24 research outputs found

    The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata

    Get PDF
    In this paper we give two equivalent characterizations of the Caucal hierarchy, a hierarchy of infinite graphs with a decidable monadic second-order (MSO) theory. It is obtained by iterating the graph transformations of unfolding and inverse rational mapping. The first characterization sticks to this hierarchical approach, replacing the language-theoretic operation of a rational mapping by an MSO-transduction and the unfolding by the treegraph operation. The second characterization is non-iterative. We show that the family of graphs of the Caucal hierarchy coincides with the family of graphs obtained as the ε-closure of configuration graphs of higher-order pushdown automata. While the different characterizations of the graph family show their robustness and thus also their importance, the characterization in terms of higher-order pushdown automata additionally yields that the graph hierarchy is indeed strict

    On Word and Frontier Languages of Unsafe Higher-Order Grammars

    Get PDF
    Higher-order grammars are an extension of regular and context-free grammars, where nonterminals may take parameters. They have been extensively studied in 1980\u27s, and restudied recently in the context of model checking and program verification. We show that the class of unsafe order-(n+1) word languages coincides with the class of frontier languages of unsafe order-n tree languages. We use intersection types for transforming an order-(n+1) word grammar to a corresponding order-n tree grammar. The result has been proved for safe languages by Damm in 1982, but it has been open for unsafe languages, to our knowledge. Various known results on higher-order grammars can be obtained as almost immediate corollaries of our result

    Pumping Lemma for Higher-order Languages

    Get PDF
    We study a pumping lemma for the word/tree languages generated by higher-order grammars. Pumping lemmas are known up to order-2 word languages (i.e., for regular/context-free/indexed languages), and have been used to show that a given language does not belong to the classes of regular/context-free/indexed languages. We prove a pumping lemma for word/tree languages of arbitrary orders, modulo a conjecture that a higher-order version of Kruskal\u27s tree theorem holds. We also show that the conjecture indeed holds for the order-2 case, which yields a pumping lemma for order-2 tree languages and order-3 word languages

    Parity to Safety in Polynomial Time for Pushdown and Collapsible Pushdown Systems

    Get PDF
    We give a direct polynomial-time reduction from parity games played over the configuration graphs of collapsible pushdown systems to safety games played over the same class of graphs. That a polynomial-time reduction would exist was known since both problems are complete for the same complexity class. Coming up with a direct reduction, however, has been an open problem. Our solution to the puzzle brings together a number of techniques for pushdown games and adds three new ones. This work contributes to a recent trend of liveness to safety reductions which allow the advanced state-of-the-art in safety checking to be used for more expressive specifications

    Spatial Existential Positive Logics for Hyperedge Replacement Grammars

    Get PDF
    We study a (first-order) spatial logic based on graphs of conjunctive queries for expressing (hyper-)graph languages. In this logic, each primitive positive (resp. existential positive) formula plays a role of an expression of a graph (resp. a finite language of graphs) modulo graph isomorphism. First, this paper presents a sound- and complete axiomatization for the equational theory of primitive/existential positive formulas under this spatial semantics. Second, we show Kleene theorems between this logic and hyperedge replacement grammars (HRGs), namely that over graphs, the class of existential positive first-order (resp. least fixpoint, transitive closure) formulas has the same expressive power as that of non-recursive (resp. all, linear) HRGs

    A B\"uchi-Elgot-Trakhtenbrot theorem for automata with MSO graph storage

    Full text link
    We introduce MSO graph storage types, and call a storage type MSO-expressible if it is isomorphic to some MSO graph storage type. An MSO graph storage type has MSO-definable sets of graphs as storage configurations and as storage transformations. We consider sequential automata with MSO graph storage and associate with each such automaton a string language (in the usual way) and a graph language; a graph is accepted by the automaton if it represents a correct sequence of storage configurations for a given input string. For each MSO graph storage type, we define an MSO logic which is a subset of the usual MSO logic on graphs. We prove a B\"uchi-Elgot-Trakhtenbrot theorem, both for the string case and the graph case. Moreover, we prove that (i) each MSO graph transduction can be used as storage transformation in an MSO graph storage type, (ii) every automatic storage type is MSO-expressible, and (iii) the pushdown operator on storage types preserves the property of MSO-expressibility. Thus, the iterated pushdown storage types are MSO-expressible

    Reachability in Higher-Order-Counters

    Full text link
    Higher-order counter automata (\HOCS) can be either seen as a restriction of higher-order pushdown automata (\HOPS) to a unary stack alphabet, or as an extension of counter automata to higher levels. We distinguish two principal kinds of \HOCS: those that can test whether the topmost counter value is zero and those which cannot. We show that control-state reachability for level kk \HOCS with 00-test is complete for \mbox{(k−2)(k-2)}-fold exponential space; leaving out the 00-test leads to completeness for \mbox{(k−2)(k-2)}-fold exponential time. Restricting \HOCS (without 00-test) to level 22, we prove that global (forward or backward) reachability analysis is \PTIME-complete. This enhances the known result for pushdown systems which are subsumed by level 22 \HOCS without 00-test. We transfer our results to the formal language setting. Assuming that \PTIME \subsetneq \PSPACE \subsetneq \mathbf{EXPTIME}, we apply proof ideas of Engelfriet and conclude that the hierarchies of languages of \HOPS and of \HOCS form strictly interleaving hierarchies. Interestingly, Engelfriet's constructions also allow to conclude immediately that the hierarchy of collapsible pushdown languages is strict level-by-level due to the existing complexity results for reachability on collapsible pushdown graphs. This answers an open question independently asked by Parys and by Kobayashi.Comment: Version with Full Proofs of a paper that appears at MFCS 201

    MSO definable string transductions and two-way finite state transducers

    Full text link
    String transductions that are definable in monadic second-order (mso) logic (without the use of parameters) are exactly those realized by deterministic two-way finite state transducers. Nondeterministic mso definable string transductions (i.e., those definable with the use of parameters) correspond to compositions of two nondeterministic two-way finite state transducers that have the finite visit property. Both families of mso definable string transductions are characterized in terms of Hennie machines, i.e., two-way finite state transducers with the finite visit property that are allowed to rewrite their input tape.Comment: 63 pages, LaTeX2e. Extended abstract presented at 26-th ICALP, 199

    Parity to safety in polynomial time for pushdown and collapsible pushdown systems

    Get PDF
    We give a direct polynomial-time reduction from parity games played over the configuration graphs of collapsible pushdown systems to safety games played over the same class of graphs. That a polynomial-time reduction would exist was known since both problems are complete for the same complexity class. Coming up with a direct reduction, however, has been an open problem. Our solution to the puzzle brings together a number of techniques for pushdown games and adds three new ones. This work contributes to a recent trend of liveness to safety reductions which allow the advanced state-of-the-art in safety checking to be used for more expressive specifications
    corecore