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 Full duplex communication systems allow a single channel to be used for 

simultaneous two-way communication, increasing spectral efficiency. However, full duplex 

communication systems suffer from the issue of self-interference between local transmitter 

and receiver antennas. Analog subtraction and signal processing methods have previously 

been used to reduce this problem. This dissertation proposes the use of waves carrying orbital 

angular momentum (OAM) to mitigate the problem of self-interference by offering a means 

of additional isolation between local antennas.  

Orbital angular momentum has been widely studied both in the photonics and radio 

domain. The theoretically infinite orthogonal states of an OAM signal make it highly 

desirable in the field of communication. The application of OAM in a full duplex system, 

may be the answer to the problem of self-interference. This dissertation shows how the use of 

OAM waves may create an additional isolation between local antennas in a full duplex 

system. Motivated by the promise that OAM orthogonality holds, this dissertation explores 

the crosstalk reduction achieved through OAM.  One of the main contributions of this 

dissertation is to provide insight into the nature of the effect. It motivates OAM orthogonality 

as a direction of research for use in future full duplex systems. 

The effect of OAM on crosstalk must be studied experimentally and theoretically. To 

this effect, a patch array antenna was designed using the High Frequency Simulation 
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Software (HFSS), to generate OAM beams. The designed antennas are fabricated and 

characterized. This dissertation discusses the experiments carried out to determine the amount 

of crosstalk reduction achieved due to the OAM nature of the signal transmitted. The impact 

of the change in distance between the local transmitter and receiver antennas on crosstalk is 

also studied. The results obtained are verified through theoretical analysis using simulations 

in HFSS. This dissertation reports a maximum theoretical crosstalk reduction of 3.6dB, and a 

crosstalk reduction of 2.6 dB realized experimentally.  

Building on these results, a compact, more practical antenna configuration was 

designed. This nested design yields more than 60dB crosstalk reduction and provides for a 

more elegant system realization. The dissertation includes the design of a parabolic dish 

antenna to build a complete system, which is also studied in this dissertation.  

The symmetry of the nested antenna configuration allows for analytic theoretical 

study which is included herein. The study mathematically proves the orthogonality of OAM 

modes, and the isolation between two antennas with different OAM modes. A similar study is 

simulated in HFSS using coaxial based loop antennas, and the crosstalk in the nested design 

is investigated. The design offers a crosstalk isolation of more than 90dB, and further affirms 

the mathematical analysis.   

This dissertation provides a detailed analysis of the isolation offered by OAM 

orthogonality in local antennas which can be useful in a full duplex system. The work 

consists of practical, simulated, and mathematical investigation, and considers various 

antenna configurations and designs. Additionally, it presents and analyses a design for a full 

duplex system.   
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Chapter 1  
 

INTRODUCTION 

 

Full duplex communication in wireless networks necessitates the transmitter and 

receiver working simultaneously at the same frequency. The use of a common channel for 

both transmission and reception increases the spectral efficiency. The main challenge in such 

a system is that the crosstalk from the local transmitter at one node may be much stronger 

than the signal emanating from a distant transmitter at a different node. This is called self- 

interference, and this crosstalk makes it impossible for information to be decoded from the 

received signal. For a full duplex communication system with a transmitter power of 65dBm 

[1], and a receiver with a noise floor of -120dB, more than 185 dB of self-interference must 

be cancelled out. If the interference is not completely negated, it must be ensured that the 

crosstalk signal is lower than the signal coming from the distant transmitter. This chapter 

describes the various techniques currently employed to lower the crosstalk signal, and then 

discusses in more detail how orbital angular angular momentum (Orbital Angular 

Momentum) can be used to create isolation between antennas in near proximity. The 

properties, methods of generaion, and advantages and disadvantages of OAM will also be 

detailed herein. This dissertation focuses on the use of OAM ortogonality to reduce crosstalk 

between local transmitter and receiver antennas, and through experimentation, simulations 

and mathematical analysis describes the amount of isolation between the antennas that can be 

achieved using this method. 
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Figure 1.1 Techniques used to reduce crosstalk signal from local transmitter. 

1.1 Crosstalk Cancellation Techniques 

A digital signal is encoded into an analog signal, which is radiated by the transmitter 

antenna. Conversely, the analog signal captured by the receiver antenna is converted to 

digital form. Therefore, there can be three different stages at which the crosstalk signal may 

be canceled out, at the RF level, while the signal is in analog form, or while it is in digital 

form. Several techniques have previously been proposed and implemented to cancel or 

reduce crosstalk. These can generally be divided into 4 categories: (a) digital signal 

processing, (b) analog cancellation, (c) physical crosstalk reduction through shielding, and (d) 

orthogonality. The methods, and the various stages at which they apply, are illustrated in fig. 

1.1. The first method acts on the digital form of the signal. The second category reduces 

crosstalk in the analog form of the signal. The last two methods use the antennas to cancel out 

crosstalk at the radio level.  
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1.1.1 Digital Cancelation 

There are several techniques for digital cancelation [2]–[7] in full duplex and other 

systems. The most basic form of cancelation through digital signal processing involves 

subtracting the transmitted signal from the signal received by the local receiver. At the 

receiver end, both crosstalk and the signal from a distant transmitter are captured by the 

receiver antenna. This signal is in the analog form and is converted to digital form by an 

analog-to-digital converter (ADC). If the crosstalk signal is high, it may saturate the ADC, 

and the signal of interest may be lost in the process. The digital form of the transmitting 

signal is then subtracted from this digital form of the received signal. However, since this 

subtraction occurs after the digital conversion of the received signal, the weaker signal of 

interest may have already been lost before the subtraction of transmit signal occurs. This 

method alone is, therefore, insufficient for the cancelation of crosstalk.  In reference [2] an 

isolation of 10dB was achieved using digital cancelation only, however many variations of 

digital cancelation exist, with different levels of isolation. 

Analog Cancelation 

Analog cancellation involves subtracting the radio’s own transmitted signal from the receiver 

signal before it is converted to digital form. The transmitter signal, before it is digitized by 

the ADC, is taken as the reference signal. The reference signal is used by a vector modulator, 

which varies the amplitude and phase of the reference signal to model the effects of the 

transmission channel between the transmitter and receiver. The resulting signal can be used to 

cancel the crosstalk from the received signal. Several methods [2], [8], [9] can be used to 

alter the reference interference signal, and various noise cancelation chips/circuits can be 

used to perform this process. Varying levels of isolation are achieved by using different 
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analog cancelation methods, for example 30dB crosstalk reduction is seen in [10]. The details 

of these methods, however, are beyond the scope of this dissertation report.  

Physical Crosstalk Reduction  

Passive suppression is a method that significantly reduces crosstalk. This method uses the 

physical placement and orientation of the transmitting and receiving antennas to create 

isolation between them. Several factors can come into play, in this regard: the actual distance 

between the antennas [11]–[13] , directivity and direction of the antennas [12], [14]–[16], and 

absorptive shielding [17]. A similar method involves using multiple transmitter antennas at 

various distances such that their signals cancel out the crosstalk signal of the original 

transmitter antenna [2], [18]–[21]. Crosstalk suppression or cancelation using these methods 

occurs at the electromagnetic level. The problem is that it is not always feasible to use these 

methods due to the constraints imposed by the size of the antenna system, the directivity 

requirements of the antennas, and the accuracy of the antenna positions.  

Orthogonality  

Signals with a dot product of zero are considered orthogonal signals. These include sine 

cosine signals, even and odd signals, and signals with orthogonal polarizations, such as 

horizontally and vertically polarized signals. Orthogonal signals do not ideally interfere with 

each other. If orthogonal signals are used for transmission and reception, this would naturally 

create an isolation between the local transmitter and receiver antennas. Due to the advantages 

it conveys, the concept of orthogonality has long been used in communication design. For 

instance, orthogonality has been extensively used in multiplexing. Quadrature Amplitude 

Modulation (QAM), Phase Shift Keying (PSK), and Code Division Multiple Access (CDMA) 

are just some of the systems that rely on orthogonality. In full duplex applications, 

orthogonality is often achieved by way of polarization [22]–[28]. Although polarization 
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provides the means for interference cancelation, there can be only two orthogonal states, 

therefore it cannot provide isolation among multiple antennas. Moreover, the isolation 

obtained through this method is dependent on the purity of the antenna polarization. This 

cancelation scheme thus does not work well with array antennas which are common [29]. 

Waves carrying orbital angular momentum (OAM) can have multiple orthogonal 

states. Although the application of OAM orthogonality in communication has been 

extensively studied [30]–[36], most of the previous studies focus on achieving isolation 

between different modes for the purpose of multiplexing [30]–[36]. Few studies [37], [38]  

have explored the application of OAM in full duplex systems, and there has not been enough 

research on OAM orthogonality-based isolation between the local transmitter and receiver in 

a full duplex system. Reference [29] investigates the isolation between a transmitter and 

receiver created by using a sequentially rotated array of microstrip antennas to generate 

OAM. However, the isolation achieved in this case is not based purely on OAM, but is 

dependent on the sequentially rotated scheme. This dissertation performs a detailed 

investigation of the amount of isolation achieved as a result of the OAM nature of the signal 

transmitted between local transmitter and receiver antennas.  

1.2 Orbital Angular Momentum (OAM)   

A plane wave features a simple Poynting vector in the direction of propagation.  

Maxwell’s theory asserts that electromagnetic radiation not only carries energy, but also 

momentum, and this momentum is also dependent on the Poynting vector. Changes in the 

Poynting vector S across the lateral extent of the wave gives rise to different types of 

momentum. In a plane wave, S is constant across the entire wavefront and it carries with it a 

constant momentum. A manifestation of this momentum is photon pressure. If the wavefront 

is curved, the momentum and hence photon pressure varies across the curvature of the phase-

front because of the Poynting vector. OAM waves—with Poynting vectors that wrap around 
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themselves—are donut-shaped. These donut modes are extensions of Laguerre Gaussian 

modes, which is a formal solution of Maxwell’s wave equations in cylindrical coordinates. 

However, the Laguerre Gaussian modes are only one example of waves that have orbital 

angular momentum [39]–[41]. There are other types of waves that carry OAM to some 

extent, such as the Bessel beams[42]. And not all donut-shaped modes carry orbital angular 

momentum [43], [44]. 

  Angular momentum can be divided into two types, spin momentum and orbital 

momentum. Spin momentum determines polarization, whereas orbital angular momentum is 

associated with spatial distribution [39]. In 1992, Allen et al. showed that Laguerre Gaussian 

beams with an azimuthal phase dependence of 𝑒  carry orbital angular momentum (OAM) 

[39], [45], where l is a positive or negative integer and 𝜑 is the angular coordinate. These 

waves may have multiple helical phasefronts, the number and direction of which is 

determined by the mode number l. Since the Poynting vector is normal to the phasefronts, the 

helical shape of the phasefronts results in an azimuthal component of the Poynting vector, 

and therefore an angular momentum can be said to exist. 

The characteristics, properties, methods of generation, and applications of OAM waves 

have been extensively studied over the last three decades [45]–[54]. Although spin 

momentum can provide only two orthogonal polarization states, orbital momentum has the 

potential to provide a theoretically infinite number of orthogonal states. In terms of practical 

applications, up to 86 OAM modes with a high mode quality have been generated [55] in the 

optical domain. The property of inter-mode orthogonality makes OAM waves highly 

attractive to the field of electronic communication. Although much of the research on OAM 

was initially focused on the optical domain, there has also been significant amount of studies 

dedicated to examining radio OAM waves, and their applications in communication and 
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astronomy [45]. OAM radio waves are of special interest in radio communication links, as 

their orthogonality suggests a novel multiplexing scheme [34], [39], [56], [57].   

