1,382 research outputs found

    An efficient genetic algorithm for large-scale planning of robust industrial wireless networks

    Get PDF
    An industrial indoor environment is harsh for wireless communications compared to an office environment, because the prevalent metal easily causes shadowing effects and affects the availability of an industrial wireless local area network (IWLAN). On the one hand, it is costly, time-consuming, and ineffective to perform trial-and-error manual deployment of wireless nodes. On the other hand, the existing wireless planning tools only focus on office environments such that it is hard to plan IWLANs due to the larger problem size and the deployed IWLANs are vulnerable to prevalent shadowing effects in harsh industrial indoor environments. To fill this gap, this paper proposes an overdimensioning model and a genetic algorithm based over-dimensioning (GAOD) algorithm for deploying large-scale robust IWLANs. As a progress beyond the state-of-the-art wireless planning, two full coverage layers are created. The second coverage layer serves as redundancy in case of shadowing. Meanwhile, the deployment cost is reduced by minimizing the number of access points (APs); the hard constraint of minimal inter-AP spatial paration avoids multiple APs covering the same area to be simultaneously shadowed by the same obstacle. The computation time and occupied memory are dedicatedly considered in the design of GAOD for large-scale optimization. A greedy heuristic based over-dimensioning (GHOD) algorithm and a random OD algorithm are taken as benchmarks. In two vehicle manufacturers with a small and large indoor environment, GAOD outperformed GHOD with up to 20% less APs, while GHOD outputted up to 25% less APs than a random OD algorithm. Furthermore, the effectiveness of this model and GAOD was experimentally validated with a real deployment system

    Approximating Probability Densities by Iterated Laplace Approximations

    Full text link
    The Laplace approximation is an old, but frequently used method to approximate integrals for Bayesian calculations. In this paper we develop an extension of the Laplace approximation, by applying it iteratively to the residual, i.e., the difference between the current approximation and the true function. The final approximation is thus a linear combination of multivariate normal densities, where the coefficients are chosen to achieve a good fit to the target distribution. We illustrate on real and artificial examples that the proposed procedure is a computationally efficient alternative to current approaches for approximation of multivariate probability densities. The R-package iterLap implementing the methods described in this article is available from the CRAN servers.Comment: to appear in Journal of Computational and Graphical Statistics, http://pubs.amstat.org/loi/jcg

    Benchmarking a wide spectrum of metaheuristic techniques for the radio network design problem

    Get PDF
    The radio network design (RND) is an NP-hard optimization problem which consists of the maximization of the coverage of a given area while minimizing the base station deployment. Solving RND problems efficiently is relevant to many fields of application and has a direct impact in the engineering, telecommunication, scientific, and industrial areas. Numerous works can be found in the literature dealing with the RND problem, although they all suffer from the same shortfall: a noncomparable efficiency. Therefore, the aim of this paper is twofold: first, to offer a reliable RND comparison base reference in order to cover a wide algorithmic spectrum, and, second, to offer a comprehensible insight into accurate comparisons of efficiency, reliability, and swiftness of the different techniques applied to solve the RND problem. In order to achieve the first aim we propose a canonical RND problem formulation driven by two main directives: technology independence and a normalized comparison criterion. Following this, we have included an exhaustive behavior comparison between 14 different techniques. Finally, this paper indicates algorithmic trends and different patterns that can be observed through this analysis.Publicad
    • …
    corecore