L),

We have already noted that each vertex of S has bias at most the sum of the biases of its

incident fractional edges. So

B ≤ 2(2w(H) − |H|+ |L| − 2w(L))

since an edge can be incident to 2 vertices of S. The last expression is twice the total bias of H ∪L,

so the lemma follows.

The two lemmas give a principle that we will use: Greedy rounding solves the residual

problem, increasing the lead by half the total bias of any set of vertices. However this principle

requires that we solve (LP) to completion. We next show how to avoid this. Specifically suppose

we have a vector x that is feasible for (LP). (In the algorithm x will be an extreme point solution

209

that has some edges rounded up.) We want to move to an optimum solution to LP (I) (I is the

set of integral edges of x). Furthermore we have a set B of vertices v with dx(v) = f(v) and bias

|dF (v)−2dw(v)| that is a positive integer. We can essentially preserve this bias in the new optimum

solution, as follows.

Define the “rounding” linear program (LPR) to be (LP) with this additional constraint:

dx(v) = f(v) v ∈ B

Also define the problem LPR(I) to be the variant of (LPR) constructed just like LP (I).

Let x have integral edges I, and let y be an optimal extreme point for LPR(I). Our algorithm

will move from x to y. y needn’t be optimal for LP (I). However our goal is only to increase the

lead, and the following properties of y are the only ones needed:

Lemma 23. i) Moving from x to y preserves the lead.

ii) A vertex v ∈ B has its bias preserved unless it is on an LR edge of y.

iii) As in iterated rounding, the fractional edge weights of y are uniquely determined by a

system of equations corresponding to a laminar family.

Proof. i) The objective value for y is no more than the objective of x. This holds since x is feasible

to LPR(I). This property ensures that ∆ does not increase when we switch from x to y. Hence

the lead is preserved.

ii) Let F be the set of fractional edges of x. The edges of F incident to v have the same

total weight in y as in x. This holds since the constraints for LPR(I) preserve the value of dx(v)

as well as the values xe, e ∈ I. Hence if each edge of F incident to v remains fractional in y, the

bias |dF (v)− 2dw(v)| is the same in y as in x. So part (ii) holds.

iii) Any new rounding constraint defining y corresponds to an L.-set that is a singleton, which

is consistent with any laminar family. The remaining constraints defining y come from (LP). They

can be made into a laminar family by exactly the same uncrossing argument as ordinary iterated

rounding [8].

210

A.3.3 c-Singletons

This section continues to discuss the SN problem. We begin with a well-known property

of critical sets for k-edge connectivity (Corollary 5 below), generalized to SN in the next lemma.

Consider any feasible solution x of (LP). Call S ⊆ V tight if dx(S) = f(S).

Lemma 24. Let A, B and C be tight sets, with C the disjoint union of A and B. The quantities

dx(A,B), dx(A,V − C), dx(B,V − C) are all half-integral. In fact they are all integral if f(A) +

f(B) + f(C) is even.

Proof. By definition

dx(A) = dx(A,V − C) + dx(A,B),

dx(B) = dx(B,V − C) + dx(A,B),

dx(C) = dx(A,V − C) + dx(B,V − C).

Combining these equations and using tightness shows f(A) + f(B) − f(C) = 2dx(A,B). Thus

dx(A,B) is half-integral. The remaining properties claimed in the lemma follow easily.

The proof implies this well-known fact, which will be used in the next section.

Corollary 5. In a k-ECSS problem, dx(A,B) = dx(A,V − C) = dx(B,V − C) = k/2. 2

We use a tree model of a laminar family that differs slightly from that of Section A.2.1.

Consider a laminar family L. on ground set V ; for convenience assume {V } /∈ L.. Recall the

definitions of singleton, nonsingleton, etc. from the beginning of Section A.2.2. We represent L.

as a tree T (L.) whose nodes correspond to the L.-sets, plus the nonsingleton vertices, plus the set

V . V is the root of T (L.). The parent of an L.-set or a nonsingleton vertex is the smallest set of

L. ∪ {V } that properly contains it. All tree terminology for L. refers to T (L.).

A vertex of V is a c-singleton if it is a singleton and it has a unique sibling in T (L.), which is

itself an L.-set. The “c” in c-singleton stands for “complementary” – in the sense that a c-singleton

211

v with parent P and sibling S satisfies P = S ∪ {v} with all 3 sets belonging to L. ∪ {V }, so v is

“complementary” to S in the laminar family.

The following properties provide edges that are amenable to rounding.

Lemma 25. Let L. be the laminar family of an extreme point of (LP). Let v be a singleton.

i) The bias of v is integral. This bias is ≥ 1 if dF (v) is odd.

ii) Suppose v has bias 0. Then v is on a heavy edge, and v is on ≥ 2 heavy edges if it is a

c-singleton.

iii) dF (v) > 1. In the even-SN problem if v is a c-singleton then dF (v) ≥ 4.

Proof. We remark that the argument does not depend on v being a single vertex – it can be an

L.-set instead of a singleton, and an appropriately defined “c-set” instead of a c-singleton.

i) A singleton v has dw(v) integral. So its bias |dF (v)−2dw(v)| is integral and part (i) follows.

ii) The first part is simple: If v is not on a heavy edge, i.e., each incident fractional edge

weighs < 1/2, then dw(v) < dF (v)/2 and the bias is dF (v)− 2dw(v) > 0.

For the second part assume v is a c-singleton. Let v have parent P and sibling S in T (L.), so

P = S ∪{v}. P is an L.-set, since P = V implies the constraints for dw(S) and dw(v) are identical,

contradicting their linear independence.

Partition the edges incident to v into 2 sets: ES (EP) contains the edges joining v to S

(V −P), respectively. Let FS (FP) denote the fractional edges of ES (EP), respectively. FS 6= ∅,

since otherwise the constraint on dw(P) is the sum of the constraints for S and v, violating linear

independence. Similarly FP 6= ∅.

Lemma 24 shows x(ES) and x(EP) are half-integral. So w(FS) and w(FP) are also half-

integral.

We will show that if FS has no heavy edges then FP has ≥ 2 heavy edges. Since FS and

FP are symmetric this implies part (ii).

The hypothesis on FS implies 2w(FS) < |FS|. The hypothesis of part (ii) implies |FS ∪

FP | = 2w(FS ∪ FP). So 2w(FP) > |FP |. Half-integrality makes 2w(FP) ≥ |FP |+ 1. If FP has

212

≤ 1 heavy edge then 2w(FP) < 2(1 + (|FP | − 1)(1/2)) = |FP |+ 1, a contradiction.

iii) A singleton has dw(v) integral, so it must be on ≥ 2 fractional edges. When v is a c-

singleton and f is even, Lemma 24 shows x(FS) and x(FP) are integral. So w(FS) and w(FP)

are both positive integers, making |FS|, |FP | ≥ 2 (positivity follows from the proof of (ii)).

We are interested in laminar families that are close to full, i.e., they contains close to 2n sets.

Clearly most vertices are singletons. The next lemma shows there are also many c-singletons. The

lemma holds for an arbitrary laminar family on ground set V .

Lemma 26. A laminar family having 2n− δ sets has ≥ n− 3δ c-singletons.

Proof. We will count the number of vertices that are not c-singletons. We can classify each vertex

v ∈ V as having 1 of 4 types:

v is a nonsingleton;

v is a singleton having a unique sibling in T (L.), which is itself a nonsingleton;

v is a singleton having a unique sibling in T (L.), which is itself an L.-set, i.e., v is a c-singleton;

v is a singleton having > 1 sibling in T (L.).

Define

ns = the number of nonsingleton vertices,

ci = the number of nodes of T (L.) with exactly i children (i ≥ 0).

We get that the number of vertices that are not c-singletons is at most

2ns +
∑

i≥3

ici. (A.7)

The hypothesis defining δ shows

ns +
∑

i≥3

(i− 2)ci ≤ δ

since any laminar family has ≤ 2n sets, each nonsingleton reduces this bound by 1, and each set

with i children reduces the bound by i − 2. Tripling this inequality and using the fact that i ≥ 3

213

MLR

MSMS

BLRMNS LR

S2 B

M

V − S

Figure A.3: Biased vertices (ellipses) for rounding. Wavy edges are matched.

implies 3(i− 2) ≥ i shows

3ns +
∑

i≥3

ici ≤ 3δ.

Using this with (A.7) shows ≤ 3δ − ns vertices are not c-singletons.

We can now give the game plan for the approximation algorithm. Fig.A.3 illustrates this,

although some of the notation isn’t defined until next section. The goal is to build a big lead. Call

a vertex biased if, as in Lemma 25(i), its fractional edges have bias ≥ 1; otherwise the vertex is

unbiased. Recall that S. is the set of all singletons. Define

B = { all biased singletons }, C = { all c-singletons }.

The vertices of B can be rounded to build a lead. This doesn’t help if B is small. But then S.−B

is big, as is C − B (Lemma 26). The vertices of S.− B have dF (v) even (Lemma 25(i)). We will

make many of these degrees odd by rounding 1 heavy edge incident to v (Lemma 25(ii)). We then

solve the residual LP, more precisely LPR to preserve the biased vertices of B. There are then

several possibilities, all contributing to build the desired lead:

LR edges automatically increase the lead. Rounded vertices that become singletons in the

new laminar family, and are not on LR edges, are biased (dF (v) is odd). Similarly vertices of B not

on LR edges remain biased. These biased vertices all increase the lead. Finally rounded vertices

that become nonsingletons shrink the size of the laminar family, i.e., they reduce the number of

fractional edges. This also increases the lead.

214

To ensure the above shrinking is efficient we select the rounded edges as a big matching on

S. − B. The matching is big because of c-singletons, which guarantee more heavy edges (Lemma

25(ii)). It is useful to define subsets of S. − B based on fractional degrees dF (v). Recall that all

vertices of S.−B have even fractional degree. Define

S2 = {v : v an unbiased singleton, dF (v) = 2},

S2 = {v : v an unbiased singleton, dF (v) ≥ 2},

S4 = {v : v an unbiased singleton, dF (v) ≥ 4},

and define C2 and C2 as analogous subsets of c-singletons. So for instance S.−B = S2 = S2 ∪ S4,

C = C2. The matching will be guaranteed to be big as long as C2 is small (C2 vertices impede the

matching because they have too few edges). So rounding the matching doesn’t help if C2 is big.

This isn’t a problem when the requirement function f (or the connectivity k) is even – Lemma

25(iii) shows C2 = ∅. So the even connectivity algorithm is simpler. It is presented in the next

section. The general f (odd k) algorithm uses a second routine for C2 vertices, and is presented

after that.

A.3.4 Rounding by Matching

This section presents the main approximation algorithm. It rounds a matching on even degree

singletons. The algorithm applies to the SN problem with general requirement function f , so that

problem is assumed throughout the discussion. A factor 1 + 1.89/k approximation for the even

k-ECSS problem follows immediately from this section’s algorithm.