1.3 OAM Waves in Radio Communication 

The idea of exploiting OAM orthogonality in radio communication is not new. Countless 

published studies provide experimental evidence showing that more than one OAM mode can 

be successfully transmitted on the same frequency channel. In [56], Tamburini carried out an 

outdoor experiment to show that information transmitted using waves of the same frequency, 

with the OAM modes l=0, l=-1 and l=+1, was successfully received in the far field.  Others, 

such as [29], have used OAM orthogonality in conjunction with polarization to create 

independent multiplexed channels. In [58], OAM multiplexing is combined with spatial 

multiplexing to increase system capacity.  

Spectral efficiency is not the only advantage of implementing OAM in wireless 

communication, though. The following are among the three main advantages of OAM-based 

wireless communication : 

1. Spectral efficiency. Since the orthogonality of the channels is based on the OAM 

modes, other resources, such as frequency, time ,and code domain, are conserved[59].  

2.  Greater user access. Traditionally, the power domain is used to distinguish multiple 

users. Utilizing OAM orthogonality mode division multiple access (MDMA) allows 

different users to access a wireless network [59], [60].  

3. Anti-jamming. OAM-mode hopping might be the answer to the limitations faced by 

frequency-hopping techniques used in anti-jamming [59]. 

However, since the use of OAM in communication is still being researched, various 

challenges in this area nonetheless remain. Some disadvantages of the use of OAM are 

listed below: 
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1. Alignment between the transmitter and receiver. The application of OAM in line-of-

sight communication requires careful alignment of the transmitter and receiver 

antennas [61]. 

2. The signal may undergo fading over the distance of propagation. 

3. The divergence of an OAM signal as it travels a certain distance results in the signal 

at the receiver being much larger than its size when first transmitted. This requires the 

receiver antenna to be physically larger, which is not practical 

1.4 Radio OAM wave Generation 

There are several methods for generating OAM waves [57], [62]–[65]. Some of the methods 

for OAM radio wave generation include Spiral Phase Plate (SPP) antenna and Uniform 

Circular Array (UCA) antenna. 

Spiral Phase Plate (SPP) 

A spiral phase plate (SPP) is a dielectric plate with a height that varies in the azimuthal 

direction around the central axis of the plate, creating a spiral shape as shown in fig. 1.2.  

 

Figure 1.2 Spiral Phase Plate (SPP) used for OAM signal generation. The height of the 
dielectric changes along the azimuthal angle. 
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The height may increase over a finite number of equidistant steps. The variation in height 

causes a difference in phase-shifts between the signal passing through the thicker medium 

and that which passes through the thinner part of the dielectric. The velocity of a signal in air 

is given by the speed of light c, whereas the velocity in the dielectric is c/n, where n is the 

refractive index of the dielectric material. The phase-shift in the signal propagating a distance 

h through air, measured in radians, is given by  

𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 =
2𝜋

𝜆
ℎ 

In this context, 𝜆  is the wavelength of the signal in air. The phase-shift through the dielectric 

of height h is given by the expression below, where 𝜆 /𝑛  is the wavelength of the signal in 

the dielectric medium: 

𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 =
2𝜋

𝜆 /𝑛
ℎ 

Therefore, the difference in the total phase-shift as the height of the phase plate increases 

from 0 to 2π is given by (𝑛 − 1)ℎ radians.    

As the planar wavefronts interacts with the plate of varying thickness, different parts of the 

wave experience different phase-shifts, resulting in a helical shape that is in accordance with 

the shape of the spiral phase plate. The emerging signal, therefore, has a component of 

angular momentum in the azimuthal direction by virtue of its helical wave shape, and is said 

to carry orbital angular momentum. The phase plate is designed such that over a complete 

rotation of the azimuthal angle φ, the maximum phase-shift in the signal is 2πl, where l is 

defined as the mode number of the resulting OAM signal. 

Other similar methods for transferring orbital angular momentum to plane waves involve 

amplitude encoded fork holograms, such as those used in optics. The radiation generated by 
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this antenna features low divergence, but high attenuation. However, it does not work for low 

frequencies, and cannot be used for simultaneous multi-mode generation [58], [59].  

The spiral phase plate method has been used as a means of OAM generation in a number  of 

works[49], [66]–[68]. Members of our group have previously used a structured phase plate to 

generate Hermite Gaussian radio waves, which are also in the orthogonal family of waves 

[69] and Ince-gaussian modes[70]. Similarly, a stepped spiral phase plate was used to 

generate OAM in the Terahertz region [67].  

Uniform Circular Array (UCA)   

Similar to the spiral phase plate, a uniform circular array (UCA) can create a phase difference 

in the signal along the azimuthal direction. However, in this case, the signal is generated at a 

different phase by antennas arranged in a circular array. In other words, in this case, the 

phase-shift of the radiated wave in the azimuth direction occurs because of the phase-shift in 

the signal feeding each antenna of the array. The phase delay between the signal feeding each 

adjacent antenna element is given by 2𝜋𝑙 𝑁⁄ , where 𝑙 is the mode number and N is the 

number of array elements. The radiation from each antenna element combine to create the 

twisted phasefront of an OAM beam. Because of the phase shift between the signal feeding 

each antenna element, the uniform circular array can also be called a phased array antenna. 

The elements of a UCA may be dipoles or patch antennas. This method is low cost and easy 

to fabricate, and for this reason, it has been widely been used in various studies [48], [71]–

[75].  However, a major problem with this approach is the high divergence of the beam 

generated [59], [76]. 

Loop Antennas 

The concept of loop antennas can be designed to be  similar to a spiral phase plate and phased 

arrays. It creates a phase difference in the signal in the azimuthal direction, resulting in 
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radiation with helical wavefronts. The signal is passed through a loop antenna, which may be 

a metal ring cavity as in [77] or a coaxial waveguide as in [78], using a traveling wave 

current excitation, such that the amplitude of the signal remains constant around the loop, but 

the phase changes with the azimuth angle to 𝑙𝜑 , where 𝑙 is the OAM mode. Therefore, for 

every one revolution around the loop, the signal makes 𝑙 2π phase- shifts. In general, slots are 

cut in the loop antenna to allow the radiation to emanate outwards. This method is easy to 

realize, and analyze. However, the OAM beams generated also have high divergence, which 

must be taken into account in a system design.   

 There may be other methods for OAM generation. However, the concept common to 

all methods is the introduction of a phase difference across the signal, in the azimuth 

direction, either before the signal is transmitted (as in phased arrays) or after (as in spiral 

phase plates). The choice of the method used depends on the application it is to be used for, 

and requirements such as ease of fabrication, flexibility etc. 

1.5 Outline 

This dissertation presents the orthogonality of different OAM modes as a method for 

increasing the isolation between antennas in near proximity. This is especially useful for 

mitigating the self-interference or crosstalk that occurs in full duplex systems. The rest of this 

dissertation examines in greater depth the antennas used and the experiment design required 

to determine the effect of OAM on crosstalk reduction. 

 Chapter 2 explores the design of an OAM antenna using phased arrays. It discusses 

the design and fabrication process, and the theoretical and practical characterization of the 

antenna. Chapter 3 describes the experimental setup and procedure needed to determine the 

differential crosstalk reduction due to OAM. It also presents the results of an experiment. To 

verify the results theoretically, the modeling is carried out using HFSS, as described in 
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chapter 4. Chapter 5 describes a practical and compact topology for antenna placement, one 

that involves constructing the transmitter and receiver antennas in a nested setup on the same 

substrate. A detailed theoretical analysis to determine the isolation between the antennas in 

this nested configuration is described within this chapter, as well. Chapter 6 is divided into 

two sections. The first section provides a mathematical derivation of the voltage induced in a 

receiver OAM antenna due to crosstalk, in the nested antenna design. The second section 

analyzes the nested antenna setup created using loop antennas in HFSS—which models the 

antennas using loops of wire—as a way to verify the mathematical derivation of crosstalk-

induced voltage. 

1.6 Contributions 

The purpose of this dissertation is to determine the crosstalk reduction that takes place 

between antennas in near proximity by way of OAM waves.  The major contributions of this 

dissertation are: 

 It explores the effect of OAM orthogonality on crosstalk between antennas in near 

proximity and provides a deeper understanding of the nature of this effect.  

 It introduces techniques developed to filter out deterministic numerical noise, 

inherently present in calculations made by HFSS.  

 It promotes the development of a compact nested design, and offers a theoretical 

model for understanding how best to achieve crosstalk reduction in nested antennas.  

1.6.1 Effect of OAM on Differential Crosstalk 

This work’s first contribution pertains to the experimental study of isolation created by 

leveraging the OAM orthogonality. OAM modes l=+1 and l=-1 were used for the study. The 

OAM antennas were placed adjacent to each other. The experiment also studied the variation 

of isolation in relation to distance. The trend shown by the isolation with variation in distance 



 

13 
 

is, in fact, one of the biggest contributions of this research. The sinusoidal behavior of 

differential crosstalk gives insight into the nature of the effect. Such a study has not been 

conducted before. 

This dissertation introduces the term differential crosstalk, to refer to the difference in 

crosstalk between two different cases. This ensures that only the effect of the parameter under 

study is calculated, and the effect of all other factors are cancelled out. Since the parameter of 

interest in this work is OAM mode, the crosstalk was calculated with a mode for the receiver 

antenna of l=+1, and then with a mode of  l=-1. The difference in crosstalk between the two 

cases was calculated to obtain the differential crosstalk ΔS12. In performing the subtraction 

between the two crosstalk values, the effect of all other unchanged factors is cancelled out. 

These factors include the distance between the two antennas, the direction of the antennas, 

the shielding between antennas, etc. Therefore, differential crosstalk provides the change in 

crosstalk value that is exclusively attributable to the OAM nature of the antennas.  

1.6.2 Crosstalk Calculations through Simulations 

To verify the experimental results, the setup was also simulated using the popular RF design 

program, High Frequency Simulation Software (HFSS). The experimental procedure was 

repeated using simulated antennas, and the theoretical results were therein obtained. More 

importantly, it was seen that due to the degree of precision of HFSS, the theoretical results 

obtained carried an inherently high deterministic numerical noise. Since the received signal 

readings were low values, the addition of this noise caused useful information to be lost. To 

overcome this problem, a moving average filter was used for the first time, to filter out the 

noise from the data. The resulting signal demonstrates good agreement with the experimental 

data. This is an important step in the process of determining differential crosstalk between 

two antennas through simulation. What is more is that the techniques described in this 
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dissertation for obtaining theoretical crosstalk values may be generally applied to other 

antennas, and are not restricted to OAM antennas.  

1.6.3 Crosstalk Reduction in Nested Antennas 

The promising results of the experiment and its agreement with theory, encourage us to look 

at other antenna configurations for improved OAM-based isolation. One such setup has been 

analyzed theoretically in this dissertation. Nested antennas are designed for the realization of 

a more compact and practical implementation of full duplex systems, by accommodating both 

antennas within the same space. This dissertation provides a detailed theoretical analysis of 

the crosstalk reduction that occurs due to OAM, between local antennas in such a setup. This 

is an important step towards the practical realization of OAM-based isolation in full duplex 

systems, as it provides a realistic design for transmitter and receiver antennas placement in 

such a system.  

