4,696 research outputs found

    Diversity, competition, extinction: the ecophysics of language change

    Get PDF
    As early indicated by Charles Darwin, languages behave and change very much like living species. They display high diversity, differentiate in space and time, emerge and disappear. A large body of literature has explored the role of information exchanges and communicative constraints in groups of agents under selective scenarios. These models have been very helpful in providing a rationale on how complex forms of communication emerge under evolutionary pressures. However, other patterns of large-scale organization can be described using mathematical methods ignoring communicative traits. These approaches consider shorter time scales and have been developed by exploiting both theoretical ecology and statistical physics methods. The models are reviewed here and include extinction, invasion, origination, spatial organization, coexistence and diversity as key concepts and are very simple in their defining rules. Such simplicity is used in order to catch the most fundamental laws of organization and those universal ingredients responsible for qualitative traits. The similarities between observed and predicted patterns indicate that an ecological theory of language is emerging, supporting (on a quantitative basis) its ecological nature, although key differences are also present. Here we critically review some recent advances lying and outline their implications and limitations as well as open problems for future research.Comment: 17 Pages. A review on current models from statistical Physics and Theoretical Ecology applied to study language dynamic

    ORBITAL ANGULAR MOMENTUM ORTHOGONALITY-BASED CROSSTALK REDUCTION: THEORY AND EXPERIMENT

    Get PDF
    Full duplex communication systems allow a single channel to be used for simultaneous two-way communication, increasing spectral efficiency. However, full duplex communication systems suffer from the issue of self-interference between local transmitter and receiver antennas. Analog subtraction and signal processing methods have previously been used to reduce this problem. This dissertation proposes the use of waves carrying orbital angular momentum (OAM) to mitigate the problem of self-interference by offering a means of additional isolation between local antennas. Orbital angular momentum has been widely studied both in the photonics and radio domain. The theoretically infinite orthogonal states of an OAM signal make it highly desirable in the field of communication. The application of OAM in a full duplex system, may be the answer to the problem of self-interference. This dissertation shows how the use of OAM waves may create an additional isolation between local antennas in a full duplex system. Motivated by the promise that OAM orthogonality holds, this dissertation explores the crosstalk reduction achieved through OAM. One of the main contributions of this dissertation is to provide insight into the nature of the effect. It motivates OAM orthogonality as a direction of research for use in future full duplex systems. The effect of OAM on crosstalk must be studied experimentally and theoretically. To this effect, a patch array antenna was designed using the High Frequency Simulation Software (HFSS), to generate OAM beams. The designed antennas are fabricated and characterized. This dissertation discusses the experiments carried out to determine the amount of crosstalk reduction achieved due to the OAM nature of the signal transmitted. The impact of the change in distance between the local transmitter and receiver antennas on crosstalk is also studied. The results obtained are verified through theoretical analysis using simulations in HFSS. This dissertation reports a maximum theoretical crosstalk reduction of 3.6dB, and a crosstalk reduction of 2.6 dB realized experimentally. Building on these results, a compact, more practical antenna configuration was designed. This nested design yields more than 60dB crosstalk reduction and provides for a more elegant system realization. The dissertation includes the design of a parabolic dish antenna to build a complete system, which is also studied in this dissertation. The symmetry of the nested antenna configuration allows for analytic theoretical study which is included herein. The study mathematically proves the orthogonality of OAM modes, and the isolation between two antennas with different OAM modes. A similar study is simulated in HFSS using coaxial based loop antennas, and the crosstalk in the nested design is investigated. The design offers a crosstalk isolation of more than 90dB, and further affirms the mathematical analysis. This dissertation provides a detailed analysis of the isolation offered by OAM orthogonality in local antennas which can be useful in a full duplex system. The work consists of practical, simulated, and mathematical investigation, and considers various antenna configurations and designs. Additionally, it presents and analyses a design for a full duplex system

    Dietary carotenoids and the complex role of redness in the behavior of the firemouth cichlid Thorichthys meeki.

    Get PDF
    This dissertation takes a comprehensive approach to the role of dietary carotenoids on redness and the subsequent behaviors in the firemouth cichlid, Thorichthys meeki. I start with a brief introduction into signaling, the importance of carotenoids, and mate choice. The dissertation is then divided into three data chapters which are designed to stand as independent manuscripts. Chapter II documents how altering the availability of dietary carotenoids affects redness in the integument of male and female T. meeki. I tracked how redness changed in color and distribution in individuals over the course of 12 weeks. I confirm that a dichotomy in redness can be obtained in this time period via diet alone. However, carotenoids are used by animals for more than red ornamentation including color vision. To account for this potential effect of carotenoids in my study animals, I examined if color vision was affected by the high- and low-carotenoid diet treatments (chapter III). Furthermore, I determined whether redness (a trait for which T. meeki is named) is innately attractive to this species (chapter III). The sensory bias hypothesis suggests that males and females utilize traits that are innately appealing to the opposite sex to attract a mate. My final data chapter examines whether males and females use redness and other visual displays as a signal in mate selection (chapter IV). I conclude this dissertation by summarizing my findings and proposing future directions in which I wish to examine this system further (chapter V)

    β-adrenergic-mediated dynamic augmentation of sarcolemmal CaV 1.2 clustering and co-operativity in ventricular myocytes.