The algorithm is given in Fig.A.4. It begins by solving LP (∅), as in iterated rounding (Fig.A.4

line 1). Throughout this section and the next we fix a parameter δ ≥ 0 so that the laminar family

corresponding to LP (∅) contains exactly 2n−δ sets. We also continue to use the notation introduced

at the end of last section (Fig.A.3). So line 2 of the algorithm fixes the set of biased vertices that

will be preserved by LPR (line 4).

Since we want to bias the even degree singletons, define the set of edges eligible for matching

215

1. solve LP (∅)
2. B = { all biased singletons }
3. round the edges of a maximum matching on EM to 1
4. solve LPR(I)
5. solve the residual problem by greedy rounding

increasing the lead by half the total vertex bias

Figure A.4: Rounding by matching.

216

Figure A.5: Tight example for matching, for the even k-ECSS problem. Every vertex is in C4.
Solid and wavy edges weigh 1/2 + ǫ, dashed edges weigh 1/2− ǫ.

to be

EM = {e : e is a heavy edge joining 2 vertices of S2}.

Line 3 finds a maximum cardinality matching on this edge set and rounds each matched edge to 1.

Our main task is to analyze the size of this matching. We use some basic terminology for matchings

that can be found in many texts, e.g. [112].

Lemma 27. A maximum matching on EM has ≥ (n− 5δ − 3|B| − |C2|)/3 edges.

Remark The examples of Fig.A.5–A.6 illustrate the tightness of the lemma’s bound, as well as the

ideas of the lemma’s proof. We will discuss these examples before proceeding to the proof. In these

figures and all other figures that show matchings, wavy edges are matched and square vertices are

unmatched.

The examples of the 2 figures are k-ECSS problems. By intent, we have not made any effort

to ensure that the graphs of the examples correspond to a laminar family. However the examples

do respect Corollary 5, which we restate as follows:

Fact The edges incident to a c-singleton v can be partitioned into 2 sets, each set having total

weight k/2.

217

. . .

C2

C2

C2d C2d

C2

C2

(a) 2-module. The bottom row has 2d − 2 C2’s.

.

(b) Subgraph of r ≥ 2 2-modules. Here r = 2.

C

C2 C2

4C

C2d C2d

. . .
4

(c) 4-module. The bottom row has 2d − 3 C4’s.

.

(d) Subgraph of two 4-modules.

Figure A.6: Tight example for matching, for the odd k-ECSS problem. The example consists of
the subgraph of (b) and the subgraph of (d). Solid and wavy edges weigh 1/2, heavy edges weigh
1/2 + ǫ, dashed edges weigh 1/2 − δ.

218

When k is even the Fact means that the fractional edges incident to v can be partitioned into two

sets of integral weight. This holds in Fig.A.5, since each vertex is on 2 edges of weight 1/2 + ǫ

and 2 edges of weight 1/2 − ǫ. When k is odd the Fact means that the fractional edges incident

to v partition into 2 sets, each having weight congruent to 1/2 modulo 1. Observe that this holds

in Fig.A.6: In Fig.A.6(a) and (c), each C2 vertex is on 2 edges of weight 1/2, and each C4 vertex

is on 1 edge of weight 1/2, 1 edge of weight 1/2 + ǫ, and 2 edges of weight 1/2 − δ for δ = ǫ/2.

In Fig.A.6(a) each C2d vertex is on 2d edges of weight 1/2. In Fig.A.6(c) each C2d vertex is on

2 edges of weight 1/2 from C2 vertices. The Fact will be satisfied if the remaining 2d − 2 edges

weigh exactly d− 1. To achieve this, first note from Fig.A.6(d) that there are exactly 2 4-modules.

Arrange the edges from C4 vertices to C2d vertices the same way in both of the 4-modules. As an

example, in both 4-modules let the left C2d be on d − 1 edges of weight 1/2 + ǫ and d − 2 edges

of weight 1/2, and let the reverse hold for the right C2d. Let one of the 1/2 − δ edges join the 2

“left” C2d’s. Define δ so that for both “left” C2d’s, the edges from C4 vertices and the 1/2− δ edge

have total weight d − 1. Do the same for the 2 “right” C2d’s. The value of δ on the right will be

different than the left, but this is not a problem.

Now we will show that the lemma gives a tight bound on the size of the matching. Our

examples have δ = |B| = 0. The proof of Lemma 28 shows this is the case that determines the

approximation ratio.

Consider first Fig.A.5, the example for even k. The heavy edges form 3 triangles. Note that

the matching is maximum, since only 1 edge in each triangle can be matched. The example easily

generalizes to an arbitrary number r of triangles of heavy edges. In terms of the notation of Lemma

27, the example has n = 3r, δ = |B| = |C2| = 0, and there are r = n/3 matched edges. So this

example shows the bound of Lemma 27 is tight for the even k-ECSS problem.

Next consider Fig.A.6, the example for odd k. The matching is maximum since each C2d

vertex is on a unique matched edge, and those vertices form a vertex cover for the heavy edges.

219

Assume d ≥ 5 and r = d− 3. The example has these parameters:

n = r(4 + (2d− 2)) + 2(4 + (2d− 3)) = 2dr + 2r + 4d + 2 = 2dr + 6d− 4

m = r(2(2d)) + 2(2(2d) − 1 + (2d− 3)) = 4dr + 12d − 8 = 2n

|C2| = r(2 + (2d− 2)) + 4 = 2dr + 4

Since m = 2n we have δ = 0, and also |B| = 0. Hence the bound of the lemma is a matching

of ≥ (n − |C2|)/3 = 2d − 8/3 edges. The matching has 2r + 4 = 2d − 2 edges. We can make d

arbitrarily large, so the lemma’s bound is tight.

Proof of Lemma 27: Let M be the set of matched vertices (see Fig.A.3). We claim

|S2 −M |+ |C2 −M | ≤ (4n− 2δ) − 2|S2| − 4|S4|+ |M |+ |(S2 − C2) ∩M |. (A.8)

We first show the claim implies the lemma, by simple algebra: Substituting |S2 −M | = |S2| − |M |

and |C2 −M | = |C2| − |C2 ∩M |, and rearranging gives

|S2|+ |C2|+2|S2|+4|S4| ≤ 4n− 2δ +2|M |+ |C2 ∩M |+ |(S2−C2)∩M | = 4n− 2δ +3|M |. (A.9)

The left-hand side is at least

3|S2|+ 3|C2| − 2|C2|.

We will rewrite this expression using two identities:

|C2| ≥ n− 3δ − |B|, |S2| ≥ n− δ − |B|.

The first of these follows from Lemma 26 which gives |C| = |C2| + |B ∩ C| ≥ n − 3δ. The second

follows since n − (|S2| + |B|) equals the number of nonsingletons, which is obviously ≤ δ. So we

get that the left-hand side is at least 6n− 12δ− 6|B|− 2|C2|. Recalling the right-hand side of (A.9)

we get

2n− 10δ − 6|B| − 2|C2| ≤ 3|M |.

Remembering that the number of matched edges is |M |/2, we get the bound of the lemma.

220

We turn to proving (A.8). Recall that every unmatched vertex of S2 (C2) is on ≥ 1 (≥ 2)

heavy edges respectively (Lemma 25(ii)). So the left-hand side of (A.8) lower bounds the number

of heavy edges incident to unmatched vertices of S2. We will show that the right-hand side upper

bounds this quantity, by using a system of credits. Give each vertex v a number of credits equal to

dF (v) if v /∈ S2

dF (v)− 3 ≥ 1 if v ∈ C4 ∩M

dF (v)− 2 ≥ 2 if v ∈ (S4 − C4) ∩M

dF (v)− 1 = 1 if v ∈ C2 ∩M

dF (v) = 2 if v ∈ (S2 −C2) ∩M .

Notice that unmatched vertices of S2 get no credits. We begin by showing that the total

number of credits is at most the right-hand side of (A.8): The sum of all degrees dF (v) is equal to

2|F | = 2|L.| = 4n − 2δ. The number of credits equals this sum of all degrees decreased by these

quantities:

dF (v) for v ∈ S2 −M , 3 for v ∈ C4 ∩M , 2 for v ∈ (S4 − C4) ∩M , and 1 for v ∈ C2 ∩M .

The total decrease is

≥ (4|S4| − |C4 ∩M | − 2|(S4 − C4) ∩M |) + (2|S2| − |C2 ∩M | − 2|(S2 − C2) ∩M |)

= 4|S4|+ 2|S2| − |M | − |(S2 − C2) ∩M |.

This implies the number of credits is upper bounded by the right-hand side of (A.8).

The rest of the argument shows that the number of credits upper bounds the left-hand side

of (A.8), by paying 1 credit for each heavy edge incident to an unmatched vertex of S2. We work

with a graph H constructed from G in 3 steps:

1. Discard all edges that are not heavy.

2. If the current graph contains an alternating path P that joins vertices v,w ∈ S2 −M , use the

credits of vertices on P to pay for the first and last edge of P . Then delete the vertices of P from

H. Repeat this step until no such P exists.

3. Split each vertex v ∈ S2 − M that remains in the graph into degree 1 vertices, collectively

221

u

− MS2

r

r’

outer

inner

s

t

Figure A.7: Alternating tree. Vertex labels illustrate the last part of the proof of Lemma 27.

indicent to the neighbors of v. We continue to refer to these new vertices as vertices of S2 −M .

As an example, in Fig.A.5 steps 1–2 pay for every heavy unmatched edge. In general in step

2, the alternating path P contains at least 1 matched edge, since the matching is maximum. (In

fact we must have v = w for the same reason.) Since each matched vertex has a credit, we can pay

for the 2 unmatched ends of P as required. (As a minor comment note that if v gets deleted in

this step, we will only pay for 2 heavy edges incident to v. This suffices to establish (A.8). With

slightly more care we could actually pay for every heavy edge incident to v.)

Step 2 does not delete any edge incident to a vertex of S2−M −{v,w} (such an edge would

give an augmenting path). So to complete the argument it suffices to pay for the edges of H that

are incident to vertices of S2 −M .

The argument is based on a notion of alternating tree that we now define, illustrated in

Fig.A.7. (As can be seen in the figure, our definition differs slightly from the usual one, which is

oriented towards searching for an augmenting path.) An alternating tree in graph H is a tree whose

vertices are labelled “inner” and ”outer”, such that

i) in any path from a leaf to the root, the vertices alternate between inner and outer;

ii) each edge from an inner vertex to its (outer) parent is matched;

222

iii) each leaf is in S2 −M and is outer;

iv) the root is either outer, or an inner vertex not in S2.

An alternating tree is deficient if the credits in its vertices cannot pay for all of its leaves.

Claim 1 Let T be a deficient tree, with root r.

i) T can pay for every leaf but 1; furthermore r is outer.

ii) Every matched inner vertex v has all its incident fractional edges in T ; furthermore v ∈ C4.

iii) If r is matched then r ∈ C2.

