467,156 research outputs found

    Identifying Design Requirements for Wireless Routing Link Metrics

    Full text link
    In this paper, we identify and analyze the requirements to design a new routing link metric for wireless multihop networks. Considering these requirements, when a link metric is proposed, then both the design and implementation of the link metric with a routing protocol become easy. Secondly, the underlying network issues can easily be tackled. Thirdly, an appreciable performance of the network is guaranteed. Along with the existing implementation of three link metrics Expected Transmission Count (ETX), Minimum Delay (MD), and Minimum Loss (ML), we implement inverse ETX; invETX with Optimized Link State Routing (OLSR) using NS-2.34. The simulation results show that how the computational burden of a metric degrades the performance of the respective protocol and how a metric has to trade-off between different performance parameters

    Towards a Practical and Fair Rate Allocation for Multihop Wireless Networks based on a Simple Node Model

    Get PDF
    IEEE 802.11 is often considered as the underlying wireless technology of multihop wireless networks. But the use of 802.11 in such networks raises issues, like efficiency and/or fairness issues. Different kinds of solutions have been proposed to overcome these problems. One approach is to design new MAC protocols that provide alternatives to the IEEE 802.11 MAC protocol. Although these solutions are of some interest, it should probably take some time before new wireless network interface cards based on one of these solutions are developed and released. Another approach is to consider that 802.11 will remain the underlying wireless technology and to design solutions above it. Several solutions based on rate allocation have been proposed so far. The main drawback of the proposed solutions is that they rely on a radio medium sharing model that is difficult to compute in a wireless, distributed and mobile environment. Indeed, very few of these solutions have been derived into a network protocol. In this article, we propose a distributed and dynamic rate allocation solution that is based on a simple sharing model. Due to its simplicity, we can derive a network protocol that can be practically used in multihop wireless networks. This protocol provides a fair bandwidth sharing between end-to-end flows while maintaining an efficient overall throughput in the network. This solution has been implemented in NS2 and evaluated by simulations

    A formally verified AKA protocol for vertical handover in heterogeneous environments using Casper/FDR

    Get PDF
    Next generation networks will comprise different wireless networks including cellular technologies, WLAN and indoor technologies. To support these heterogeneous environments, there is a need to consider a new design of the network infrastructure. Furthermore, this heterogeneous environment implies that future devices will need to roam between different networks using vertical handover techniques. When a mobile user moves into a new foreign network, data confidentiality and mutual authentication between the user and the network are vital issues in this heterogeneous environment. This article deals with these issues by first examining the implication of moving towards an open architecture, and then looking at how current approaches such as the 3GPP, HOKEY and mobile ethernet respond to the new environment while trying to address the security issue. The results indicate that a new authentication and key agreement protocol is required to secure handover in this environment. Casper/FDR, is used in the analysis and development of the protocol. The proposed protocol has been proven to be successful in this heterogeneous environment

    An Efficient Authentication Protocol Based on Chebyshev Chaotic Map for Intelligent Transportation

    Get PDF
    For meeting the demands of safety, traffic management, and high mobility, vehicular adhoc network (VANET) has become a promising component for smart transportation systems. However, the wireless environment of vehicular network leads to various challenges in the communication security. Hence, several authentication schemes have previously been proposed to address VANET security issues but their procedures disregard the balance between effectiveness and security. Thus, this paper presents a new decentralized authentication protocol that relies on lightweight functions such as the Chebyshev chaotic map and logical shift operator to achieve the high mobility requirement. In order to reduce the number of messages transferred over the network, this protocol attempts to eliminate any redundant authentication steps during its authentication stage. Additionally, the new protocol solves key management problems by applying a little modification to the public key infrastructure to ignore certificates transmission over the network. The proposed design incorporates the self-authentication concept to safeguard the vehicle trip route on the road. Moreover, the performance evaluation is conducted to verify that the proposed protocol outperforms the most related scheme in terms of security and efficiency aspects. Finally, the Scyther simulation validates the security robustness of the new protocol

    An Efficient Authentication Protocol Based on Chebyshev Chaotic Map for Intelligent Transportation