The setup consists of OAM antennas placed concentrically. The mode of the inner 

antenna is fixed at +1, whereas the mode of the outer OAM antenna is varied. A high OAM-

based isolation was achieved through this antenna placement. It was noted that a higher 

isolation is provided by even OAM modes, compared to odd modes, which suggests a higher 

orthogonality between even-odd pairs. Chapter 5 details the complete design of a practical 

full duplex system, using ray matrices and HFSS simulations. To mitigate the problem of 

OAM beam divergence, a single parabolic dish antenna at each end of the system is 

employed to collimate the signal.  Chapter 5 also provides the link budget calculation of an 

example of a system based on nested antennas. 

This dissertation report provides mathematical proof of the isolation between local 

OAM antennas with different OAM modes in a nested design by deriving the voltage induced 

in the outer loop antenna as a result of the field generated by the inner antenna. This 
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derivation is further verified by the HFSS analysis of a nested design created using loop 

antennas. Findings from the simulation also allow for a comparison between the nested 

design using phased arrays and one that uses loop antennas. In this way, through practical, 

simulated and mathematical investigations, this dissertation serves as a detailed study of the 

crosstalk between local OAM antennas.  
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Chapter 2  
 

OAM ANTENNA DESIGN, FABRICATION AND ANALYSIS 

 

Although there are several methods for OAM generation in the radio domain [57], [62]–[65], 

the method employed in this work uses phased array antennas. A phased array antenna 

consists of an array of single antenna elements. The array changes the shape of the radiation 

pattern or steers the beam electronically by providing different phase shifts to each element of 

the array. In this research, rectangular patch antennas are used as the elements of the phased 

array. The rectangular patch antenna is a well-studied and easy to build antenna. Therefore, it 

proved to be a good choice to use in these experiments. The antenna construction is 

comprised of two parts; theoretical antenna design using calculations and HFSS, and practical 

antenna fabrication.  The OAM antenna was tested both theoretically and practically.                                                  

2.1 Rectangular patch antenna 

Microstrip antennas or patch antennas are easy to fabricate, are low cost and are 

highly versatile. Therefore, they are widely used, and are well studied. A patch antenna 

consists of a high conductivity metal patch and ground plane separated by a dielectric 

material called the substrate. The substrate has a relative dielectric constant εr and thickness h 

which is much smaller than the wavelength. The metal patch has a length L and a width W as 

shown in fig. 2.1, where L is the dimension of the longer side. 
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Figure 2.1 The rectangular patch antenna[78] 

The most popular methods [79]–[87] (fig. 2.2) for feeding the patch are the microstrip 

line, and coaxial probe. Other methods include aperture coupling, and proximity coupling. 

The microstrip line method consists of a thin metal strip on a substrate and ground, feeding 

the patch. The impedance of the strip can easily be matched with the antenna impedance by 

creating an inset around the strip where it meets the patch. This method is easy to construct, 

but has a limited bandwidth, and there may be unwanted radiation from the strip. The probe 

feed method uses a coaxial transmission line feeding the patch from either below the ground 

(as shown in fig. 6.2), or from the edge of the patch, also called edge feed method. The edge 

feed design is easy to fabricate, does not have unwanted radiation from the coaxial probe, and 

easy to ensure impedance matching, but it also has a narrow bandwidth. The aperture 

coupling method consists of two substrates separated by a ground plane. There is a microstrip 

line at the bottom of the lower substrate, and a metal patch on top of the upper substrate. The 

signal from the stripline is coupled into the patch through a slot in the ground. However, this 

method is difficult and more expensive to fabricate and also has a narrow bandwidth. 

Similarly, the proximity coupled method also uses coupling between the stripline and the 

patch which are not in direct contact. This method has the largest bandwidth but because of 

the precision involved, is difficult to fabricate.    



 

18 
 

 

 

Figure 2.2 Commonly used feeding methods for patch antennas: microstrip line feed (left) 
probe feed (right) [22] 

The frequency of operation of the patch antenna, and its impedance matching with the 

feed is determined by the patch dimensions. Considering the patch antenna as a transmission 

line, the edge of the patch acts as an open circuit since the current does not have a path to 

flow. Therefore, the current is zero at the edges and maximum at the center of the patch. The 

voltage, which is 90° shifted from the current, is maximum at the far end, and minimum at 

the other end of the patch. This means that positive charges are accumulated at one end of the 

patch and negative at the other, resulting in a flow of electric field lines between the patch 

and the ground, as shown in fig. 2.3. Some of the radiation escapes into the air causing a 

fringing effect at the edges of the patch, as depicted in the figure. The fringing electric fields 

add in phase, causing the antenna to radiate. The amount of fringing is a function of the patch 

dimensions and the height of the substrate. The permittivity of a material is its ability to 

concentrate electric field lines through it. A substrate with a higher permittivity would tend to 

focus the field lines through it, and less field lines would go through a substrate with a lower 

permittivity. The lower the permittivity of the substrate, the more the field would tend to 

escape into the air, which causes fringing in the case of a patch antenna. .  
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The fringing effect causes the electrical length of the patch to appear effectively 

greater than the physical length, as shown in fig. 2.3. This in turn affects the resonance 

frequency of the patch. The effective length is denoted here by Leff, and the resulting 

resonance frequency is denoted by frc. Moreover, since the field lines travel through both air 

and substrate as shown in fig. 2.3, it is not correct to use the dielectric constant of the 

substrate only. Therefore, the term effective dielectric constant εreff is introduced, to include 

the effect of the permittivity of both the air and the substrate. It is the effective dielectric 

constant that governs the amount of fringing, the dielectric constant of the substrate, and the 

height of the substrate[79].   

 

Figure 2.3 The fringing effect of electric field lines as they travel from the patch to the 
ground causes radiation. The effective length of patch is greater than its physical length  

The design process of the patch antenna consists of calculating the patch dimensions 

to provide the desired resonance frequency fr. The width W, of the patch is tuned to get the 

desired impedance of the antenna. It is given by [79] 

𝑊 =
𝑣

2𝑓

2

𝜀 + 1
          (1) 
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Where vo is the speed of light in free space, and 𝜀  is the relative permittivity or dielectric 

constant of the substrate.  

From fig. 2.3, the effective length of the patch may be written as [79] 

𝐿 = 𝐿 + 2∆𝐿        (2) 

The length of the patch is taken as half of the wavelength of operation. Therefore, the length 

of the patch is selected to obtain the desired resonance frequency of the patch antenna, and 

this can be written as [79] 

𝑓 =
𝑣

2𝐿√𝜀
                      (3) 

Considering fringing effect, the equation may be rewritten as [79] 

𝑓 =
𝑣

2(𝐿 + 2∆𝐿) 𝜀
                      (4) 

 

Several approximations [79], [88]–[90] have been proposed to determine the values of 

effective dielectric constant, and effective length. Of these, the most popular was given by 

Hammerstad in 1975 [90]. The approximation expressions are used to determine the value of 

effective dielectric constant 𝜀  , and the extension in length 2∆𝐿. ΔL, along with the 

desired resonance frequency 𝑓   is used to find the effective length, and therefore the 

physical length of the patch.  

It is important to note that the values calculated through the approximate expressions 

provide a reliable initial estimate of the patch dimensions. However, further fine tuning is 

required using a simulation software such as HFSS, to achieve the exact value of the desired 
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frequency of operation.  Increasing the length of the patch decreases the resonance frequency. 

Increasing the width W of the patch decreases the input impedance. 

2.2 Patch antenna array for OAM generation 

Fig. 2.4 shows the radiation pattern of a patch antenna. It consists of a single lobe above the 

patch, and exhibits low back radiation. When multiple patch antennas are used in an array, their 

radiation patterns add in phase and amplitude, to create a combined radiation. If the signal to 

each patch is phase shifted, the radiation of the patches may add up constructively in some 

areas and destructively in others. The phase difference between the patches can be varied to 

create helical phase fronts, hence generating OAM waves.  

 

Figure 2.4 The Radiation pattern of a rectangular patch antenna  

The concept of phased arrays is not new as it has been numerically explored in previous 

research[46], [48], [91]–[93] . In [72], Bai et al., for the first time presented a practical method 

for OAM generation using circular phased arrays at 10GHz. A circular phased arrayThe 

antenna consists of a circular array of 𝑁 patch antennas. To generate an OAM wave of mode 

l, the signal to each patch is phase shifted by 2𝜋𝑙 𝑁⁄  radians from the adjacent patch, such that 
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there is a total phase change of 2𝜋𝑙 radians in one complete rotation around the array axis [72]. 

Previous research on the appropriate number of array elements suggests that the number of 

elements N must satisfy the condition 𝑁 > 2|𝑙| + 1 to avoid under-sampling [57]. Therefore, 

to generate an OAM beam with mode 1, the number of elements N must be greater than 3. The 

study showed that although a phase singularity is achieved with 4 patches, a well-defined donut 

shaped OAM with mode 1 is observed using N=8, with an inter-element phase difference of 

π/4 radians [57]. The array used in [72] to generate an OAM mode l=-1 at 10 GHz is shown in 

fig. 2.5.  It has been presented here as an example of the phased array based OAM antennas 

constructed in previous research. It consists of 8 patch antennas with a phase difference of π/4 

rad between the feeds, and has been designed using the conditions described above.  

 

Figure 2.5 Phased array used to generate OAM mode l=-1 [72] 

2.3 Patch Array Design at 5.64GHz 

2.3.1 Single patch antenna 

Based on the ideas discussed in the previous section, an OAM antenna was designed to 

operate at a frequency of 5.64 GHz. This frequency was used, as it is a popular Wi-Fi band 

and is accessible to the WARP signal processing boards which may be used in any future 



 

23 
 

studies. WARP boards have also previously been used in crosstalk reduction studies [12], 

[94].  

The ANSYS High Frequency Simulation Software (HFSS) is employed in the design 

process of the antenna array. A single patch is designed first, to determine the dimensions of 

the patch that would allow it to resonate at 5.64GHz. Equations (1-7) are first used to 

estimate the values of the length (L), and width (W) of the patch. For a substrate with 

dielectric constant 𝜀 =3.66 and height ℎ = 0.762𝑚𝑚, the values of L, W and 𝜀  

calculated mathematically are 𝐿 = 13.64𝑚𝑚, 𝑊 = 17.4𝑚𝑚, and 𝜀 = 3.41. The 

calculated dimensions are used to create a patch antenna in HFSS, and to run a frequency 

analysis for it.  

Fig. 2.6 shows the model of patch antenna in HFSS. The copper patch is placed on a 

dielectric substrate RO4350B material with dielectric constant 𝜀 = 3.66. A lumped port with 

50 Ω impedance is used to provide the input feed. The length of the patch determines the 

resonance frequency, whereas changing the width effects the impedance matching, and 

thereby the value of reflection coefficient. A lower reflection coefficient means the 

impedance is well matched and the reflections from the input port are less. A reflection 

coefficient of less than -10dB is generally considered appreciable.  

 

Figure 2.6 Model of a rectangular patch antenna in HFSS 
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The results obtained for the reflection coefficient of the patch constructed using dimensions 

calculated mathematically, are plotted in fig. 2.7. A dip in reflection coefficient can be seen at 

5.45GHz. This means that the resonance frequency of the antenna is 5.45GHz, instead of the 

required 5.64GHz. The value of reflection coefficient at this frequency is -11dB. The value of 

W may be further manipulated to achieve a lower reflection coefficient.  