Proof: i) Let T have ℓ leaves. In any tree ℓ − 1 is equal to the sum, over all interior nodes v, of

c(v) − 1, where c(v) is the number of children of v. In T we need only sum over the inner nodes

v. If v is matched then c(v) ≤ dF (v) − 1. So v contributes ≤ dF (v) − 2 to the sum, and together

with its outer parent v has ≥ (dF (v)− 3) + 1 = dF (v)− 2 credits. Hence if r is outer and matched

T has ≥ ℓ − 1 credits, as claimed. This also holds if r is outer and unmatched, i.e., T consists of

just a leaf. In the remaining case r is inner, c(r) ≤ dF (r) and r has dF (r) credits. Thus T has ≥ ℓ

credits, as claimed.

ii – iii) For a deficient tree, every inequality in the above argument must hold with equality.

To show the second part of (ii) note that v has > dF (v) − 3 credits unless v ∈ C4. To show (iii)

note that r has ≥ 2 credits if r ∈ S2 − C2. ♦

We will grow a forest F in the graph H. F will consist of nondeficient alternating trees that

collectively contain all vertices of S2−M . Nondeficiency implies such a forest completes the proof.

To grow F start by making every vertex of S2 −M a leaf, the root of its own alternating tree.

Every such tree is deficient. Then repeat the following step as long as some tree remains deficient.

Grow Step. Choose a deficient tree, with root r. Add (r, s), an edge of H incident to r, to F . If s

is matched then add its matched edge to F unless it is already in F .

As an example, in Fig.A.6 the final forest consists of 2r + 4 trees, each tree consisting of a

223

matched edge and the 2d− 2 or 2d− 3 edges leading to the unmatched neighbors of the C2d vertex.

Each of the 2r trees in Fig.A.6(b) pays for its unmatched edges with no credits left over. Each of

the 4 trees in Fig.A.6(d) has 1 extra credit.

We must show that the Grow Step can always be executed, and it results in a valid alternating

forest. This will complete the proof, since it is clear that the procedure eventually halts with no

deficient tree.

First note that the desired heavy unmatched edge (r, s) always exists. If r is matched then

r ∈ C2 (Claim 1(iii)) and so Lemma 25(ii) guarantees existence of the edge. Second, edge (r, s)

always belongs to H, i.e., s was not deleted in step 2, since a deleted s would give an augmenting

path for the matching.

It remains only to show that the Grow Step maintains F as a forest. This is clear if s does

not already belong to a tree of F , so assume the opposite. Let T be the tree of F containing r at

the start of the Grow Step.

If s is inner then s /∈ T , by Claim 1(ii). So adding (r, s) joins 2 trees of F and results in a

valid forest.

We complete the proof by showing that s is never outer. Suppose on the contrary that s is

outer. We will exhibit an alternating path P in H between 2 vertices of S2 −M . But this violates

step 2 of the construction of H.

Vertex s may belong to T or a different tree. But P is constructed the same way in both

cases. The case s ∈ T is illustrated in Fig.A.7. Assume for the moment that T is not a singleton

tree, so its root r is matched, say to vertex r′. r′ is inner and it has ≥ 2 children. This follows from

Claim 1(ii) which actually implies it has dF (r′)− 1 ≥ 3 children. Let t be a leaf descending from s

(possibly t = s) and let u be a leaf descending from r′ but not s. Form P by combining the path

in T from u to r′, edges (r′, r) and (r, s), and the tree path from s to t. Clearly P is the desired

alternating path. If T is a singleton tree the construction is simpler – P consists of edge (r, s), and

the tree path from s to t. 2

224

This algorithm achieves a good lead when C2 is small.

Lemma 28. The algorithm of Fig.A.4 halts with a lead ≥ (n− |C2|)/9.

Proof. We continue to use M as the set of all matched vertices. Let x be the extreme point solution

to LPR(I) in Fig.A.4 line 4. Use x to define F , LR, etc. Note that x also defines a laminar family

L. by Lemma 23(iii).

We introduce the remaining notation in Fig.A.3. Consider a vertex v ∈ M . After the

rounding of line 3, v is on an odd number of fractional edges (a vertex of S2 has even dF). So dF (v)

is odd unless v is on one or more edges of LR. Similarly Lemma 23(ii) guarantees that a vertex

v ∈ B has bias ≥ 1 after line 4 unless v is on an edge of LR. With this in mind define

MLR = {v : v ∈M, v is on an edge of LR },

BLR = {v : v ∈ B, v is on an edge of LR }.

Partition the rest of M into 2 subsets:

MS = (M −MLR) ∩ S., MNS = M −MLR− S..

Let λI be the lead immediately after line 4 and let λF be the final lead. Recall that each

step of the algorithm preserves the lead (e.g., Lemma 23(i)).

We first show

λI ≥ max{δ + |LR|, |M |/2 − |MLR| − |MS|}. (A.10)

The first estimate in the max is simply the initial lead plus the lead from fractional edges that

LPR(I) makes integral. For the second estimate note that after solving LPR(I) we have |F | ≤

2n − |MNS|. Since line 3 rounds a matching of |M |/2 heavy edges, 2∆ ≤ |M |/2. This gives lead

≥ |MNS| − |M |/2. (The values of δ and |LR| do not improve this estimate!) Rewriting |MNS| in

terms of |M | from the partition equation |M | = |MLR|+ |MS|+ |MNS| gives the second estimate

in the max.

Since the maximum is at least the average, (A.10) gives

λI ≥ |M |/4 + (δ + |LR| − |MLR| − |MS|)/2.

225

After line 4, |B − BLR| vertices from line 2 still have bias ≥ 1. In addition |MS| singletons with

bias ≥ 1 have been created (Lemma 25(i)). So adding in half the total bias, Lemmas 21–22 show

line 5 gives a final lead

λF ≥ |M |/4 + (δ + |LR| − |MLR|+ |B −BLR|)/2.

Since each vertex of MLR ∪ BLR is on an edge of LR, 2|LR| ≥ |MLR| + |BLR|. So the

previous estimate becomes

λF ≥ |M |/4 + (δ + |B| − |LR|)/2.

Recalling the first term of (A.10),

λF ≥ δ + |LR|,

the two inequalities combine to give

3λF ≥ |M |/2 + 2δ + |B|.

The lower bound for |M |/2 of Lemma 27 shows 3λF ≥ (n + δ − |C2|)/3. This gives the bound of

the lemma.

The lead is ≥ n/9 for the even-SN problem, since C2 = ∅ (Lemma 25(iii)). So the definition

of lead gives the following.

Corollary 6. For any even k the algorithm of Fig.A.4 approximates the smallest k-ECSS of an

undirected multigraph to within a factor 1 + 17/9k < 1 + 1.89/k. The same bound holds for any

even-SN problem with average vertex demand k.

A.3.5 Rounding by Covering

This section shows that the algorithm of Fig.A.8 gives a good approximation when C2 is

large. After analyzing the algorithm we show how it combines with the algorithm of last section to

always achieve the desired approximation ratio. Throughout the discussion we assume the problem

is the SN problem with arbitrary f .

226

1. solve LP (∅)
2. round a minimal set of heavy edges covering T2 to 1
3. solve the residual problem by iterated rounding

Figure A.8: Rounding by covering.

227

The algorithm does not use properties specific to c-singletons so we state it in the more

general way. The algorithm starts by finding an extreme point solution x to LP (∅). Define

T2 = {v : dx(v) = f(v), dF (v) = 2},

the “tight” vertices of degree 2. Clearly C2 ⊆ T2. Also every vertex of T2 is on a heavy edge. Hence

the cover of line 2 exists. We will show the lead after line 2 is |T2|/2. Line 3 preserves this lead.

Let R be the cover that gets rounded. Let x′ be the extreme point found right after rounding

R. Use x′ to define the laminar family L.′ and all tree terminology, as well as F ′ and ∆′.

Lemma 29. If S is an L′.-set contained in T2 then R contains an edge with both ends in S.

Proof: Let w be the fractional weight function of x. Then dx(S) ≥ f(S) and dw(S) ≤ |S| (since

each v ∈ S has dw(v) = 1). These two inequalities imply that ≥ f(S)−|S| integral edges of x leave

S. S ∈ L.′ implies that after rounding, < f(S) integral edges leave S. Thus < |S| edges leaving S

are rounded in line 2. So some vertex of S has a rounded edge that does not leave S, 2

Lemma 30. The algorithm of Fig.A.8 halts with a lead ≥ |T2|/2.

Proof. We show the desired lead is achieved right after x′ is found. Recalling that all tree termi-

nology refers to T (L.′), partition T2 into 5 sets:

P2T = {v : v ∈ T2, the parent of v has 2 children, both belonging to T2};

P2T = {v : v ∈ T2, the parent of v has 2 children, with only v belonging to T2};

P3T = {v : v ∈ T2, the parent of v has 3 children, all belonging to T2};

P3T = {v : v ∈ T2, the parent of v has 3 children, not all belonging to T2};

P 4 = {v : v ∈ T2, the parent of v has ≥ 4 children}.

We will prove 3 properties:

i) L.′ has ≥ |T2|+ |P2T | nonsingleton vertices.

ii) L.′ has ≤ n− (|P3T ∪ P 4|/2 + |P3T |/3) nonsingleton sets.

228

iii) R contains a matching M of ≥ |P2T |/2 + |P3T |/3 edges with both ends in T2.

We first verify that these properties imply the desired lead. (i) and (ii) show that the number

of fractional edges in x′ is at most

|L.′| ≤ 2n− (|T2|+ |P2T |)− (|P3T ∪ P 4|/2 + |P3T |/3).

Since R is a minimal cover of T2, it has ≤ |M |+ (|T2| − 2|M |) = |T2| − |M | edges. So (iii) shows

∆′ ≤ |R|/2 ≤
(

|T2| − (|P2T |/2 + |P3T |/3)
)

/2.

Combining the previous 2 inequalities shows the lead is

≥ (|T2|+ |P2T |) + (|P3T ∪ P 4|/2 + |P3T |/3)−
(

|T2| − (|P2T |/2 + |P3T |/3)
)

= |P2T |+ |P2T ∪ P3T ∪ P 4|/2 + 2|P3T |/3 ≥ |T2|/2

as desired.

We establish properties (i)–(iii) by showing that each of the 5 subsets of T2 makes the ap-

propriate contribution to the 3 quantities. The matching M will be a constructed as a collection of

edges of R that join 2 vertices with the same parent in T (L′.); M will contain ≤ 1 edge per parent,

which guarantees it is a matching.

First note that every v ∈ T2 is a nonsingleton of L.′, since dF ′(v) ≤ 1. This gives the first

term in (i).

A vertex v ∈ P2T has a unique sibling s. s is not an L.’-set, since dF ′(v) ≤ 1. Hence s is a

vertex that is a nonsingleton in L.′. This gives the second term of (i), since the definition of P2T

shows s /∈ T2.