    Get PDF
    For meeting the demands of safety, traffic management, and high mobility, vehicular adhoc network (VANET) has become a promising component for smart transportation systems. However, the wireless environment of vehicular network leads to various challenges in the communication security. Hence, several authentication schemes have previously been proposed to address VANET security issues but their procedures disregard the balance between effectiveness and security. Thus, this paper presents a new decentralized authentication protocol that relies on lightweight functions such as the Chebyshev chaotic map and logical shift operator to achieve the high mobility requirement. In order to reduce the number of messages transferred over the network, this protocol attempts to eliminate any redundant authentication steps during its authentication stage. Additionally, the new protocol solves key management problems by applying a little modification to the public key infrastructure to ignore certificates transmission over the network. The proposed design incorporates the self-authentication concept to safeguard the vehicle trip route on the road. Moreover, the performance evaluation is conducted to verify that the proposed protocol outperforms the most related scheme in terms of security and efficiency aspects. Finally, the Scyther simulation validates the security robustness of the new protocol

    MAC Protocol Design for Smart Meter Network

    Get PDF
    The new generation of power metering system—that is advanced metering infrastructure (AMI)—is expected to enable remote reading, control, demand response and other advanced functions, based on the integration of a new two-way communication network, which will be referred as Smart Meter Network (SMN). In this chapter, we focus on the design principles of multiple access control (MAC) protocols for SMN. First, we list several features of SMN relevant to the design choice of the MAC protocols. Next, we introduce some performance evaluation metrics and give a survey of the associated research issues for the SMN MAC protocols’ design. In addition, we also note progress within the new IEEE standardization task group (IEEE 802.11ah TG) currently working to create SMN standards. After that, in order to emphasize the importance of the performance metrics mentioned before, we give several MAC protocol design examples which could solve the associated research issues and challenges for the SMN

    Building a more sustainable sensor network via protocol innovation

    Get PDF
    Traditionally, network protocols are designed based on the assumptions that network is powered by small batteries with scarce energy supply. However, emerging energy replenishment technologies such as ambient energy harvesting, wireless energy transferring, etc., provide alternatives to address the energy constraint problem but also introduce new challenges (e.g., energy heterogeneity). Been the core to achieve network sustainability, novel network protocols shall be designed to better exploit energy availabilities and tackle new challenges or issues exposed by emerging energy replenishment technologies. In this dissertation, we study how to build a more sustainable sensor network via network protocol innovation. Specifically, the study is conducted in four directions. First of all, we study how to improve energy utilization efficiency on individual sensor nodes as a foundation to improve the network sustainability. Secondly, we study how to prolong the network lifetime as a whole through dynamically and collaboratively tuning MAC layer operational parameters between neighboring nodes. Thirdly, we study the cross-layer design technique and propose a holistic routing and MAC protocol to further prolong the network lifetime. Fourthly, with given sensing coverage constraints, we jointly optimize the routing and sensing behaviors to further improve the network sustainability

    System level modelling and design of hypergraph based wireless system area networks for multi-computer systems

    Get PDF
    This thesis deals with issues pertaining the wireless multicomputer interconnection networks namely topology and Medium Access Control (MAC). It argues that new channel assignment technique based on regular low-dimensional hypergraph networks, the dual radio wireless hypermesh, represents a promising alternative high-performance wireless interconnection network for the future multicomputers to shared communication medium networks and/or ordinary wireless mesh networks, which have been widely used in current wireless networks. The focus of this work is on improving the network throughput while maintaining a relatively low latency of a wireless network system. By means of a Carrier Sense Multiple Access (CSMA) based design of the MAC protocol and based on the desirable features of hypermesh network topology a relatively high performance network has been introduced. Compared to the CSMA shared communication channel model, which is currently the de facto MAC protocol for most of wireless networks, our design is shown to achieve a significant increase in network throughput with less average network latency for large number of communication nodes. SystemC model of the proposed wireless hypermesh, validated through mathematical models, are then introduced. The analysis has been incorporated in the proper SystemC design methodology which facilitates the integration of communication modelling into the design modelling at the early stages of the system development. Another important application of SystemC modelling techniques is to perform meaningful comparative studies of different protocols, or new implementations to determine which communication scenario performs better and the ability to modify models to test system sensitivity and tune performance. Effects of different design parameters (e.g., packet sizes, number of nodes) has been carried out throughout this work. The results shows that the proposed structure has out perform the existing shared medium network structure and it can support relatively high number of wireless connected computers than conventional networks
    • …
    corecore