 

Figure 2.7 Reflection coefficient plot of a single patch antenna constructed using dimensions 
calculated mathematically  

 

To determine the exact dimensions of L at which the resonance frequency is at the desired 

value of 5.64GHz, the value of L is varied from 13mm to 14mm in steps of 0.02mm, and the 

plot of reflection coefficient S11 against frequency is observed. By increasing L, the 

resonating frequency would decrease. The value of L at which the frequency of resonance is 

5.64GHz is selected.  The value of L is then fixed to the selected value, and the value of W is 

varied from 17mm to 22mm in a parametric analysis. The plots of S11 obtained for each value 

of W are compared to determine the value of W with the minimum reflection coefficient. 

Parametric analyses in HFSS, sweeping the length and width of the patch, show that 
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resonance with minimum reflections, occurs at 5.64 GHz frequency when patch dimensions 

are L= 13.12mm and W= 22mm. The frequency analysis of the patch antenna with these 

dimensions, is shown in fig. 2.8. The reflection coefficient of less than -30dB at 5.64GHz 

shows good impedance matching at this frequency. 

 

Figure 2.8 Frequency analysis of a single patch antenna  

 

2.3.2 Patch antenna array 

The optimized patch dimensions are then used to design a circular array of patch 

antennas for OAM generation at 5.64 GHz (shown in fig. 2.9). As mentioned in the previous 

section, N=8 patches generate a well-defined OAM beam of mode 1. Therefore, an array of 8 

identical rectangular patch antennas each with a length L of 13.12mm and width W of 22mm, 

is created. There is a physical angle of 45° between each patch to create a uniform array. 

There is also a phase shift of 45° between the signal to each adjacent patch, required to 

generate an OAM mode 1.  
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The next step is to select the radius of the circular array. A parametric analysis is 

carried out to determine the optimum value of array radius, by varying the radius of the array 

from 32mm to 38mm in steps of 2mm, and observing the radiation pattern obtained in each 

case. The results of the parametric analysis are shown in fig. 2.10. At each array radius, the 

radiation pattern shows the required null in the center, however each radiation pattern has 

sidelobes with different gains. A higher gain of the side lobes means more power is being 

lost. The side lobes are minimum for the arrays with a radius of 32mm, and 34mm. Of these, 

the radiation pattern for the array with a radius 34mm, has a lower gain at null, and has a 

more symmetrical OAM shape. Therefore, the optimum radius is 34mm.  

 

Figure 2.9 The schematic shows the design of the antenna for OAM generation at 5.64GHz. 
The 45 degrees angle is both the physical measurement, and also the temporal phase 
measurement difference between patches excitations.  
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(a)                                                                     (b)    

 

Figure 2.10 The radiation patterns obtained in HFSS for OAM antennas with array radius (a) 
32mm (b) 34mm (c) 36mm (d) 38mm. The radiation patterns are plotted with respect to the 
angle θ, and are drawn for φ=0(red) and φ=90(purple)  

2.3.1 Antenna Characterization in HFSS 

The optimized antenna design was simulated and analyzed using ANSYS HFSS. The 

magnitude of the electric field distribution of the array is calculated and plotted on a 

rectangular plane 60mm away from the antenna. It is seen to be a donut shape with a null in 

the center (Fig. 2.11). This null is characteristic of the shape of a field with OAM. 
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Figure 2.11 Magnitude plot of the electric field of the OAM wave calculated using HFSS, on 
a plane 60 mm away from the antenna 

The radiation pattern calculated by HFSS is plotted in fig. 2.12 for φ=0, and 90 

degrees. The radiation pattern confirms a good OAM signal with a marked central null of            

-22dB. There are minimal side lobes in the radiation pattern. OAM waves are defined by 

helical phase fronts. Therefore, the characteristic phase pattern of an OAM is a rotating spiral 

shape. The rotation of the spiral phase front is determined by the OAM mode number and its 

polarity. The clockwise rotation of the phase of the Electric field, shown in Fig. 2.13 is 

obtained for OAM mode l=+1. The mode can be changed to l=-l by reversing the direction of 

the sequence in which phase shifts to the patches increases.  
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Figure 2.12 The simulated radiation pattern of the OAM antenna is obtained for the planes 
ϕ=0 and ϕ=90. The red line represents the radiation pattern on the ϕ=0 plane, and the blue 
line represents the radiation pattern on the ϕ=90 plane 

 

Figure 2.13 Simulated results for the phase pattern of the OAM antenna in the far field. The 
darkest shade represents 360 degrees and goes down to 0 degrees for the lightest shade blue  

2.4 Antenna Fabrication and Assembly 

2.4.1 Fabrication 
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The OAM antenna designed in HFSS was fabricated in lab. The antennas were fabricated on 

Rogers RO4350B substrate material. The RO4350B has low loss and a low fabrication cost. 

The RO4350B substrate has a dielectric constant of 3.66, which is suitable for this design. 

The board has a thickness of 0.762mm, and has a copper layer on the top and bottom sides. 

The antenna was fabricated using the Lyle school’s ProtoMat S103 circuit board plotter. The 

fabricated antenna is shown in fig. 2.14, and consists of 8 copper patches on top of the 

substrate, and a copper layer below the substrate to act as ground. SMA connectors are 

soldered at the back of the board to connect input supply to each patch.  

 

 

Figure 2.14 The patch antenna array fabricated for OAM generation. 8 copper patches can be 
seen on the substrate 

2.4.2 Antenna Assembly 

The antenna designed and fabricated is a uniform circular array. For it to generate 

helical wave fronts it must be phased. For N=8, the signal to each patch must be phase shifted 

by π/4 to generate mode l=1. A feeding network was constructed for this purpose. The 

transmitter network was assembled as shown in the block diagram of fig. 2.15. The signal 
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was provided by the RF out pin of the network analyzer, amplified and then split by a power 

divider into 8 signals with equal amplitude and phase. Each of these 8 signals were used to 

feed the 8 patches of the transmitter antenna via coaxial cables of varying length. The 

different lengths of the cables, provided different phase shifts to the signals feeding the 

patches. The lengths of the coaxial cables were varied to create a difference in electrical 

length of π/4 between each adjacent cable.  The receiver network worked in essentially the 

same manner, but in the reverse direction, and feeding the received signal into the network 

analyzer. Each part of the transmitter network is discussed in more detail below. 

 

Figure 2.15 Block diagram showing transmitter network 

Phase Shift 

Each patch antenna was fed using a coaxial cable connected using 50Ω SMA female 

connectors. To generate OAM, the patches must be fired sequentially over the course of the 

RF cycle. This phase shift is achieved through a relative true time delay implemented in the 8 

SMA cable lengths that feed the patches. Thus, in this case, the same signal was sent to each 

cable, but the length of the coaxial cable connected to each patch was varied to create a 

different phase shift in the signal reaching each patch. The difference in electrical length of 
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each consecutive cable was  π/4. Hence the phase shift in the signal went from 0 (in the first 

patch) to 7π/4(in the last patch). Similarly, the order of the cables can be reversed to change 

the phase shift in the opposite direction from 7π/4 to 0, and this reverses the mode of the 

OAM signal. The lengths of the cables are accurate up to 0.1 radians (or 6 degrees). At 5.64 

GHz the required time delay between adjacent patches is 22.16ps, corresponding to a cable 

length difference of 4.388mm. The cables were custom made by San Tron. A similar set of 

cables were also used to configure the mode of the receiver. 

 

Power Division 

The signal being fed to each phase shifter has the same amplitude and phase. The 

equal signals are created from a single input using a power divider. A single signal was split 

among the cables using an 8-way Wilkinson power divider (SP13856) from SigaTek, shown 

in fig. 2.16. The power divider has a nominal impedance of 50 Ω. It has SMA female 

connectors at input and output ports. The power divider can be reversed to work as a power 

combiner if the input signals are fed through the 8 output ports, giving a combined output at 

the input port.  For this study, the combiner configuration was used with the receiver antenna, 

where the signal received by the 8 patch antennas was combined into a single signal. The 

power divider/combiner has a nominal-theoretical loss of 9.03dB. This causes the signal to be 

significantly attenuated in case of a transmitter and makes the receiver signal hardly 

perceptible. 
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Figure 2.16 An 8-way Wilkinson power divider 

Amplification 

An amplifier was connected before the Wilkinson divider to compensate for system 

losses. In the case of transmitter, a medium power GaAs amplifier PE15A4019 (fig. 2.17) 

from Pasternack was used. It has a gain of 36dB, and P1dB of 29dBm. The amplifier has a 

constant gain over a frequency range of 60MHz to 6Ghz. Three important precautions were 

taken in using the amplifier. 1. It is an ESD (electrostatic device) sensitive material, it was 

therefore handled only on approved ESD workstations. 2. Heat sinks were employed to 

control the temperature of the amplifier, by cooling through conduction. 3. The amplifier was 

matched for 50Ω loads and is a one-way device. Any impedance mismatch could cause 

reflected waves which can potentially damage the output stage of the amplifier. To avoid this, 

an RF isolator (fig. 2.17) with an 18dB isolation was connected at the output of the amplifier, 

to absorb any reflections.  
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Figure 2.17 Medium power GaAs amplifier PE15A4019 is used in the transmitter network 
(left) RF isolator used to prevent back reflections (right) 

In the receiver network, the signal collected by the receiver antenna was weak. To 

amplify the signal the PAM-6000 high gain, benchtop preamplifier was used. It has a gain of 

30dB in the frequency range of 1 to 6GHz.  The maximum RF input is 2dBm. The output of 

the Wilkinson combiner was directly connected to the input port of the PAM-6000 amplifier 

using a coaxial cable. The amplified signal from the output port is sent to the RF input port of 

the network analyzer. 

2.5 Antenna Characterization 

The constructed antenna was tested, and the antenna characteristics were verified in a 

full anechoic chamber (fig. 2.18) at the Southern Methodist University, using the NFH007 

Allwave antenna test system. The radiation pattern in the φ=0 and φ=90° was determined to 

characterize the antenna. To further observe the phase pattern of the OAM beam, a 5.64 GHz 

waveguide probe receiver was moved in the x-y plane, at a distance of 86 inches in front of 

the OAM antenna. The OAM antenna was given an input signal from the network analyzer 

and was used to transmit an OAM mode 1 signal. The phase pattern of the received signal 

was measured by the network analyzer and plotted by the Allwave software of the antenna 

test system. The phase pattern obtained, shown in Fig. 2.19 is distinctly a rotating phase-
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front, which is in good agreement with the simulated phase pattern of fig. 2.13, which also 

featured a clockwise spiral. The clockwise rotation of the single spiral signifies a mode -1. 

 In the radiation pattern measurement of the antenna, the OAM antenna serves as a 

receiver. A test signal was emitted by a waveguide probe antenna at 5.64GHz. The signal 

captured by the OAM antenna was used to plot the radiation pattern of the antenna. The 

radiation pattern measured by the network analyzer in the chamber, is plotted in Fig. 2.20, for 

φ=0, and 90 degrees. The pattern shows a marked central null, showing an OAM singularity. 

Comparison to the radiation pattern in fig. 2.10 shows a good conformance between the 

results. Moreover, the central null obtained experimentally goes down to approximately -30 

dB compared to the -22 dB obtained theoretically.  