Next we show (iii). The vertices of P2T come in pairs. Lemma 29 shows each pair is joined

by an edge of R. Placing this edge in the matching M gives the first term of (iii). Similarly the

vertices of P3T come in triples and Lemma 29 shows each triple induces an edge of R. This gives

the second term of (iii).

To show (ii), note that for any c ≥ 3, an L′.-set with c children reduces the total number

of nonsingleton sets in L′. by c − 2. So the parent of a vertex in P3T reduces the number of

229

nonsingleton sets by 1 and it has 3 children in T2. The parent of a vertex in P3T reduces the

number of nonsingleton sets by 1 and has ≤ 2 children in T2. Finally ccnsider the parent of a

vertex in P 4; let it have c children. If t of those children belong to T2 we can say that each of them

reduces the number of nonsingleton sets by (c − 2)/t ≥ (c − 2)/c ≥ (4 − 2)/4 = 1/2. This gives

(ii).

To summarize, the overall algorithm starts by solving LP (∅). If |C2| ≥ 2n/11 the algorithm

of Fig.A.8 is used to complete the solution; in the opposite case Fig.A.4 is used. In both cases a

lead ≥ n/11 is achieved.

Theorem 3.8. For any k ≥ 1 the smallest k-ECSS of an undirected multigraph can be approximated

to within a factor 1+21/11k < 1+1.91/k. The same bound holds for any SN problem with average

demand k.

A.4 Simple Graph Algorithm

This section presents an implementation of iterated rounding that improves our approxima-

tion ratio for k-ECSS on simple graphs with k ≥ 13. The entries of Table A.1 for k = 100, 200, 400

are for this algorithm.

The main idea was introduced implicitly in Section A.2.2 and is formalized by the following

definition: A vertex v is satisfied when dI(v) ≥ k, where (as in Section A.3.2) I denotes the total

weight of edges that have fixed integral values and are incident to v. Once satisfied, a vertex remains

satisifed for the rest of the algorithm, and so it must always be a nonsingleton. In contrast, a vertex

can in general oscillate back and forth between singleton and nonsingleton in various iterations.

We will analyze our algorithm by charging increases in the LP objective function to vertices

that get satisfied. We will use this sufficient condition: A singleton becomes satisfied if all but at

most 1 of its fractional edges gets rounded.

Since our analysis tracks ∆, the increase in the objective function, we need this modification

of the results of Section A.3.2: If greedy rounding is executed, starting with a set of fractional edges

230

F0 having total vertex bias B, then ∆ increases by at most

|F0|/2−B/4.

In proof, define the lead to be the quantity

λ = |F0| − |F | − 2∆.

We take ∆ to be 0 when greedy rounding begins, so the lead starts at 0. Lemmas 21–22 clearly

hold for the new definition of lead. They show greedy rounding increases the lead by at least the

total edge bias, which is ≥ B/2. At the end of the algorithm F = ∅, so 2∆ = |F0|−λ ≤ |F0|−B/2,

as desired.

We will present 2 versions of our algorithm. The first version almost achieves the desired

approximation ratio, and its analysis is simpler. The second version adds one additional rule, and

follows a similar analysis to get our best approximation ratio.

A.4.1 The Basic Algorithm

To state the algorithms first recall the notation of Section A.2.2. As before we partition a

laminar family L. into the singleton sets S. and nonsingleton sets N .. We further partition S. into

3 sets, the set S2 defined as before and

S3 = {v : v ∈ S., dF (v) = 3}, S4 = {v : v ∈ S., dF (v) ≥ 4}.

A pairing edge is a fractional edge joining 2 vertices of S2. A touching edge is a fractional edge

incident to exactly 1 vertex of S2.

The basic algorithm is presented in Fig.A.9. It is divided into 3 stages. Stage I corresponds to

the beginning of the algorithm of Section A.2.2. Observe that in Stage I, the increase in the objective

function can be accounted for by charging 1/4 to each vertex that gets satisfied. Specifically each

pairing edge that gets rounded satisfies 2 vertices and increases the objective by ≤ 1/2, so each

vertex gets charged 1/4.

231

0. Stage I: solve LP (∅)
1. repeat until no edge gets rounded:
2. round a maximal matching of heavy pairing edges
3. solve LP (I)
4. Stage II: repeat until no edge gets rounded:
5. round every touching edge of weight ≥ 2/3,

and a maximal matching of pairing edges of weight > 1/3
6. solve LP (I)
7. Stage III: solve the residual problem by greedy rounding

Figure A.9: Basic algorithm for simple graphs.

In Stage II we bound the increase in objective function by charging 1/3 to each vertex that

gets satisfied. Specifically, an S2 vertex on a touching edge gets charged the increase in ∆, which

is ≤ 1/3. The two S2 vertices on a pairing edge that gets rounded share the increase in ∆, so the

charge to each is < 1/3. Finally note that a vertex gets charged only once – an S2 vertex is on ≤ 1

touching edge, and on ≤ 1 pairing edge that gets rounded, and it cannot be on both.

In Stage III we use the vertex bias to bound the increase in ∆, as indicated in the introduction

to this section.

Lemma 31. For any k ≥ 7, the algorithm of Fig.A.9 approximates the smallest k-ECSS of a simple

graph to within a factor 1 + 1/2k + 11ν(k)/4k.

Proof. Consider the last iteration of Stage I. No edge gets rounded in this iteration. This iteration

was analyzed in the proof of Theorem 2.7, since it corresponds to the first iteration where there

are no good edges in the algorithm of Section A.2.2. So our proof begins by redoing the analysis

of Section A.2.2. Towards that end, let L. = S. ∪ N . be the laminar family in the last iteration

of Stage I. Let all terms like S3, F etc. refer to L.. We shall also count nonsingleton vertices, so

define for every i ≥ 0,

nsi = |{v : v /∈ S., dF (v) = i}|, nsi = |{v : v /∈ S., dF (v) ≥ i}|.

Analogous to (A.5) we have 2|S2|+ 3|S3|+ 4|S4|+ ∑

i≥0 insi ≤ 2(|S.| + |N .|). Thus

232

|S3|+ 2|S4|+
∑

i≥0

insi ≤ 2|N .|. (A.11)

To state a refined version of (A.6) partition S2 into 2 sets,

S21 = {v : v ∈ S2, dF (v, V − S2) = 1}, S22 = {v : v ∈ S2, dF (v, V − S2) = 2}.

(Fig.A.10 illustrates these sets, as well as other sets that will be used in the proof of the refined

algorithm.) This is a partition since Section A.4 shows that at the end of Stage I every vertex of

S2 is on a fractional edge leading to a vertex not in S2. Now (A.6) translates to

|S21|+ 2|S22| ≤ 2(|S3|+ |N .|). (A.12)

Next we analyze the end of Stage II. Let L.′ = T . ∪ N .′ be the laminar family in the last

iteration of Stage II. Define sets of singletons T2, T3, T
3, T 4 as the subsets of T . analogous to S2, S3

etc.

Claim 1 No pairing edge exists at the end of Stage II.

Proof: Any such pairing edge weighs ≤ 1/3 (it cannot be rounded in Stage II). If v ∈ T2 is on

a pairing edge, consider the other fractional edge incident to v, say (v, x). Clearly (v, x) weighs

≥ 2/3. Furthermore we have shown (v, x) is not pairing, so it is a touching edge. But that means

it can be rounded. ♦

The claim shows that any v ∈ T2 is on 2 fractional edges leading to V − T2. So analogous to

(A.12) we have 2|T2| ≤ 2(|T 3|+ |N .′|), i.e.,

|T2| ≤ |T 3|+ |N .′|. (A.13)

Claim 2 Any vertex v ∈ S21 is on an edge that gets rounded in the first iteration of Stage II.

233

U

20

U21 U21

U20

S22

S21

− S2

LS33

V

U

Figure A.10: Sets at the end of Stage I, in the proofs of Section A.4.

234

Proof: Any pairing edge at the end of Stage I weighs < 1/2 (it cannot be rounded). Hence no two

pairing edges have a common vertex. Take any v ∈ S21, and let it be on the pairing edge (v,w). We

have shown the other fractional edge incident to v is a touching edge. The same holds for w (which

is also in S21). Now either the pairing edge (v,w) weighs > 1/3 and it gets rounded in the first it-

eration of Stage I, or both touching edges weigh ≥ 2/3 and they get rounded in the first iteration. ♦

Since every singleton v ∈ T . is on ≥ 2 fractional edges at the end of Stage II, the same holds

at the end of Stage I. Furthermore Claim 2 shows v /∈ S21. So

|T .| ≤ |S22|+ |S3|+ ns2. (A.14)

And since every vertex of T 4 is on ≥ 4 fractional edges at the end of Stage II, the same holds at

the end of Stage I, so

|T 4| ≤ |S4|+ ns4. (A.15)

We turn to the objective function. Let ∆ denote the total increase due to iterated rounding.

We claim

∆ ≤ n− |S.| − ns2

4
+
|S.|+ ns2 − |T .|

3
+
|L.′|
2
− T3

4
. (A.16)

Proof of (A.16): When Stage I ends exactly |S.|+ns2 vertices are on ≥ 2 fractional edges. Recall

that we account for the increase in ∆ by charging 1/4 to each satisfied vertex, and such a vertex is

on ≤ 1 fractional edge after its round. So ≤ n− (|S.| + ns2) vertices get charged in Stage I. Thus

the first right-hand side term of (A.16) gives the total increase in ∆ during Stage I.

Next we show that the second right-hand term accounts for the rounds of Stage II. Stage

II charges 1/3 to each satisfied vertex. So it suffices to show that ≤ |S.| + ns2 − |T .| vertices get

charged. As already noted when Stage I ends, exactly |S.|+ns2 vertices are on ≥ 2 fractional edges.

Every vertex that is a singleton at some point during Stage II is included in this count. So each

charged vertex is in this count, as is each vertex of T .. Each charged vertex is on ≤ 1 fractional

edge after its round, and so is not in T .. Thus the number of charged vertices is ≤ |S.|+ ns2− |T .|

as desired.

235

When Stage II ends, each vertex of T3 has bias 1. So the analysis of greedy rounding in the

introduction to this section shows Stage III increases ∆ by at most the last 2 terms of (A.16). ♦

Using |L.′| = |T .|+ |N .′|, (A.16) simplifies to

∆ ≤ n

4
+
|N .′|

2
+

∆.

12
for ∆. = |S.|+ 2|T .| − 3|T3|+ ns2. (A.17)

To bound the Stage II terms, i.e., 2|T .|− 3|T3| = 2T2−T3 +2T 4, add together 3/2 times inequality

(A.13), 1/2 times inequality (A.14), and 3 times inequality (A.15), to get

2|T2| − |T3|+ 2|T 4| ≤ 1

2
(3|N .′|+ |S22|+ |S3|+ 7|S4|+ ns2 + 6ns4).