    Get PDF
    Key pointsPrevailing dogma holds that activation of the β-adrenergic receptor/cAMP/protein kinase A signalling pathway leads to enhanced L-type CaV 1.2 channel activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. However, the full mechanistic and molecular details underlying this phenomenon are incompletely understood. CaV 1.2 channel clusters decorate T-tubule sarcolemmas of ventricular myocytes. Within clusters, nanometer proximity between channels permits Ca2+ -dependent co-operative gating behaviour mediated by physical interactions between adjacent channel C-terminal tails. We report that stimulation of cardiomyocytes with isoproterenol, evokes dynamic, protein kinase A-dependent augmentation of CaV 1.2 channel abundance along cardiomyocyte T-tubules, resulting in the appearance of channel 'super-clusters', and enhanced channel co-operativity that amplifies Ca2+ influx. On the basis of these data, we suggest a new model in which a sub-sarcolemmal pool of pre-synthesized CaV 1.2 channels resides in cardiomyocytes and can be mobilized to the membrane in times of high haemodynamic or metabolic demand, to tune excitation-contraction coupling.AbstractVoltage-dependent L-type CaV 1.2 channels play an indispensable role in cardiac excitation-contraction coupling. Activation of the β-adrenergic receptor (βAR)/cAMP/protein kinase A (PKA) signalling pathway leads to enhanced CaV 1.2 activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. CaV 1.2 channels exhibit a clustered distribution along the T-tubule sarcolemma of ventricular myocytes where nanometer proximity between channels permits Ca2+ -dependent co-operative gating behaviour mediated by dynamic, physical, allosteric interactions between adjacent channel C-terminal tails. This amplifies Ca2+ influx and augments myocyte Ca2+ transient and contraction amplitudes. We investigated whether βAR signalling could alter CaV 1.2 channel clustering to facilitate co-operative channel interactions and elevate Ca2+ influx in ventricular myocytes. Bimolecular fluorescence complementation experiments reveal that the βAR agonist, isoproterenol (ISO), promotes enhanced CaV 1.2-CaV 1.2 physical interactions. Super-resolution nanoscopy and dynamic channel tracking indicate that these interactions are expedited by enhanced spatial proximity between channels, resulting in the appearance of CaV 1.2 'super-clusters' along the z-lines of ISO-stimulated cardiomyocytes. The mechanism that leads to super-cluster formation involves rapid, dynamic augmentation of sarcolemmal CaV 1.2 channel abundance after ISO application. Optical and electrophysiological single channel recordings confirm that these newly inserted channels are functional and contribute to overt co-operative gating behaviour of CaV 1.2 channels in ISO stimulated myocytes. The results of the present study reveal a new facet of βAR-mediated regulation of CaV 1.2 channels in the heart and support the novel concept that a pre-synthesized pool of sub-sarcolemmal CaV 1.2 channel-containing vesicles/endosomes resides in cardiomyocytes and can be mobilized to the sarcolemma to tune excitation-contraction coupling to meet metabolic and/or haemodynamic demands

    Bifurcation in Weighted Digraphs and Their Applications in Ecology

    Get PDF
    Merrill (2010) described bifurcation in a Markov chain by examining the eigenvalues of the associated probability matrix. The bifurcation point is that point where the dynamics of the system’s structure changes. He recognized a change in the dynamics of a sample path in a Markov chain when the nature of its eigenvalues changes. We built upon this work and found that not all changes in Markov chain dynamics are accompanied by change in the nature of the eigenvalues. And we introduce other measures that will recognize a change in dynamics. This was applied to solve the problem of evaluating the effectiveness of an ecological corridor. This was also used as a measure to examine bifurcation in metapopulation dynamics.Ovaskeinan and Hanski (2003) gave four definitions of patch value (contribution of a patch to metapopulation dynamics and persistence). One of them denotes a patch value as W_i, the contribution of patch i to colonization in the patch network. It is the left leading eigenvector of matrix B whose entries, b_ij=(p_j c_ij)/(∑▒〖p_k c_ik 〗). This is a Markov chain, where p_i is the probability that patch i is occupied, c_ij is the contribution that occupied patch j makes to the colonization rate of empty patch i. This matrix is in the family of coperiodic cospectral, which will be introduced in this dissertation. Therefore, it could be an effective tool in studying metapopulation dynamics. The goal is to evaluate the effectiveness of corridor introduction on species persistence, richness, and ecosystem dynamics. We focused our application on available data from the Osceola-Ocala black bears in Florida

    Information Processing and Distributed Computation in Plant Organs

    Get PDF
    The molecular networks plant cells evolved to tune their development in response to the environment are becoming increasingly well understood. Much less is known about how these programs function in the multicellular context of organs and the impact this spatial embedding has on emergent decision-making. Here I address these questions and investigate whether the computational control principles identified in engineered information processing systems also apply to plant development. Examples of distributed computing underlying plant development are presented and support the presence of shared mechanisms of information processing across these domains. The coinvestigation of computation across plant biology and computer science can provide novel insight into the principles of plant development and suggest novel algorithms for use in distributed computing
    • …
    corecore