 

 

Figure 2.18 The OAM antenna is characterized in the anechoic chamber using the NFH007 
Allwave antenna test system   
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Figure 2.19 The phase pattern of the OAM antenna measured and plotted by the Allwave 
antenna testing system. The darkest shade represents 360 degrees and goes down to 0 degrees 
for the lightest shade 

 

Figure 2.20 The radiation pattern of the OAM antenna measured in an anechoic chamber. The 
red line represents the radiation pattern on the ϕ=0 plane, and the blue line represents the 
radiation pattern on the ϕ=90 plane 
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2.6 Conclusion 

The OAM antenna was constructed using the concept of phased arrays, as an array of 

8 rectangular patch antennas. The mathematical calculations for the design of the patch 

antenna, are presented in this chapter. The dimensions of the patches were further fine-tuned 

based on design analysis carried out in HFSS. The optimal array radius was determined to 

ensure minimum side lobes gain. The OAM antenna was analyzed in HFSS. The antenna was 

also fabricated and tested in an anechoic chamber. The electric field magnitude and phase 

patterns, and the radiation patterns obtained, both experimentally and theoretically showed a 

distinct OAM signal being produced at the required frequency of 5.64 GHz. The radiation 

pattern obtained through simulations shows a central null of -22 dB, whereas the measured 

radiation pattern has a central null going down to approximately -30 dB. Hence, a measured 

value better than the simulated value has been achieved. An OAM antenna based on phased 

arrays was successfully designed and fabricated and is suitable for use in experiments to 

determine crosstalk reduction.  
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Chapter 3  
 

CROSSTALK REDUCTION EXPERIMENTS 

 

 A full duplex system consists of both uplink and downlink data being transmitted 

simultaneously on the same channel. Therefore, there is a transmitter and receiver pair on both 

ends of the system. When the local transmitter and receiver are placed adjacently on one end of a 

full duplex system working at the same frequency, power from the transmitter leaks to the 

receiver as crosstalk (fig. 3.1). This obscures the already weak received signal, and results in loss 

of information. Since an OAM signal can have theoretically infinite orthogonal modes, the use of 

mismatching OAM modes may benefit the system by creating an added isolation. Although 

OAM orthogonality has previously been applied in multiplexing, the crosstalk between two local 

OAM antennas has not been studied.  This chapter studies the isolation due to OAM 

orthogonality, between two local OAM antennas placed adjacently on a horizontal plane.  

Using the OAM antenna designed in the previous chapter, an experiment was designed to 

determine the amount of crosstalk reduction due to OAM. The experiment also studied the 

variation of the isolation with distance between the antennas, to determine the ideal distance 

between the antennas for maximum isolation. This chapter describes the assembly of the 

transmitter and receiver networks. It illustrates a detailed description of the experiment carried 

out to determine the crosstalk between two OAM antennas, and presents the results of the 

investigation. 
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Figure 3.1 Power from the transmitter leaks to the adjacent receiver 

3.1 Experimental Setup  

The block diagram in fig. 3.2 shows the setup for the experiment. It consists of the transmitter 

and receiver networks connected to the network analyzer. The transmitter network amplifies the 

signal provided by the network analyzer, and then divides it into 8 equal signals as discussed in 

the previous chapters. The signals are then fed to the 8 patches of the transmitter array via 

coaxial cables of varying lengths. The signal emitted by the transmitter leaks to the receiver 

antenna. The signal collected by each patch of the receiver array is passed through coaxial cables 

of varying lengths. Each cable provides a different relative phase shift to the signal due to the 

variation in length. The signals are combined by a Wilkinson power combiner, in a manner 

similar to the transmitter network, discussed in chapter 2. The signal captured by the receiver 

antenna is similarly combined, amplified and fed back into the RF input port of the network 

analyzer. 
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Figure 3.2 Block diagram of the setup for transmitter and receiver  

All connections between the different parts of the RF system are made using coaxial cables. 

During experimentation, moving or bending the coaxial cables, significantly altered the readings. 

To obtain accurate measurements, it is important not only for the performance of the antennas to 

be satisfactory, but also for the cables to be efficient. For this reason, ATC-PS test cable 

assemblies from Newark were employed. These low loss 50Ω coaxial cables are amplitude and 

phase stable over a frequency range of 0 to 20 GHz. The phase stability (with bending) of the 

cables was 5° (0.09 radians), while the maximum amplitude stability was 0.16dB. 

The 8752C Network analyzer was used for the measurements. This network analyzer is 

operable over a frequency range of 300KHz to 6GHz. The network analyzer sends in a test signal 

to the transmitter network. The receiver network is connected to the input port of the network 

analyzer, to feed the received signal back into the network analyzer. The frequency range of the 
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network analyzer is set from 2GHz to 6GHz. The network analyzer is used to measure the log 

magnitude of the signal transferred from the transmitter to the receiver, thereby providing the S12 

value. 

3.2 Experiment  

The purpose of the experiment is to determine the crosstalk between two adjacent OAM 

antennas. The transmitter and receiver antennas were held by wooden frames that are placed side 

by side as shown in Fig. 3.3. The distance between the antennas was measured from the edge of 

the transmitter array to the edge of the receiver array. When the antennas are placed adjacent to 

each other in this way, the log magnitude of the signal detected by the network analyzer is 

essentially the crosstalk measurement S12 between the transmitter and receiver. The experiment 

was carried out in a full anechoic chamber to exclude the effects of any reflected radiation, and 

to enhance the accuracy of the experiment. The horizontal distance between the two antennas  

varied from 5.7 cm to 9.7 cm, in increments of 1 mm. For every value of distance, the S12 

crosstalk measurement on the network analyzer was noted for the frequency of 5.64GHz.  

 

 

Figure 3.3 The transmitter and receiver antennas placed side by side  
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Increasing the horizontal distance between the adjacent transmitter and receiver antennas would 

naturally vary the crosstalk value S12. However, the objective of the experiment is to determine 

the additional crosstalk created due to the orthogonality of OAM modes, and to observe its 

variation with distance. Therefore, we must consider the difference between the S12 values when 

both antennas have the same OAM modes, and when both antennas have opposite OAM modes, 

and calculate the difference between the crosstalk value to determine the differential or 

additional crosstalk that exists due to the OAM nature of the waves. In taking the difference 

between the two crosstalk values, the effect of other factors such as distance between the 

antennas gets cancelled out, as it is the same for both cases. The mode of the receiver is switched 

from +l to -l by reversing the sequence of the cables connected to the patches, which reverses the 

direction in which the phase shift increases around the array. The experiment is repeated for the 

opposite mode, and S12 values are again noted. Therefore, two cases have been studied (as 

illustrated in fig. 3.4) 

i) transmitter mode lTx=1, and receiver mode lRx=1 

ii) transmitter mode lTx=1, and receiver mode lRx= -1 

To see the effect of the mode of the OAM signal on isolation, the difference between S12 values 

for the case of lRx=1, lTx=1 and the case lRx=-1, lTx=1, must be calculated. This value is the 

differential crosstalk ΔS12. 
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Figure 3.4 Two cases are considered in the experiment, when receiver mode is l=1 and when it is  
l=-1. Transmitter mode is fixed at l=+1 for both cases 

3.3 Experimental Results 

 The readings obtained from the experiment, are the S12 readings for the two cases where 

receiver mode is l=+1, and where the receiver mode is l=-1. The example of a network analyzer 

reading is shown in fig. 3.5. It shows the plot of S12 against frequency, and maximum signal is 

received at 5.64GHz which is the resonance frequency of the antennas.  
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Figure 3.5 An example of the S12 readings measured by the network analyzer during the 
experiment 

The S12 values are noted for each distance, and the results are plotted against the distance 

between the two antennas, as shown in fig. 3.6. The graph of fig. 3.6 displays the effect of the 

receiver OAM mode on the crosstalk, and the variation of crosstalk with distance for each case. 

Although both curves have an oscillatory behavior with distance, there is a distinct difference 

between the results for both modes. This is because as the receiver phase shifts act upon the 

crosstalk signal, they may add constructively or destructively with the phase shifts of the 

transmitter. Since this depends on the mode of the receiver, different results are obtained for both 

cases. The difference of the two plots provides the differential crosstalk ΔS12. This excludes the 

effect on isolation due to the physical distance between the antennas, and is the real measure of 

crosstalk reduction due to the OAM nature of the waves.  
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Figure 3.6 The S12 readings for case l_Tx=+1, l_Rx=+1 (blue), and l_Tx=+1, l_Rx=-1 (red) are 
plotted against distance between the transmitter and receiver antennas 

 Differential crosstalk, ΔS12 is plotted against the horizontal distance between the 

transmitting and receiving antennas. The graph shows an oscillatory behavior of differential 

crosstalk ΔS12 with distance (Fig. 3.7). It can be seen from the graph that the maximum ΔS12 

achieved experimentally is 2.6 dB. The sinusoidal variation of the differential crosstalk with 

distance, indicates that there is a phase change in the signal with distance as it travels through the 

air from the transmitter to the receiver. This phase shift created due to the propagation delay of 

the signal, adds to the phase shifts of the transmitter network. Although the distance travelled by 

the signal from each transmitter patch is different, it can be approximated as d for every patch. 

At the receiver end, the phase shifts may add constructively or destructively with the phase shifts 
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of the receiver network, resulting in the variation of the S12 values that leads to the oscillatory 

behavior.  

 

Figure 3.7 Variation of differential crosstalk ∆S12 with distance between the antennas at 
5.64GHz 
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3.4 Conclusion 

An experiment was carried out to determine the effect of OAM on crosstalk reduction, 

and the variation of differential crosstalk with distance between two adjacent OAM antennas. 

The experiment was carried out in a full anechoic chamber using phase stable and amplitude 

stable cables, to ensure high accuracy. The experiment considered the S12 values between 

transmitter and receiver for the case when the transmitter and receiver both have the same OAM 

modes, and when both have opposite modes. The difference between the two measurements was 

calculated as the differential crosstalk. A maximum differential crosstalk of 2.6 dB was obtained 

experimentally. 

The variation of differential crosstalk with distance shows an oscillatory trend, signifying 

the variation of phase of the signal as it travels through the distance. The phase shift of the signal 

with propagation distance causes the signal to add constructively with the phase shifts at the 

receiver for some distances, and destructively for others. Therefore, the plot of differential 

crosstalk shows an oscillatory trend. This data is especially useful in selecting the distance 

between the antennas to achieve maximum isolation.  
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Chapter 4  
SIMULATION OF CROSSTALK REDUCTION EXPERIMENT 

 

In chapter 2, the theoretical analysis and characterization of the OAM antenna using 

HFSS, was described. Chapter 3 detailed an experiment that used the OAM antennas to 

investigate the effect of the OAM modes of two local antennas, on the crosstalk between them. 

This chapter explores the simulation of the experiment in HFSS, to verify the results that were 

obtained experimentally. 

4.1 Antenna design in HFSS                              

The design of the antenna in HFSS is shown in fig. 4.1. The antenna is surrounded by an airbox 

(not shown), which is assigned as a FE-BI (Finite Element Boundary Integral) boundary. The use 

of FE-BI boundary, in this case, allows for smaller simulation volume and shorter simulation 

time while providing high accuracy. In this model, lumped ports are used to provide excitation to 

the patch antennas. The magnitudes and phases of the excitation voltage sources can be set to 

create a 45-degree phase shift between adjacent patches, for a transmitter array. The antenna can 

be used to generate OAM mode +1 or mode -1 as seen in chapter 2. Modal solution type is used 

for the analysis.  
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Figure 4.1 Design of the patch array in HFSS 

The experiment for the coupling measurement consists of two antenna arrays, a 

transmitter and a receiver placed adjacently in the same horizontal plane. An HFSS model with 

two copies of the array as components, is created. The two arrays were placed in HFSS as shown 

in fig. 4.2.  