Thus

∆. ≤ 1

2
(3|N .′|+ 2|S21|+ 3|S22|+ 3|S3|+ 9|S4|+ 3ns2 + 6ns4).

To bound the “S” terms add 7 times inequality (A.11) and 2 times inequality (A.12) to get

2|S21|+ 4|S22|+ 3|S3|+ 10|S4| ≤ 18|N .| − 7
∑

i≥0

insi.

Since 7
∑

i≥0 insi ≥ 14ns2 ≥ 3ns2 + 6ns4, the last two inequalities combine to give ∆. ≤ (3|N .′|+

18|N .|)/2. Recalling that |N .|, |N .′| ≤ ν(k)n (Corollary 3), (A.17) gives

∆ ≤ n

4
+

33

24
ν(k)n =

n

4
+

11

8
ν(k)n.

The theorem follows, since the smallest k-ECSS has ≥ kn/2 edges.

A.4.2 The Refined Algorithm

To improve this algorithm we round additional edges in Stage I. For any extreme point

solution to LP (I) define

S33 = {v : v ∈ S3 and each of v’s 3 neighbors on fractional edges belongs to S2}.

Partition S33 into two sets, the “light” vertices of weight 1 and the “heavy” vertices of weight 2:

LS. = {v : v ∈ S33, dw(v) = 1}, HS. = {v : v ∈ S33, dw(v) = 2}.

236

0. Refined Stage I: solve LP (∅)
1. repeat until no edge gets rounded:
2. round a heavy pairing edge, or round the 3 fractional edges incident to a vertex of HS.
3. solve LP (I)

Figure A.11: The refined algorithm uses this Stage I plus Stages II–III of Fig.A.9.

Here w is the fractional weight function of the extreme solution. Stage I for the new algorithm is

given in Fig.A.11; Stages II–III are unchanged.

Note that the refined algorithm maintains the charging scheme of Stage I: When the edges

of an HS. vertex get rounded, all 4 vertices involved get satisfied and are left incident to ≤ 1

fractional edge. (The HS. vertex itself will be on no fractional edge.) The objective function

increases by exactly 1, since before the round the 3 edges have weight totalling to exactly 2. Thus

the charge to each vertex is exactly 1/4.

Theorem 4.9. For any k ≥ 7, the algorithm of Fig.A.11 approximates the smallest k-ECSS of a

simple graph to within a factor 1 + 1/2k + 5ν(k)/2k.

Proof. Define S., T . and their associated sets exactly as before. Throughout this proof F denotes

the set of fractional edges at the end of Stage I, and similarly w is defined at the end of Stage I.

The analysis is based on analogs of inequalities (A.11)–(A.15) plus 2 additional inequalities. (A.11)

is unchanged.

We use a tighter version of (A.12). Towards this end define U2 = T2 − S2, i.e., U2 consists of

the vertices that become T2 vertices during Stage II. Partition U2 into 2 sets:

U20 = {v : v ∈ U2, dF (v, V − S2) = 0}, U21 = {v : v ∈ U2, dF (v, V − S2) ≥ 1}.

Fig.A.10 illustrates these sets. (The 2 vertices of U2 with degree 2 were nonsingletons at the end

of Stage I.) The new version of (A.12) is

|S21|+ 2|S22|+ 2|U21| ≤ 2(|S3|+ |N .|). (A.18)

237

Proof of (A.18): Consider the end of Stage I. The total degree (w.r.t. dF) of all vertices of V −S2

is 2(|S.|+ |N .|)− 2|S2| = 2(|S3|+ |N .|), i.e., the right-hand side of (A.18). We show the left-hand

side is a lower bound for this total degree.

Every vertex of S21 (S22) is on 1 (2) fractional edges leading to a vertex not in S2, respec-

tively. In addition a vertex of U21 is on ≥ 1 fractional edge, neither end of which is in S2. This

gives the lower bound of the left-hand side. ♦

Inequality (A.13) holds unchanged. We rewrite (A.15) in a more precise form,

|T 4| ≤ |S4 ∩ T 4|+ ns4. (A.19)

We use a similar estimate for U20:

|U20| ≤ |LS33|+ |S4 ∩ T2|+ ns2. (A.20)

Proof of (A.20): Consider the end of Stage I, and take any vertex of v ∈ U20. The definition of

U2 shows dF (v) ≥ 2. So the last term of (A.20) accounts for the nonsingletons v. A singleton v

must belong to S3 ∪ S4 (by definition v /∈ S2). The next-to-last term of (A.20) accounts for the

vertices v ∈ S4.

The remaining possiblity is v ∈ S3. The definition of U20 then implies v ∈ S33. Furthermore

we must have v ∈ LS33, since HS. = ∅ at the end of Stage I. So the first right-hand side term of

(A.20) accounts for the last possibility. ♦

We need one more inequality to get a good estimate on |T2|:

|LS33|+ |S2 ∩ T2| ≤ |S22|. (A.21)

Proof of (A.21): Recall that S21 ∩ T2 = ∅. Hence S2 ∩ T2 = S22 ∩ T2 and (A.21) is equivalent

to |LS33| ≤ |S22 − T2|. We show this by associating to each vertex v ∈ LS33 a unique vertex

x ∈ S22 − T2.

238

As usual consider the end of Stage I. Since dw(v) = 1 some fractional edge (v, x) weighs

≤ 1/3. Let (x, y) be the other fractional edge incident to x; its weight is ≥ 2/3 since x ∈ S2. This

implies vertex y /∈ S2, since (x, y) was not rounded in Stage I. Thus x ∈ S22. Furthermore (x, y) is

a touching edge, and it gets rounded in the first iteration of Stage II. Thus x /∈ T2. We associate v

with x. Since x is on only 2 fractional edges, no other vertex of LS33 gets associated with x. ♦

To estimate |T2| first combine (A.20) and (A.21) to get |U20|+|S2∩T2| ≤ |S22|+|S4∩T2|+ns2.

By definition T2 is partitioned into sets S2 ∩ T2, U20 and U21. Hence

|T2| ≤ |S22|+ |S4 ∩ T2|+ ns2 + |U21|. (A.22)

Turning to the objective function, inequalities (A.16)–(A.17) hold as before. As before we

will derive an upper bound for ∆ .. Using (A.22) gives

∆. = |S.|+ 2|T .| − 3|T3|+ ns2

≤ (|T2| − |T3|+ 2|T 4|) + |S21|+ 2|S22|+ |S3|+ |S4 ∩ T2|+ 2ns2 + |U21|.

Add inequality (A.13), inequality (A.18), and 3 times inequality (A.19) to get

|S21|+ 2|S22|+ 2|U21|+ |T2| − |T3|+ 2|T 4| ≤ 2(|S3|+ |N .|) + 3|S4 ∩ T 4|+ 3ns4 + |N .′|.

Combining the last 2 inequalities and then using (A.11) shows ∆. is at most

3|S3|+2|N .|+3|S4|+3ns4 + |N .′|+2ns2 ≤ 8|N .|−3
∑

i≥0

insi +3ns4 + |N .′|+2ns2 ≤ 8|N .|+ |N .′|.

Since |N .|, |N .′| ≤ ν(k)n (Corollary 3) we get ∆. ≤ 9ν(k)n. Thus

∆ ≤ n

4
+ (

1

2
+

3

4
)ν(k)n =

n

4
+

5

4
ν(k)n.

The desired bound follows.

Appendix B

Full Results for Complex Survey

Here we give full results from our survey of MIPS complexes including all of the statistics

that we measured. We first list those complexes which induced a connected subgraph in the Y2H

data (connected complexes), then other complexes which do not induce a connected subgraph but

have interactions between their proteins in the Y2H data (disconnected complexes). Finally, we

include a list of complexes with no interactions between their proteins in our Y2H data.

B.1 Connected Complexes

For space reasons, statistics on complexes with MIPS ID numbers below 400 are in Tables

B.1 and B.2. Those with IDs from 400 to 500 are in Tables B.3 and B.4. Complexes with IDs

above 500 are in Tables B.5 and B.6.

240

Complex Pro. Type n m ED Max
Deg.

Min
Deg.

Ave.
Deg.

Deg.
Dev.

CC

90.10 3 Normal 3 2 0.67 2 1 1.33 0.47 0
110 4 Normal 4 4 0.67 3 1 2 0.71 0.6

Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

133.20 6 Normal 6 5 0.33 5 1 1.67 1.49 0
140.30.30.30 3 Normal 3 3 1 2 2 2 0 1

Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

260.20.10 4 Normal 4 3 0.5 2 1 1.5 0.5 0
260.70 3 Normal 3 2 0.67 2 1 1.33 0.47 0
270.20.10 3 Normal 3 3 1 2 2 2 0 1

Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

270.20.20 3 Normal 3 2 0.67 2 1 1.33 0.47 0
270.20.30 9 Normal 9 26 0.72 7 2 5.78 1.62 0.82

Haircut 9 26 0.72 7 2 5.78 1.62 0.82
MHCS 7 20 0.95 6 5 5.71 0.45 0.95

270.20.40 4 Normal 4 6 1 3 3 3 0 1
Haircut 4 6 1 3 3 3 0 1
MHCS 4 6 1 3 3 3 0 1

300 3 Normal 3 3 1 2 2 2 0 1
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

Table B.1: Statistics for MIPS complexes that induce a connected subgraph in the Y2H data.
Statistics include MIPS complex ID, number of proteins in the complex, type of subgraph (either
normal, haircut, or MHCS), number of proteins appearing in the Y2H data (n), and number of
interactions in the Y2H data. Also gives the edge density (ED), degree statistics (max, min, average,
and standard deviation), and clustering coefficient (CC).

241

Complex Type Ave.
MCC

MCC
Dev.

Max
Bet.

Min.
Bet.

Ave.
Bet.

Bet.
Dev.

Edge
Con.

Vert.
Con.

90.10 Normal 1 0 1 0 0.33 0.47 1 1
110 Normal 1 0 2 0 0.5 0.87 1 1

Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

133.20 Normal 1 0 10 0 1.67 3.73 1 1
140.30.30.30 Normal 1 0 0 0 0 0 2 2

Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

260.20.10 Normal 0.5 0.5 2 0 1 1 1 1
260.70 Normal 1 0 1 0 0.33 0.47 1 1
270.20.10 Normal 1 0 0 0 0 0 2 2

Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

270.20.20 Normal 1 0 1 0 0.33 0.47 1 1
270.20.30 Normal 0.9 0.19 3.77 0 1.22 1.17 2 2

Haircut 0.9 0.19 3.77 0 1.22 1.17 2 2
MHCS 1 0 0.2 0 0.14 0.09 5 5

270.20.40 Normal 1 0 0 0 0 0 3 3
Haircut 1 0 0 0 0 0 3 3
MHCS 1 0 0 0 0 0 3 3

300 Normal 1 0 0 0 0 0 2 2
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

Table B.2: Statistics for MIPS complexes that induce a connected subgraph in the Y2H data.
Statistics include MIPS complex ID, type of subgraph (either normal, haircut, or MHCS), mutual
clustering coefficient statistics (average and standard deviation), betweenness statistics (max, min,
average, and standard deviation), and edge and vertex connectivity.

242

Complex Pro. Type n m ED Max
Deg.

Min
Deg.

Ave.
Deg.

Deg.
Dev.

CC

410.10 6 Normal 6 9 0.6 4 1 3 1 0.71
Haircut 5 8 0.8 4 2 3.2 0.75 0.79
MHCS 4 6 1 3 3 3 0 1

410.20 8 Normal 8 15 0.54 5 1 3.75 1.48 0.72
Haircut 7 14 0.67 5 2 4 1.31 0.75
MHCS 5 10 1 4 4 4 0 1

410.33 4 Normal 3 2 0.67 2 1 1.33 0.47 0
410.40.90 3 Normal 2 1 1 1 1 1 0 N/A
410.40.100 3 Normal 3 2 0.67 2 1 1.33 0.47 0
440.10.10 5 Normal 5 6 0.6 3 1 2.4 0.8 0.6

Haircut 4 5 0.83 3 2 2.5 0.5 0.75
MHCS 4 5 0.83 3 2 2.5 0.5 0.75

440.12.20 9 Normal 8 14 0.5 6 1 3.5 1.5 0.55
Haircut 7 13 0.62 6 2 3.71 1.28 0.59
MHCS 6 11 0.73 5 3 3.67 0.75 0.68

440.12.30 3 Normal 3 3 1 2 2 2 0 1
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

440.14.10 10 Normal 9 16 0.44 7 1 3.56 1.77 0.49
Haircut 8 15 0.54 7 2 3.75 1.64 0.52
MHCS 6 11 0.73 5 3 3.67 0.75 0.68

450 6 Normal 6 5 0.33 5 1 1.67 1.49 0
470.10 6 Normal 6 9 0.6 5 2 3 1.15 0.55

Haircut 6 9 0.6 5 2 3 1.15 0.55
MHCS 6 9 0.6 5 2 3 1.15 0.55

470.20 5 Normal 5 8 0.8 4 3 3.2 0.4 0.67
Haircut 5 8 0.8 4 3 3.2 0.4 0.67
MHCS 5 8 0.8 4 3 3.2 0.4 0.67

470.30.10 3 Normal 3 2 0.67 2 1 1.33 0.47 0
480.10.05 3 Normal 3 3 1 2 2 2 0 1

Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

Table B.3: Statistics for MIPS complexes that induce a connected subgraph in the Y2H data.
Statistics include MIPS complex ID, number of proteins in the complex, type of subgraph (either
normal, haircut, or MHCS), number of proteins appearing in the Y2H data (n), and number of
interactions in the Y2H data. Also gives the edge density (ED), degree statistics (max, min, average,
and standard deviation), and clustering coefficient (CC).

243

Complex Type Ave.
MCC

MCC
Dev.

Max
Bet.

Min.
Bet.

Ave.
Bet.

Bet.
Dev.

Edge
Con.

Vert.
Con.

410.10 Normal 0.74 0.35 4 0 1.33 1.49 1 1
Haircut 1 0 1 0 0.4 0.49 2 2
MHCS 1 0 0 0 0 0 3 3

410.20 Normal 0.7 0.37 6 0 2.38 2.1 1 1
Haircut 0.9 0.22 2 0 1.14 0.99 2 2
MHCS 1 0 0 0 0 0 4 4

410.33 Normal 1 0 1 0 0.33 0.47 1 1
410.40.90 Normal N/A N/A 0 0 0 0 1 1
410.40.100 Normal 1 0 1 0 0.33 0.47 1 1
440.10.10 Normal 0.78 0.34 3 0 1 1.1 1 1

Haircut 1 0 0.5 0 0.25 0.25 2 2
MHCS 1 0 0.5 0 0.25 0.25 2 2

440.12.20 Normal 0.75 0.33 6.33 0 2.13 2.47 1 1
Haircut 0.86 0.21 4.17 0 1.14 1.44 2 2
MHCS 0.83 0.21 1.67 0 0.67 0.54 3 3

440.12.30 Normal 1 0 0 0 0 0 2 2
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

440.14.10 Normal 0.75 0.34 10 0 2.67 3.48 1 1
Haircut 0.85 0.22 7.67 0 1.63 2.47 2 2
MHCS 0.83 0.21 1.67 0 0.67 0.54 3 3

450 Normal 1 0 10 0 1.67 3.73 1 1
470.10 Normal 0.9 0.2 4 0 1 1.44 2 2

Haircut 0.9 0.2 4 0 1 1.44 2 2
MHCS 0.9 0.2 4 0 1 1.44 2 2

470.20 Normal 0.8 0.24 0.67 0.33 0.4 0.13 3 3
Haircut 0.8 0.24 0.67 0.33 0.4 0.13 3 3
MHCS 0.8 0.24 0.67 0.33 0.4 0.13 3 3

470.30.10 Normal 1 0 1 0 0.33 0.47 1 1
480.10.05 Normal 1 0 0 0 0 0 2 2

Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

Table B.4: Statistics for MIPS complexes that induce a connected subgraph in the Y2H data.
Statistics include MIPS complex ID, type of subgraph (either normal, haircut, or MHCS), mutual
clustering coefficient statistics (average and standard deviation), betweenness statistics (max, min,
average, and standard deviation), and edge and vertex connectivity.

244

Complex Pro. Type n m ED Max
Deg.

Min
Deg.

Ave.
Deg.

Deg.
Dev.

CC

510.20 4 Normal 4 3 0.5 3 1 1.5 0.87 0
510.70.20 12 Normal 12 11 0.17 6 1 1.83 1.34 0
510.180.30.30 3 Normal 3 2 0.67 2 1 1.33 0.47 0
510.180.50.10 3 Normal 3 2 0.67 2 1 1.33 0.47 0
510.180.20 5 Normal 5 5 0.5 4 1 2 1.1 0.38

Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

510.190.40 5 Normal 5 5 0.5 3 1 2 0.63 0
Haircut 4 4 0.67 2 2 2 0 0
MHCS 4 4 0.67 2 2 2 0 0

510.190.80 3 Normal 3 2 0.67 2 1 1.33 0.47 0
510.190.120 4 Normal 4 5 0.83 3 2 2.5 0.5 0.75

Haircut 4 5 0.83 3 2 2.5 0.5 0.75
MHCS 4 5 0.83 3 2 2.5 0.5 0.75

510.190.160.10 3 Normal 3 3 1 2 2 2 0 1
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

510.190.160.20 3 Normal 3 2 0.67 2 1 1.33 0.47 0
510.190.160.30 3 Normal 3 2 0.67 2 1 1.33 0.47 0
520.10.20 4 Normal 4 4 0.67 3 1 2 0.71 0.6

Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

520.20 9 Normal 9 19 0.53 8 2 4.22 1.75 0.44
Haircut 9 19 0.53 8 2 4.22 1.75 0.44
MHCS 8 17 0.61 7 3 4.25 1.3 0.48

520.30 3 Normal 2 1 1 1 1 1 0 N/A

Table B.5: Statistics for MIPS complexes that induce a connected subgraph in the Y2H data.
Statistics include MIPS complex ID, number of proteins in the complex, type of subgraph (either
normal, haircut, or MHCS), number of proteins appearing in the Y2H data (n), and number of
interactions in the Y2H data. Also gives the edge density (ED), degree statistics (max, min, average,
and standard deviation), and clustering coefficient (CC).

245

Complex Type Ave.
MCC

MCC
Dev.

Max
Bet.

Min.
Bet.

Ave.
Bet.

Bet.
Dev.

Edge
Con.

Vert.
Con.

510.20 Normal 1 0 3 0 0.75 1.3 1 1
510.70.20 Normal 0.3 0.44 40 0 12.5 14.17 1 1
510.180.30.30 Normal 1 0 1 0 0.33 0.47 1 1
510.180.50.10 Normal 1 0 1 0 0.33 0.47 1 1
510.180.20 Normal 1 0 5 0 1 2 1 1

Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

510.190.40 Normal 0.44 0.5 3.5 0 1.2 1.21 1 1
Haircut 0.33 0.47 0.5 0.5 0.5 0 2 2
MHCS 0.33 0.47 0.5 0.5 0.5 0 2 2

510.190.80 Normal 1 0 1 0 0.33 0.47 1 1
510.190.120 Normal 1 0 0.5 0 0.25 0.25 2 2

Haircut 1 0 0.5 0 0.25 0.25 2 2
MHCS 1 0 0.5 0 0.25 0.25 2 2

510.190.160.10 Normal 1 0 0 0 0 0 2 2
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

510.190.160.20 Normal 1 0 1 0 0.33 0.47 1 1
510.190.160.30 Normal 1 0 1 0 0.33 0.47 1 1
520.10.20 Normal 1 0 2 0 0.5 0.87 1 1

Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

520.20 Normal 0.78 0.28 8.78 0 1.89 2.7 2 2
Haircut 0.78 0.28 8.78 0 1.89 2.7 2 2
MHCS 0.75 0.29 4.78 0.2 1.38 1.45 3 3

520.30 Normal N/A N/A 0 0 0 0 1 1

Table B.6: Statistics for MIPS complexes that induce a connected subgraph in the Y2H data.
Statistics include MIPS complex ID, type of subgraph (either normal, haircut, or MHCS), mutual
clustering coefficient statistics (average and standard deviation), betweenness statistics (max, min,
average, and standard deviation), and edge and vertex connectivity.

246

B.2 Complexes with Some Interactions

For space reasons, statistics on complexes with MIPS ID numbers below 200 are in Tables

B.7 and B.8. Those with IDs from 200 to 300 are in Tables B.9 and B.10. Those with IDs from

300 to 425 are in Tables B.11 and B.12. Those with IDs from 425 to 500 are in Tables B.13 and

B.14. Those with IDs from 500 to 510.90 are in Tables B.15 and B.16. Complexes with IDs above

500.100 are in Tables B.17 and B.18.

247

Complex Pro. Type n m ED Max
Deg.

Min
Deg.

Ave.
Deg.

Deg.
Dev.