 

Figure 4.2 Model of the transmitter and receiver antenna arrays in HFSS  
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4.2 ANSYS Circuit                

Like HFSS, ANSYS Circuit is a part of the ANSYS electronics simulation environment. It can 

be used to create high frequency circuit schematics, and can be used in conjunction with ANSYS 

HFSS. To provide the phase-shifted excitations to the array elements, ANSYS Circuit was 

employed. In the same project, a new circuit file is added. The HFSS design file was copied and 

pasted into the circuit file. This created a component in the Circuit design file, which symbolizes 

the HFSS model. The component or subcircuit model was dynamically linked to the HFSS 

design file. The subcircuit model had 16 pins, 8 of which were linked to the 8 lumped ports of 

the transmitter array and 8 to those of the receiver array. An input port is inserted, and a voltage 

source is added to it. The port was then connected to a 1 to 8 power divider to split the signal into 

8 equal signals. After that, each pin of the power divider was connected to a phase shifter, for 

which the phase shift was set to the desired value. The phase-shifted signals were connected to 

the first 8 pins of the antenna component, to provide input to the elements of the transmitter 

array. Similarly, the remaining 8 pins were connected to the receiving network, which comprises 

of phase shifters and an 8 to 1 power combiner. The receiving network terminated in an output 

port. The complete schematic is shown in fig. 4.3. The measurement of the S12 parameter 

between the input and output ports is essentially the crosstalk coupling between the transmitter 

and receiver array. 
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Figure 4.3 The circuit schematic in ANSYS Circuit. The feeding network consists of a power 
divider for splitting/ combining the signal and 8 phase shifters to shift the phase of the signal in 
each branch. The signal in each branch of the feeding network connects to a pin of the HFSS 
model component 

A parametric analysis was also run in HFSS, to vary the distance between the two arrays. 

The linked data was used to run a parametric analysis in ANSYS circuit for the distance 

parameter. The OAM mode of the antennas could be changed by reversing the direction in which 

the phase shift increases, i.e. from 0 to 315 degrees, or from 315 degrees to 0 degrees. The 

experiment was repeated for both mode +1 and -1 of the receiver, with transmitter mode fixed at 

+1. The crosstalk S12 was measured in ANSYS Circuit for both cases.  
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4.3 Filtering the Results                

 

Figure 4.4 The results obtained for S12 against the distance between the arrays, for the transmitter 
and receiver having the same OAM modes and opposite OAM modes  

The results obtained for S12 were plotted against the distance between the two antennas 

and are shown in fig. 4.4. The plots have a significant amount of noise.  However, increasing the 

accuracy by reducing the value of maximum delta S, does not help in reducing the noise, and the 

high noise in such a weak signal makes the information obtained unreliable. This is especially 

true where we need to obtain the difference between the two cases: opposite modes and same 

modes, to calculate the differential S12, which is already a small value.  

To extract reliable information from the data obtained through HFSS, we propose a 

method of filtering out the noise. A code written in MATLAB was used to create a moving 
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average filter using the smooth command, to filter out the noise and obtain the information 

embedded in the S12 against distance plot. The filtered signal is shown in fig. 4.5. Although there 

was a hint of the oscillatory trend of S12 with distance in fig. 4.4, the variation is much more 

pronounced in fig. 4.5. Thus, a very simple and easy-to-use method for filtering the noise, was 

employed to extract useful information out of the otherwise unusable data obtained from HFSS. 

Furthermore, as discussed above, a moving average of multiple runs was taken to ensure the 

accuracy of the results. 

 

Figure 4.5 The results obtained for S12 against the distance between the arrays, after passing 
through a moving average filter 

4.4 Comparison between Theoretical and Experimental Results  

As was previously done in the practical experiment, the difference between S12 values for both 

cases: opposite modes and same modes, was calculated to obtain the differential crosstalk ΔS12. 
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This value shows the amount of isolation achieved due to the OAM nature of the waves.  ΔS12 

was then plotted against the horizontal distance between the two antennas, to observe the effect 

of distance on the differential crosstalk. The plot is shown in fig. 4.6 along with the plot obtained 

from experimental results.   

  The values of differential crosstalk ∆S12 are plotted against distance, and compared with 

the plot obtained through practical measurements, in Fig. 4.6. The simulation shows an isolation 

of 3.6 dB, whereas experimental results give a maximum isolation of 2.6 dB. The sinusoidal 

variation of differential crosstalk ∆S12 with distance, is evident from both plots. The half 

wavelength of a 5.64 GHz signal can be calculated as 2.7 cm, and it can be seen from the figure 

that the half wavelength of the simulated curve is 3 cm. This result is in good agreement with the 

half wavelength of a 5.64 GHz signal.  

Despite differences between theory and experiment, a good match can be seen between 

the behavior of the experimental and simulated plots. All connections and components in the 

simulation are considered lossless. The simulation also uses ideal phase shifters to model the 

coaxial cables which have been used to provide phase shift to the patch antennas. In practice 

there is a ±6-degree (0.1 radians) error present in the phase shift provided by these cables. 

Moreover, the manual translation of the receiver away from the transmitter contributes human 

error to the experiment. 
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Figure 4.6 Simulated and experimental results for ∆S12 as a function of horizontal distance 
between transmitter and receiver 

4.5 Conclusion  

High Frequency Simulation Software (HFSS) is a powerful tool for the simulation of 

electromagnetic problems. The software was used to design and analyze the OAM antennas used 

in this research. It was also employed to simulate the experiment to determine the relationship 

between crosstalk reduction and the distance between the transmitter and receiver antennas. 

ANSYS Circuit was used to create the feeding networks of the transmitter and receiver antennas. 

The results obtained had a high level of noise. A moving average filter was used to filter out the 

noise. The theoretical results obtained from HFSS are found to be in good agreement with the 

experimental results.   
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The theoretical results obtained from the simulation, showed a maximum differential 

crosstalk of 3.6 dB. Like the experimental results, a sinusoidal variation of differential crosstalk is 

seen, with distance between adjacent antennas. The variation is because of a phase shift being 

added to the signal due to its propagation over the distance between the transmitter and receiver. 

This causes the signal to add constructively with the receiver phase shifts at some distances, and 

destructively at others.  
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Chapter 5  
 

CROSSTALK REDUCTION IN CONCENTRICALLY PLACED ANTENNAS 

 

Chapters 3 and 4 have established that the crosstalk between two adjacent OAM antennas 

is affected by the OAM nature of the signal being transmitted. The isolation due to OAM, 

achieved theoretically, was 3.6 dB, and was experimentally measured to be 2.6 dB. Such 

findings encourage the exploration of other topologies that may provide higher values of 

isolation due to OAM. The configuration studied in this chapter consists of two concentric OAM 

antennas on the same substrate, being used as a local transmitter and receiver. This nested setup 

is more compact and practical for OAM implementation in full duplex systems, as it allows both 

antennas to use the same space. Moreover, it is difficult to design focusing dishes for antennas 

placed side by side. This chapter explores the amount of isolation achievable through this 

geometry, and the effect of the OAM mode of the outer array on the crosstalk between the two 

antennas.  

5.1 Antenna Design 

 The setup consists of two OAM antennas built on a common substrate and placed 

concentrically in relation to each other. The transmitter and receiver antennas are designed as 

circular arrays of patch antennas, as used previously in chapter 2. Since the frequency of 

operation remains the same at 5.64 GHz, the same patch dimensions as before are used as 

designed in chapter 2. The two parameters that are altered in this experiment are the placement 

of the arrays, and the OAM mode of the arrays.  
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Figure 5.1 Transmitter and receiver antennas are, arranged concentrically on the same substrate  

The arrays are placed concentrically in relation to each other (fig. 5.1). Therefore, the 

ideal array radius determined in section 2.3 cannot be used for the two arrays. The inner array 

radius is reduced to 32 mm, to allow space for the outer array. At this radius, the radiation 

pattern still forms a distinct OAM shape, as shown in fig. 5.2. The OAM mode of the inner array 

is fixed at mode l=+1, and the number of patch antennas in the inner array is kept at 8. 

 To ensure that the outer array does not overlap with the inner array, the radius of the 

outer array is increased from the ideal radius of 34mm, which was determined in section 2.3. The 

minimum radius at which the arrays do not overlap was found to be 60mm. With the greater 

radius, it is important to ensure that the signal is not under-sampled, and that a sufficient number 

of patch antennas is selected. Moreover, the outer array is required to produce OAM modes 

ranging from mode -5 to +5, and must be configured for higher order modes, as well. Therefore, 

the number of patch antennas in the array must satisfy the condition N>2|l|+1 [46], [57]. To 
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allow for the possibility of a higher order mode l=5 being induced in the outer receiver array, and 

for the sake of symmetry and continuity, N>11, i.e., 12 patch antennas are used in the outer 

array. Therefore, the number of patch antennas in the outer array is selected as 12, due to the 

geometrical constraints that result from having to avoid overlap between the patches, while also 

avoiding under-sampling of the phase distribution. For N=12 patches, the inter-patch phase shift 

in the outer array, creating mode l=1 may be accomplished using the following calculation: 

𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 =
360𝑙

𝑁
= 30° 

Similarly, to create mode l=2 and mode l=3, an inter-patch phase shift is selected at 60° and 90,° 

respectively.  

The radiation pattern of the inner arrays is shown in fig. 5.2 and the pattern for the outer 

array is shown in fig. 5.3, on the Ф=0 and Ф=90 planes. For both arrays, there is a marked dip in 

the center for both the Ф=0 and Ф=90 planes, which is characteristic of an OAM. In fig. 5.2, the 

field in the center reduces to approximately -30dB, signifying a good vortex beam. In fig. 5.3, for 

the outer array, the beam center dips to -28dB for mode l=1, and up to approximately -20dB for 

modes l=2 and l=3. The radiation patterns for the outer array exhibit significant side lobe gains, 

since the array radius used is not the optimum radius determined in section 2.3.  
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Figure 5.2 Radiation pattern of inner array with an array radius of 32mm, and an OAM mode l=1 
in the Ф=0 (red) and Ф=90 planes  

   

  (a)    (b)       (c) 

         

    (d)                 (e) 

37° 25° 12° 

30° 

45° 45° 
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Figure 5.3 Radiation pattern of an outer array with a radius of 60mm, and OAM modes (a)1 (b) 2 
and (c) 3 (d) 4 (e) 5 in the Ф=0 (red) and Ф=90 (green) planes 

5.2 Collimation Using Dish Antennas              

It is important to note that the radiation patterns featured in fig. 5.3 also illustrate the 

angular direction in which the beams propagate. OAM beams tend to diverge as they propagate, 

and the divergence is greater for higher order modes. From fig. 5.3, one can observe that, for the 

inner array, the beam divergence is 30° from the normal to the center of one lobe. For the outer 

array, the beam divergence is 12° for mode 1, 25° for mode 2, and 37° for mode 3. This means 

that after travelling a distance from the transmitter to a distant receiver, the size of the beam 

would be much larger than the receiver array. This means that the receiver patches would not be 

able to collect all of the signal transmitted. One solution to this problem is the use of parabolic 

dish antennas to collimate the signal. 