CC

60 11 Normal 11 11 0.2 4 0 2 1.21 0.16
Haircut 5 6 0.6 3 2 2.4 0.49 0.33
MHCS 5 6 0.6 3 2 2.4 0.49 0.33

100 3 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

120.20 4 Normal 4 1 0.17 1 0 0.5 0.5 N/A
MHCS 2 1 1 1 1 1 0 N/A

133.10 10 Normal 9 4 0.11 4 0 0.89 1.2 0
MHCS 5 4 0.4 4 1 1.6 1.2 0

133.40 4 Normal 4 1 0.17 1 0 0.5 0.5 N/A
MHCS 2 1 1 1 1 1 0 N/A

133.50 3 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

140.10.20 7 Normal 7 8 0.38 5 0 2.29 1.48 0.5
Haircut 5 7 0.7 4 2 2.8 0.75 0.64
MHCS 5 7 0.7 4 2 2.8 0.75 0.64

140.20.20 25 Normal 22 17 0.07 6 0 1.55 1.8 0.33
Haircut 7 11 0.52 6 2 3.14 1.36 0.5
MHCS 7 11 0.52 6 2 3.14 1.36 0.5

140.20.30 7 Normal 7 2 0.1 1 0 0.57 0.49 N/A
MHCS 2 1 1 1 1 1 0 N/A

140.30.10 4 Normal 4 1 0.17 1 0 0.5 0.5 N/A
MHCS 2 1 1 1 1 1 0 N/A

140.30.20 14 Normal 13 5 0.06 2 0 0.77 0.8 1
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

140.30.30.10 8 Normal 8 1 0.04 1 0 0.25 0.43 N/A
MHCS 2 1 1 1 1 1 0 N/A

160 7 Normal 7 3 0.14 2 0 0.86 0.83 0
MHCS 4 3 0.5 2 1 1.5 0.5 0

177 5 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

Table B.7: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H data
but have some interactions between their proteins. Statistics include MIPS complex ID, number of
proteins in the complex, type of subgraph (either normal, haircut, or MHCS), number of proteins
appearing in the Y2H data (n), and number of interactions in the Y2H data. Also gives the
edge density (ED), degree statistics (max, min, average, and standard deviation), and clustering
coefficient (CC).

248

Complex Type Ave.
MCC

MCC
Dev.

Max
Bet.

Min.
Bet.

Ave.
Bet.

Bet.
Dev.

Edge
Con.

Vert.
Con.

60 Normal 0.3 0.4 21.5 0 5.64 7.69 0 0
Haircut 0.55 0.42 1.5 0 0.8 0.6 2 2
MHCS 0.55 0.42 1.5 0 0.8 0.6 2 2

100 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

120.20 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

133.10 Normal 1 0 6 0 0.67 1.89 0 0
MHCS 1 0 6 0 1.2 2.4 1 1

133.40 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

133.50 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

140.10.20 Normal 0.93 0.17 6 0 1 2.05 0 0
Haircut 0.9 0.2 2 0 0.6 0.73 2 2
MHCS 0.9 0.2 2 0 0.6 0.73 2 2

140.20.20 Normal 0.34 0.43 27 0 3.77 7.54 0 0
Haircut 0.82 0.24 7.5 0 1.43 2.53 2 2
MHCS 0.82 0.24 7.5 0 1.43 2.53 2 2

140.20.30 Normal 0 0 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

140.30.10 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

140.30.20 Normal 0.16 0.36 0 0 0 0 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

140.30.30.10 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

160 Normal 0.5 0.5 2 0 0.57 0.9 0 0
MHCS 0.5 0.5 2 0 1 1 1 1

177 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

Table B.8: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H data
but have some interactions between their proteins. Statistics include MIPS complex ID, type of
subgraph (either normal, haircut, or MHCS), mutual clustering coefficient statistics (average and
standard deviation), betweenness statistics (max, min, average, and standard deviation), and edge
and vertex connectivity.

249

Complex Pro. Type n m ED Max
Deg.

Min
Deg.

Ave.
Deg.

Deg.
Dev.

CC

220 15 Normal 12 5 0.08 3 0 0.83 0.8 0
MHCS 4 3 0.5 3 1 1.5 0.87 0

230.20.10 6 Normal 5 2 0.2 2 0 0.8 0.75 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

230.20.20 16 Normal 15 8 0.08 3 0 1.07 0.85 0
MHCS 5 4 0.4 3 1 1.6 0.8 0

260.20.30 4 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

260.20.40 8 Normal 8 12 0.43 5 0 3 1.5 0.64
Haircut 7 12 0.57 5 2 3.43 1.05 0.64
MHCS 5 9 0.9 4 3 3.6 0.49 0.88

260.30.10 8 Normal 5 1 0.1 1 0 0.4 0.49 N/A
MHCS 2 1 1 1 1 1 0 N/A

260.30.20 11 Normal 9 7 0.19 3 0 1.56 0.83 0.43
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

260.50.10 8 Normal 7 1 0.05 1 0 0.29 0.45 N/A
MHCS 2 1 1 1 1 1 0 N/A

260.60 10 Normal 10 15 0.33 5 0 3 1.79 0.85
Haircut 6 13 0.87 5 3 4.33 0.75 0.87
MHCS 5 10 1 4 4 4 0 1

260.80 4 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

260.90 6 Normal 5 1 0.1 1 0 0.4 0.49 N/A
MHCS 2 1 1 1 1 1 0 N/A

270.10.10 4 Normal 4 2 0.33 2 0 1 0.71 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

290.10 9 Normal 6 3 0.2 2 0 1 0.82 0
MHCS 4 3 0.5 2 1 1.5 0.5 0

Table B.9: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H data
but have some interactions between their proteins. Statistics include MIPS complex ID, number of
proteins in the complex, type of subgraph (either normal, haircut, or MHCS), number of proteins
appearing in the Y2H data (n), and number of interactions in the Y2H data. Also gives the
edge density (ED), degree statistics (max, min, average, and standard deviation), and clustering
coefficient (CC).

250

Complex Type Ave.
MCC

MCC
Dev.

Max
Bet.

Min.
Bet.

Ave.
Bet.

Bet.
Dev.

Edge
Con.

Vert.
Con.

220 Normal 0.13 0.34 3 0 0.25 0.83 0 0
MHCS 1 0 3 0 0.75 1.3 1 1

230.20.10 Normal 1 0 1 0 0.2 0.4 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

230.20.20 Normal 0.12 0.33 5 0 0.8 1.47 0 0
MHCS 0.57 0.49 5 0 1.6 2.06 1 1

260.20.30 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

260.20.40 Normal 0.64 0.37 4.33 0 1.25 1.51 0 0
Haircut 0.64 0.37 4.33 0 1.43 1.54 2 2
MHCS 1 0 0.33 0 0.2 0.16 3 3

260.30.10 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

260.30.20 Normal 0.24 0.4 4 0 0.89 1.45 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

260.50.10 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

260.60 Normal 0.47 0.5 1 0 0.3 0.38 0 0
Haircut 1 0 0.67 0 0.33 0.33 3 3
MHCS 1 0 0 0 0 0 4 4

260.80 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

260.90 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

270.10.10 Normal 1 0 1 0 0.25 0.43 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

290.10 Normal 0.5 0.5 2 0 0.67 0.94 0 0
MHCS 0.5 0.5 2 0 1 1 1 1

Table B.10: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H
data but have some interactions between their proteins. Statistics include MIPS complex ID, type
of subgraph (either normal, haircut, or MHCS), mutual clustering coefficient statistics (average
and standard deviation), betweenness statistics (max, min, average, and standard deviation), and
edge and vertex connectivity.

251

Complex Pro. Type n m ED Max
Deg.

Min
Deg.

Ave.
Deg.

Deg.
Dev.

CC

310 13 Normal 12 2 0.03 2 0 0.33 0.62 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

310.10 4 Normal 4 2 0.33 2 0 1 0.71 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

310.40 6 Normal 5 1 0.1 1 0 0.4 0.49 N/A
MHCS 2 1 1 1 1 1 0 N/A

360.10.10 15 Normal 15 13 0.12 4 0 1.73 1.06 0
Haircut 4 4 0.67 2 2 2 0 0
MHCS 4 4 0.67 2 2 2 0 0

360.10.20 18 Normal 16 18 0.15 5 0 2.25 1.56 0.43
Haircut 8 12 0.43 4 2 3 0.71 0.69
MHCS 4 6 1 3 3 3 0 1

400 10 Normal 10 3 0.07 2 0 0.6 0.8 0
MHCS 4 3 0.5 2 1 1.5 0.5 0

410.30 16 Normal 15 16 0.15 4 0 2.13 1.15 0.64
Haircut 8 11 0.39 4 2 2.75 0.83 0.82
MHCS 4 6 1 3 3 3 0 1

410.35 20 Normal 18 18 0.12 4 0 2 1.2 0.68
Haircut 11 14 0.25 4 2 2.55 0.78 0.84
MHCS 4 6 1 3 3 3 0 1

410.40.30 5 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

420.30 10 Normal 6 1 0.07 1 0 0.33 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

Table B.11: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H
data but have some interactions between their proteins. Statistics include MIPS complex ID,
number of proteins in the complex, type of subgraph (either normal, haircut, or MHCS), number
of proteins appearing in the Y2H data (n), and number of interactions in the Y2H data. Also
gives the edge density (ED), degree statistics (max, min, average, and standard deviation), and
clustering coefficient (CC).

252

Complex Type Ave.
MCC

MCC
Dev.

Max
Bet.

Min.
Bet.

Ave.
Bet.

Bet.
Dev.

Edge
Con.

Vert.
Con.

310 Normal 1 0 1 0 0.08 0.28 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

310.10 Normal 1 0 1 0 0.25 0.43 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

310.40 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

360.10.10 Normal 0.15 0.31 45.5 0 12.8 13.56 0 0
Haircut 0.33 0.47 0.5 0.5 0.5 0 2 2
MHCS 0.33 0.47 0.5 0.5 0.5 0 2 2

360.10.20 Normal 0.31 0.42 47 0 10.19 15.37 0 0
Haircut 0.51 0.45 12.5 0 3.13 5.27 1 1
MHCS 1 0 0 0 0 0 3 3

400 Normal 0.5 0.5 2 0 0.4 0.8 0 0
MHCS 0.5 0.5 2 0 1 1 1 1

410.30 Normal 0.18 0.36 6 0 1.6 2.22 0 0
Haircut 0.46 0.5 1 0 0.25 0.43 0 0
MHCS 1 0 0 0 0 0 3 3

410.35 Normal 0.18 0.37 4 0 0.67 1.15 0 0
Haircut 0.29 0.45 1 0 0.18 0.39 0 0
MHCS 1 0 0 0 0 0 3 3

410.40.30 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

420.30 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

Table B.12: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H
data but have some interactions between their proteins. Statistics include MIPS complex ID, type
of subgraph (either normal, haircut, or MHCS), mutual clustering coefficient statistics (average
and standard deviation), betweenness statistics (max, min, average, and standard deviation), and
edge and vertex connectivity.

253

Complex Pro. Type n m ED Max
Deg.

Min
Deg.

Ave.
Deg.

Deg.
Dev.