 By virtue of the parabolic shape of the dish reflector, and the fact that the reflected angle 

is always equal to the transmitted angle, every signal emanating from the focal point of a 

parabolic dish would be reflected by the dish in a direction parallel to the horizontal axis (as 

shown in fig. 5.4). This causes the beam to collimate. Conversely, any beam parallel to the 

horizontal axis incident on the parabolic dish would be focused on the focal point. The latter of 

these two concepts will be used to reproduce the beam at the receiving end.   
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Figure 5.4 A ray diagram showing that any signal emanating from the focal point would be 
reflected by the dish in a direction parallel to the horizontal axis 

A parabolic dish antenna can be described by two parameters, the focal point F, and the diameter 

D of the dish, both of which are illustrated in fig. 5.4. The focal point is a point equidistant to 

every point on the parabola. The ratio F/D, which determines the curvature 𝜃  of the dish, is 

defined in terms of the curvature of the antenna by the following: 

𝐹

𝐷
=

1

4 tan
𝜃
2

      (1) 

Further, the gain G and beam width Ψ of the dish may be calculated using equations (2) and (3), 

respectively.  

𝐺 = 10 log 𝑘
𝜋𝐷

𝜆
      (2) 
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In the above equation, k represents the beam’s efficiency factor, which is generally 50-60%. D is 

the diameter of the dish in meters, and λ is the wavelength of the signal in meters, which is 

53mm, in this case.  

𝐵𝑒𝑎𝑚 𝑤𝑖𝑑𝑡ℎ Ψ =
70𝜆

𝐷
    (3) 

Beam width is the angle (in degrees) on the radiation pattern of the dish where the beam power 

has reduced to half of the maximum (i.e., -3dB).  

Consider the OAM signal generated by the inner array to be feeding a parabolic dish. 

From fig. 5.2, it can be observed that the beam would diverge by a 30° angle. If the array is 

placed at the focal point F of a parabolic dish, then the beam radius after travelling a distance F is 

given by 𝑑 = 𝐹 tan 30 = 0.57𝐹. To ensure that the incident beam is not extending outside of the 

surface of the dish, the radius of the dish must be greater than the beam radius of the incident 

beam. Therefore, the dish diameter must satisfy 𝐷 > 2𝑑 = 1.14𝐹. And  

𝐹

𝐷
< 0.866𝑚     (3) 

Taking the example of a parabolic dish with beam width Ψ =3.5, D can be calculated using (3) as 

D=1m. And from (3), selecting = 0.7, the focal distance can be calculated as F=0.7m. This 

means that while traveling a distance of 0.7m, the beam radius of the OAM signal would 

increase d=0.404m. This confirms that the beam would be within the diameter of the dish 

antenna and that the selected parameters are appropriate for collimation.   

Similarly, the dish may be designed to collimate the different modes of the outer array. 

However, since the outer and inner arrays are coplanar, and the position of the array would be 
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fixed at the same location for all modes of the outer array, the focal point F of the dish must be the 

same for the signals of both the inner and outer arrays and for all OAM modes required. Therefore, 

the design of the dish diameter may be accounted for while simultaneously keeping the value of 

the focal point fixed.  

For OAM mode l=l of the outer array, the angle of divergence is 12 ° (see fig. 5.3). 

Therefore, the beam radius d, after traveling a horizontal distance F is, 𝑑 = 𝐹 tan 12 = 0.213𝐹. 

And to ensure that the beam does not diverge from the dish, a diameter 𝐷 > 2𝑑 = 0.425𝐹 is used. 

For F=0.7m (which was calculated for the inner array), D>0.298m. For the outer array mode l=2, 

the angle of divergence is 25° (see fig. 5.3). The beam radius after traveling a distance F is then 

𝑑 = 𝐹 tan 25 = 0.466𝐹. This means that the required dish diameter is 𝐷 > 2𝑑 = 0.933𝐹. For 

F=0.7m, D>0.653m. Along these same lines, the required dish diameter for OAM mode l=3 of the 

outer array is calculated as D>1.05m.  It is evident that a dish antenna with a diameter of 1m would 

be suitable for the inner array, and modes l=1 and l=2 of the outer array, but not for mode 3 of the 

outer array. It would be wiser to select the focal length F according to mode l=5 of the outer array, 

and use the value of F to determine the corresponding required dish diameters for the other OAM 

modes feeding the dish. Without repeating the details of the calculations, the results are stated 

below.  

Take the example of a dish with a diameter of D=1m, and a beam width of Ψ =3.5. For the outer 

array mode l=5, the angle of divergence is 45° (see fig. 5.3). The beam radius after traveling a 

distance F is then 𝑑 = 𝐹 tan 45 = 𝐹. This means that the required dish diameter is 𝐷 > 2𝑑 = 2𝐹. 

For D=1m, the condition F<0.5m must be satisfied; therefore, F is selected as 0.4m.  

For OAM mode l=4 of the outer array, the angle of divergence is 45°. D>2(𝐹 tan 45) must be 

satisfied. For F=0.4m calculated for mode 5, D>0.8 is satisfied by a dish of diameter 1m.  
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For OAM mode l=3  of the outer array, D>0.6m must be satisfied. 

For OAM mode l=2  of the outer array, D>0.4m must be satisfied. 

For OAM mode l=1 of the outer array, D> 0.17m must be satisfied.  

For OAM mode l=1 of the inner array, D> 0.46m must be satisfied.   

Therefore, at a focal length of 0.4m, a dish diameter of 1m would be appropriate for both the inner 

and outer arrays feeding the dish, and for all modes of the outer array. Using (2), the gain of the 

dish antenna with a diameter of 1m can be calculated as 23dB. If the diameter is increased to 2m, 

the gain is then 30dB. 

5.3 System Design              

5.3.1 Full Duplex System Using Ray Matrices              

The full duplex system is comprised of a transmitter and receiver at the east end and an 

identical transmitter and receiver at the west end. To mitigate the problem of beam divergence, 

parabolic reflector antennas are employed on both the East and West sides. The transmitter 

antenna is used as a feed for the dish, and the dish collimates the signal. Therefore, the 

collimated signal can travel a longer distance without diverging. On the West dish, the signal is 

converged to the West receiver array. Ray tracing and ABCD matrices can be used to 

numerically represent the system design. Fig. 5.5 depicts a ray diagram for the full duplex 

system. Here, one can note the ray emerging from the focal point of the East transmitter and 

travelling to the West transmitter with the aid of two parabolic reflectors. 
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Figure 5.5 Ray diagram for a full duplex system, with a transmitter at the focal point of the East 
dish and the corresponding receiver at the focal point of the West dish 

Consider the incident ray to be 
𝑟

𝑟 , where r1 is the distance of the ray above the 

horizontal axis, and 𝑟  is the angle of the ray with respect to the horizontal axis, in radians; a ray 

emerging from the focal point is 
𝑟

𝑟 =
0
𝑟

. For a ray travelling a horizontal distance d in a 

homogeneous medium towards the parabolic reflector East, the ray matrix is given by  

1 𝑑
0 1

 

Referring to the above, the distance d=𝑓 cos 𝑟 . The matrix for a parabolic reflector with focal 

length F is given by  

1 0
−1/𝑓 1

 

 

The ray reflected by the parabolic reflector travels a distance dEW to the west antenna. The ray 

matrix is given by  
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1 𝑑
0 1

 

And the ray then hits the West parabolic reflector. The ray matrix for the complete system can be 

written as (4). 

  

 
1 𝑑
0 1

  
1 0

−1/𝑓 1
1 𝑑
0 1

1 0
−1/𝑓 1

   
1 𝑑
0 1

𝑟

𝑟 =
𝑟

𝑟      (4) 

Matrix multiplication results in  

𝑟 =  𝑟 𝑑 − 𝑑 − 𝑑
𝑑

𝑓
+ 1 −

1

𝑓
𝑑 − 𝑑

𝑑

𝑓
+ 𝑑       (5) 

And 

𝑟 = 𝑟 −
𝑑

𝑓
+ 1 −

1

𝑓
𝑑 − 𝑑

𝑑

𝑓
+ 𝑑            (6) 

Using 𝑓 = 0.5𝑚, 𝑟 =0.5 rad (30°), and 𝑑 =10m as an example, from (5) and (6) 𝑟 =0, and 

𝑟 =-0.5 rad are obtained. This means that the beam converges back at the focal point of the 

receiving dish. Since the signal at the focal point of receiving dish is the same size as it was 

when transmitted by the East transmitter,  the receiver array must be placed at the focal point of 

the receiving dish. Although the distance between each parabolic reflector dEW has been 

determined to be 10m here, this is true for any distance between the reflectors, and for any input 

angle 𝑟  less than the curvature angle 𝜃  of the dish.   

5.3.2 Full Duplex System Simulation in HFSS              

The system is constructed and simulated using HFSS (shown in fig. 5.6) to verify that the 

antennas and signal collimation do, in fact, work. The parabolic dish antenna design described in 

the previous section was constructed in HFSS, with f=0.4m and D=1m. The antenna arrays are 

placed at the focal point of the East dish antenna, and the received signal is observed at the focal 

point of the West dish, where the receiver array must be positioned. The inner and outer arrays 

are independently excited, to determine the collimation of both. Both instances in which the 
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signal is received at the focal point of the West antenna are presented in fig. 5.7 and fig. 5.8. The 

results show that the OAM beam is recreated at approximately the same as its original size, at the 

focal point of the West antenna, as predicted by the ray tracing method. The same scale is used 

for both plots, with the red color denoting the highest field strength and the blue color 

representing the lowest. A donut shape is observed in both cases. However, the signal received is 

more oval in shape than circular. These slight aberrations in the shape and intensity of the 

received signal are observed as compared to those of the transmitted signal. This may be because 

the beam converges at a position offset from the theoretical focal point of the West dish. 

Moreover, the signal undergoes attenuation as it travels the propagation distance between the two 

parabolic reflectors. It is also important to note the difference between the received signals when 

the inner and outer arrays are excited. A more well-defined donut shape is observed in the output 

when the outer array is excited, compared to the shape observed in the output when the inner 

array is excited. One explanation for this is that the dish was designed according to the divergent 

angle of mode 5 of the outer array and may not produce the same output for all arrays and all 

modes with varying divergent angles. However, a distinct OAM shape is recovered at the 

receiver for all modes. 

 

Figure 5.6 HFSS setup showing the antenna system created using the antenna arrays at the East 
and West ends, with parabolic antennas used at each end to collimate the signals 
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Figure 5.7 The signal transmitted by the inner array mode l=1 (left), and the signal at the focal 
point of the West dish antenna (right).   

 

 

 

 

Figure 5.8 The signal transmitted by the outer array mode l=1 (left), and the signal at the focal 
point of the West dish antenna (right). 
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 5.4 Received Power Measurement 

A theoretical study is carried out to establish the relationship between the coupling 

between the East and West antennas and the OAM mode of the receiver, in the full duplex 

system presented in fig. 5.6. The purpose of this study is to demonstrate the general trend of the 

coupling between two antennas with different OAM modes, when one is used as a transmitter 

and the other as a receiver. The results of this study offer a better understanding of the crosstalk 

calculations used for the local transmitter and receiver arrays, which will be examined in the next 

section.  

The system design featured in fig. 5.6 is simulated in HFSS, with a receiver array placed 

at the focal point of the West dish antenna. In this study, the outer array at the East end is used to 

transmit an OAM mode l=+1, and the outer array at the West end is used as a receiver antenna. 

The OAM mode of the receiver array is varied from -5 to +5, while the transmitter mode remains 

fixed at l=+1.  

It is important to note that the OAM mode polarity of an antenna is defined with respect 

to the direction of propagation of the antenna’s signal. With the direction of propagation pointing 

outwards, if the phase of the input signal is increasing clockwise around the azimuth, then the 

OAM wave generated is a mode l=-1, and if it is increasing in a counterclockwise direction, then 

the mode of the OAM wave generated is l=+1. In the case of the full duplex system, the two 

transmitter and receiver arrays at the East and West ends are facing in opposite directions and 

therefore have opposite directions of propagation. Consequently, using the direction of 

propagation of one antenna as a point of reference would supply the incorrect polarity for the 

other array. To avoid confusion, in this study, the polarity of the OAM mode of each antenna is 

defined with respect to the direction of propagation of the antenna of interest. Therefore, the 
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OAM polarity of the East antenna is determined using the +z direction as reference, whereas the 

OAM polarity of the West antenna is determined using the -z direction as reference.  