CC

440.12.10 7 Normal 7 5 0.24 2 0 1.43 0.73 0
MHCS 6 5 0.33 2 1 1.67 0.47 0

440.30.10 37 Normal 29 16 0.04 5 0 1.1 1.32 0.11
Haircut 6 7 0.47 4 2 2.33 0.75 0.27
MHCS 4 4 0.67 2 2 2 0 0

440.30.10.10 3 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

440.30.20 24 Normal 18 4 0.03 2 0 0.44 0.68 0
MHCS 4 3 0.5 2 1 1.5 0.5 0

440.30.30 11 Normal 7 2 0.1 1 0 0.57 0.49 N/A
MHCS 2 1 1 1 1 1 0 N/A

440.40 13 Normal 7 1 0.05 1 0 0.29 0.45 N/A
MHCS 2 1 1 1 1 1 0 N/A

445.10 5 Normal 5 4 0.4 3 0 1.6 1.02 0.6
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

445.20 4 Normal 4 2 0.33 2 0 1 0.71 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

445.30 4 Normal 4 3 0.5 2 0 1.5 0.87 1
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

475.05 6 Normal 6 1 0.07 1 0 0.33 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

480.10 13 Normal 13 11 0.14 3 0 1.69 0.99 0.21
Haircut 8 9 0.32 3 2 2.25 0.43 0.25
MHCS 8 9 0.32 3 2 2.25 0.43 0.25

480.20 14 Normal 14 11 0.12 4 0 1.57 1.29 0.33
Haircut 4 5 0.83 3 2 2.5 0.5 0.75
MHCS 4 5 0.83 3 2 2.5 0.5 0.75

490 5 Normal 5 2 0.2 2 0 0.8 0.75 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

Table B.13: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H
data but have some interactions between their proteins. Statistics include MIPS complex ID,
number of proteins in the complex, type of subgraph (either normal, haircut, or MHCS), number
of proteins appearing in the Y2H data (n), and number of interactions in the Y2H data. Also
gives the edge density (ED), degree statistics (max, min, average, and standard deviation), and
clustering coefficient (CC).

254

Complex Type Ave.
MCC

MCC
Dev.

Max
Bet.

Min.
Bet.

Ave.
Bet.

Bet.
Dev.

Edge
Con.

Vert.
Con.

440.12.10 Normal 0.23 0.37 6 0 2.86 2.59 0 0
MHCS 0.23 0.37 6 0 3.33 2.49 1 1

440.30.10 Normal 0.15 0.32 46.5 0 4.41 10.71 0 0
Haircut 0.47 0.43 6.5 0 1.67 2.25 2 1
MHCS 0.33 0.47 0.5 0.5 0.5 0 2 2

440.30.10.10 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

440.30.20 Normal 0.17 0.37 2 0 0.22 0.63 0 0
MHCS 0.5 0.5 2 0 1 1 1 1

440.30.30 Normal 0 0 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

440.40 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

445.10 Normal 1 0 2 0 0.4 0.8 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

445.20 Normal 1 0 1 0 0.25 0.43 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

445.30 Normal 1 0 0 0 0 0 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

475.05 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

480.10 Normal 0.15 0.27 8 0 3.54 3.13 0 0
Haircut 0.25 0.31 5.5 0 3.75 1.66 2 2
MHCS 0.25 0.31 5.5 0 3.75 1.66 2 2

480.20 Normal 0.25 0.35 18 0 5.57 6.64 0 0
Haircut 1 0 0.5 0 0.25 0.25 2 2
MHCS 1 0 0.5 0 0.25 0.25 2 2

490 Normal 1 0 1 0 0.2 0.4 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

Table B.14: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H
data but have some interactions between their proteins. Statistics include MIPS complex ID, type
of subgraph (either normal, haircut, or MHCS), mutual clustering coefficient statistics (average
and standard deviation), betweenness statistics (max, min, average, and standard deviation), and
edge and vertex connectivity.

255

Complex Pro. Type n m ED Max
Deg.

Min
Deg.

Ave.
Deg.

Deg.
Dev.

CC

500.10.30 5 Normal 4 2 0.33 2 0 1 0.71 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

500.10.40 7 Normal 7 4 0.19 2 0 1.14 0.83 1
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

500.20.10 6 Normal 4 1 0.17 1 0 0.5 0.5 N/A
MHCS 2 1 1 1 1 1 0 N/A

500.40.10 81 Normal 20 2 0.01 2 0 0.2 0.51 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

500.50 13 Normal 6 5 0.33 4 0 1.67 1.25 0.38
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

510.10 14 Normal 14 9 0.1 5 0 1.29 1.16 0.25
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

510.30 3 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

510.40.10 13 Normal 13 8 0.1 4 0 1.23 0.97 0
MHCS 6 5 0.33 4 1 1.67 1.11 0

510.40.20 21 Normal 19 24 0.14 6 0 2.53 1.87 0.26
Haircut 10 17 0.38 6 2 3.4 1.28 0.37
MHCS 4 6 1 3 3 3 0 1

510.90 3 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

Table B.15: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H
data but have some interactions between their proteins. Statistics include MIPS complex ID,
number of proteins in the complex, type of subgraph (either normal, haircut, or MHCS), number
of proteins appearing in the Y2H data (n), and number of interactions in the Y2H data. Also
gives the edge density (ED), degree statistics (max, min, average, and standard deviation), and
clustering coefficient (CC).

256

Complex Type Ave.
MCC

MCC
Dev.

Max
Bet.

Min.
Bet.

Ave.
Bet.

Bet.
Dev.

Edge
Con.

Vert.
Con.

500.10.30 Normal 1 0 1 0 0.25 0.43 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

500.10.40 Normal 0.33 0.47 0 0 0 0 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

500.20.10 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

500.40.10 Normal 1 0 1 0 0.05 0.22 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

500.50 Normal 1 0 5 0 0.83 1.86 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

510.10 Normal 0.2 0.4 9 0 0.64 2.32 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

510.30 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

510.40.10 Normal 0.17 0.37 9 0 1.08 2.53 0 0
MHCS 0.64 0.48 9 0 2.17 3.39 1 1

510.40.20 Normal 0.27 0.39 48 0 8.63 13.29 0 0
Haircut 0.46 0.33 10 0 3.2 3.63 2 2
MHCS 1 0 0 0 0 0 3 3

510.90 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

Table B.16: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H
data but have some interactions between their proteins. Statistics include MIPS complex ID, type
of subgraph (either normal, haircut, or MHCS), mutual clustering coefficient statistics (average
and standard deviation), betweenness statistics (max, min, average, and standard deviation), and
edge and vertex connectivity.

257

Complex Pro. Type n m ED Max
Deg.

Min
Deg.

Ave.
Deg.

Deg.
Dev.

CC

510.100 9 Normal 9 6 0.17 3 0 1.33 0.94 0.5
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

510.110 3 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

510.120 13 Normal 13 5 0.06 2 0 0.77 0.7 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

510.140 3 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

510.150 5 Normal 4 2 0.33 2 0 1 0.71 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

510.160 4 Normal 4 3 0.5 2 0 1.5 0.87 1
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

510.180.10.10 3 Normal 3 1 0.33 1 0 0.67 0.47 N/A
MHCS 2 1 1 1 1 1 0 N/A

510.180.10.30 9 Normal 9 5 0.14 3 0 1.11 0.99 0.6
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

510.190.10.10 6 Normal 5 2 0.2 2 0 0.8 0.75 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

510.190.10.20.1016 Normal 15 8 0.08 3 0 1.07 0.85 0
MHCS 5 4 0.4 3 1 1.6 0.8 0

510.190.50 10 Normal 9 5 0.14 4 0 1.11 1.29 0.38
Haircut 3 3 1 2 2 2 0 1
MHCS 3 3 1 2 2 2 0 1

510.190.110 13 Normal 13 19 0.24 6 0 2.92 1.9 0.35
Haircut 10 17 0.38 6 2 3.4 1.43 0.41
MHCS 6 11 0.73 4 3 3.67 0.47 0.6

510.190.150 4 Normal 4 2 0.33 2 0 1 0.71 0
MHCS 3 2 0.67 2 1 1.33 0.47 0

Table B.17: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H
data but have some interactions between their proteins. Statistics include MIPS complex ID,
number of proteins in the complex, type of subgraph (either normal, haircut, or MHCS), number
of proteins appearing in the Y2H data (n), and number of interactions in the Y2H data. Also
gives the edge density (ED), degree statistics (max, min, average, and standard deviation), and
clustering coefficient (CC).

258

Complex Type Ave.
MCC

MCC
Dev.

Max
Bet.

Min.
Bet.

Ave.
Bet.

Bet.
Dev.

Edge
Con.

Vert.
Con.

510.100 Normal 0.33 0.47 2 0 0.33 0.67 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

510.110 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

510.120 Normal 0.09 0.28 1 0 0.15 0.36 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

510.140 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

510.150 Normal 1 0 1 0 0.25 0.43 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

510.160 Normal 1 0 0 0 0 0 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

510.180.10.10 Normal N/A N/A 0 0 0 0 0 0
MHCS N/A N/A 0 0 0 0 1 1

510.180.10.30 Normal 0.38 0.49 2 0 0.22 0.63 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

510.190.10.10 Normal 1 0 1 0 0.2 0.4 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

510.190.10.20.10Normal 0.12 0.33 5 0 0.8 1.47 0 0
MHCS 0.57 0.49 5 0 1.6 2.06 1 1

510.190.50 Normal 1 0 5 0 0.56 1.57 0 0
Haircut 1 0 0 0 0 0 2 2
MHCS 1 0 0 0 0 0 2 2

510.190.110 Normal 0.47 0.41 26.33 0 5.46 7.83 0 0
Haircut 0.48 0.37 19.67 0 4 5.53 2 1
MHCS 0.73 0.2 1.17 0.25 0.67 0.38 3 3

510.190.150 Normal 1 0 1 0 0.25 0.43 0 0
MHCS 1 0 1 0 0.33 0.47 1 1

Table B.18: Statistics for MIPS complexes that do not induce a connected subgraph in the Y2H
data but have some interactions between their proteins. Statistics include MIPS complex ID, type
of subgraph (either normal, haircut, or MHCS), mutual clustering coefficient statistics (average
and standard deviation), betweenness statistics (max, min, average, and standard deviation), and
edge and vertex connectivity.

259

B.3 Complexes with no interactions

Complex Pro. n Complex Pro. n

20 3 3 410.40.60 4 3
120.10 4 3 410.50 4 1
130 8 4 420.20 4 1
140.30.30.20 3 2 420.40 11 1
180.30 3 1 420.50 18 6
190.10 3 1 420.60 14 0
200 4 1 430 4 3
210 4 3 440.10.20 4 3
240.20 3 3 440.10.30 3 2
260.20.20 4 2 440.20 4 1
260.30.30.10 3 1 440.30 3 3
260.50.20 8 6 475.10 3 3
270.10 3 3 500.10.20 3 2
290.20.10 5 1 500.10.80 3 3
320 8 5 500.10.110 3 3
330 3 1 500.40.20 57 14
360.10 3 3 500.60 4 1
390 5 3 500.60.10 44 5
410.40.20 3 3 500.60.20 31 9

Table B.19: MIPS complexes that have no interactions between their proteins in Y2H data. Statis-
tics include MIPS complex ID, number of proteins in the complex, and number of proteins appearing
in the Y2H data (n).