Since the purpose of the study is to observe the effect of receiver mode on power 

coupling between the East and West antennas, the distance between the antennas is not a 

contributing factor in the investigation and is kept at a fixed value of 10m. ANSYS Circuit is 

employed to construct the feeding network, which configures the mode of the antenna arrays. 

The circuit schematic is depicted in Fig. 5.9 below. 

 

Figure 5.9 Circuit schematic used to determine the coupling between the East and West antennas 
for different modes of the West receiver 

Fig. 5.10 presents the results obtained for the power coupling S12E-W between the East 

and West antennas against the mode of the receiver antenna. The graph confirms that the 
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coupling is at its maximum (-21dB) when the receiver has the same OAM mode as the 

transmitter, i.e., l=+1. Furthermore, the values of S12 for negative modes are lower than the 

values for positive modes, indicating that coupling is lower when the transmitter and receiver 

have mismatched OAM polarity. The graph also shows that the coupling gradually decreases as 

the positive OAM modes are increased. However, for negative OAM modes, the coupling is 

relatively higher for odd modes as compared to even receiver modes. Specifically, the coupling 

is -42dB for l=-3, and -49dB and -51dB for modes l=-2 and l=-4, respectively. This anomalous 

trend may be indicative of a higher orthogonality between transmitter mode +1 and negative 

even OAM modes, as compared to negative odd modes. It may also be contributed by noise. 

 

Figure 5.10 Coupling between the outer arrays of East and West antennas, separated by a 
distance of 10m, is determined as S12E-W in HFSS 



 

73 
 

5.5 Crosstalk Measurement 

The results of the previous section verified that when the transmitter and receiver modes 

are mismatched, a low power output is received at the West end. Therefore, it can be inferred 

that in the antenna system exhibited in fig. 5.1, where the local antennas are in close proximity to 

one another, there is low coupling between the local antennas when they have non-equal OAM 

modes. However, it must be ensured that the crosstalk power leaking from the transmitter to the 

local receiver is lower than the power received from the transmitter at the other end. A low 

crosstalk would allow the inner and outer arrays to operate simultaneously, one as a receiver and 

the other as a transmitter, thereby making this configuration useful in full duplex systems. 

To determine the crosstalk between the inner and outer arrays, the antenna setup in fig. 

5.1 is modelled in HFSS, with both antennas being placed on a common substrate. The HFSS 

model is included as a component in ANSYS Circuit. The inner array consisting of 8 patches is 

connected to the transmitter network in the ANSYS Circuit, as described before. Since there are 

8 patches, a 45° phase shift between the signals feeding adjacent patches is required for the array 

to transmit a mode of l=+1. The transmit signal is divided into 8 equal signals by a power-

divider, and the phase shifts are provided by the 8 phase-shifters in the transmitter network. The 

circuit schematic is shown in fig. 5.11. The first 12 pins of the component representing the HFSS 

model symbolize the connections to the 12 ports of the outer array. The signal collected by each 

patch antenna in the outer receiver array is sent to the receiver network, which consists of 12 

phase-shifters and a power-divider. Each phase-shifter increases the phase of the signal, in the 

clockwise or counterclockwise direction, so as to create a total phase shift of 360° over the entire 

array. Therefore, the phase-shifters are used to configure the mode of the OAM antenna. The 

mode of the outer array is varied from l=-5 to l=+5 by altering the receiver phase shifts. The 12 
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phase-shifted signals are then combined using a power- combiner, and the resulting signal is 

obtained at the receiver port. The S12 value between the transmitter and receiver ports indicates 

the ratio of the transmitted signal when coupled to the local receiver. The value of S12local is 

determined for each mode of the receiver. This is the crosstalk between the inner and outer 

arrays.  

Figure 5.11 Circuit schematic created in ANSYS Circuit to determine the crosstalk S12 between 
the inner and outer OAM antennas  
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Figure 5.12 Crosstalk coupling S12local between local transmitter and receiver antennas in a 
nested design modelled in HFSS 

The results showing the variation in crosstalk S12local between local transmitter and 

receiver and OAM mode of the receiver are graphed in fig. 5.12. In this study, both antennas 

have the same direction of propagation, so the polarity of the OAM mode is determined with 

respect to the same propagation direction. Therefore, as expected, the maximum crosstalk power 

of -24dB is obtained for receiver mode l=-1. Additionally, a high crosstalk is observed for l=-3, 

specifically -26.5dB. And the crosstalk for mode l=+1 is also noteworthy, at -29dB. While the 

crosstalk for all other modes is less than -30dB, it is essential to note a prominent trend in the 

crosstalk values for odd and even receiver modes. The crosstalk is significantly higher for odd 

modes compared to even modes; note the S12local = -60dB for l=-2 and S12local = -26.5dB for l=-

3. Although a similar trend was noted in fig. 5.10 for the power coupling between East and West 

antennas, such behavior is more pronounced in the case of local antennas, possibly due to the 
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local antennas being in closer proximity. The graph is suggestive of a lower crosstalk and a 

higher orthogonality between even-odd OAM pairs, which is a significant finding and a useful 

factor to consider when selecting the modes for the inner and outer arrays.  

5.6 Link Budget 

The results of crosstalk measurement show that the antenna setup in fig. 5.1 provides 

appreciable isolation between local transmitter and receiver antennas, especially when the outer 

receiver array has an even mode. This makes it a good choice for use in a full duplex system. For 

reference, the link budget of such a full duplex system may be plotted for both odd and even 

receiver modes. The link budget provides a good estimate of the propagation distance the signal 

may travel before the signal strength falls below the power of the local transmitter. 

Consider the example of a full duplex system consisting of nested antenna systems on the 

East and West sides, separated by a distance. If the outer array has a mode l=-2, and the inner 

array has a mode l=+1, the isolation between the arrays is -60dB (see fig. 5.12). The full duplex 

system has a launch power Pt of 85dBm, and a receiver sensitivity of -120dB. As discussed in 

the previous section, an OAM signal diverges as it propagates. Therefore, to collimate the OAM 

signal, a dish antenna is used at each end. The ray diagram of such a system is illustrated in fig. 

5.5. The dish antenna has a gain of 30dB, which is included in the 85dBm launch power. The 

crosstalk coding isolation provided by digital signal processing and analog cancellation is 

estimated to be 90dB [95]. OAM isolation of 60dB between outer antennas with a mode of -2 

and inner antennas with a mode of +1 reduces the crosstalk to -95B. The crosstalk signal, when 

the receiver mode is -2, is represented in red in the graph featured in fig. 5.13 and is independent 

of the distance travelled by the wave, since it is the power transfer between the local transmitter 

and receiver antennas. If the mode of the outer array is instead selected as l=-3, the isolation 
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between the arrays is -27dB (refer to fig. 5.12), and the crosstalk transmitted to the receiver is 

reduced to -62dB (represented in green in fig. 5.13), after accounting for the isolation provided 

by OAM orthogonality, and the crosstalk coding methods.  

For the receiver antenna to successfully collect the signal transmitted by a distant 

antenna, the signal power at the receiver must be higher than the crosstalk from the local 

transmitter. Since the power of the signal attenuates due to free space loss as it travels through 

the air, the distance between the two antennas in a full duplex system is limited by the crosstalk 

power at the receiver. The power of the signal from a distant transmitter, arriving at the receiver, 

is calculated using (1)[96]. 

= 𝑁𝑔 ( )𝑁𝑔 ( )( )             (1)[96] 

In the above equation, N is the number of elements in the antenna arrays; gt and gr are 

the antenna gains of each patch and are taken as 1; Rt and Rr are the array radii of the transmitter 

and receiver, respectively, and are taken as 60mm for the outer arrays; λ is the wavelength 

53mm; and D is the distance between the antennas. The distance D is varied to determine the 

power of the signal as it propagates. The received power against the distance is plotted in blue in 

fig. 5.13 for the outer array as a function of the distance D. At the receiver, a dish antenna gain of 

30 dB is added to the signal power . A comparison of the plot for the received power (blue) and 

the plots for the two instances of crosstalk (red and green) illustrates the distance the signal can 

travel before it falls below the crosstalk value. For an outer array with an OAM mode of l=-3, 

there is a significant margin of received power over crosstalk—for a distance up to 2km. For an 

outer array with a mode of l=-2, the distance is up to 10km. Therefore, an extra 8km of 

communication distance can be achieved by configuring the outer array with a mode of l=-2. 
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Figure 5.13 The strength of the signal transmitted by the outer array as it propagates a distance D 
(blue), and crosstalk values for receiver mode l=-2 (red) and receiver mode l=-3 (green), both of 
which are independent of distance 

5.7 Conclusion 

This chapter explored the mechanics behind a nested antenna design, as well as the 

benefits associated with it. The antenna setup consists of transmitter and receiver arrays placed 

concentrically on the same substrate. The array radii for the inner and outer antennas were 

selected so as to accommodate both arrays on the same substrate. The nested design is compact 

and practical, particularly for use in a full duplex system, as both the transmitter and receiver 

arrays utilize the same space. Moreover, both local antennas can use the same dish antenna, 

unlike the design with adjacent antennas.  The present chapter examined this setup in terms of 

OAM orthogonality and crosstalk reduction, in particular. An OAM signal diverges as it 

propagates; therefore, for the two antenna systems to communicate in a full duplex system, 

parabolic dish antennas are employed to collimate the signal. The dish antenna design parameters 
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were also discussed, and the selection of these parameters with regard to the angles of divergence 

for the OAM signals was described. The communication between two distant antennas on the 

East and West side in a full duplex setup was studied through two methods, ray matrices and 

HFSS simulation. A study was simulated in HFSS to model the communication between two 

distant antennas on the East and West side, by fixing the mode of the transmitting array on the 

East end to +1, and by the varying the OAM mode of the receiving array on the West end. It was 

shown that the highest power is received when both the transmitting and receiving arrays have 

the same OAM mode, and in general, the power decreases as the mode of the receiver increases.  

 Another study was carried out to determine the crosstalk between the inner and outer 

arrays in a nested antenna design. The antenna arrays were modelled in HFSS, and the crosstalk 

was studied by fixing the OAM mode of the inner array to +1, and by varying the mode of the 

outer array. Results showed a high crosstalk when the receiver array has an odd OAM mode. The 

results indicate a higher orthogonality of odd-even OAM pairs.     

 The numerical calculations confirm that an even OAM mode would be a good choice for 

the outer array. Link budget calculations show that an appreciable distance of 2km can be 

achieved for signal propagation when the outer array is an odd mode, and a communication 

distance that is further 8km can be achieved by selecting an even OAM mode for the receiver.  
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Chapter 6  
 

CROSSTALK-INDUCED VOLTAGE IN NESTED RING ANTENNAS 

 

The previous chapter demonstrated the high isolation provided by the nested antenna design, 

which is both compact and practical. Previous analysis of the geometry was carried out using 

phased array antennas, in HFSS. The purpose of this chapter is to analyze the antenna system to 

derive a mathematical expression for the voltage induced in the outer receiver due to the 

crosstalk signal generated by the inner transmitter. This chapter is divided into two parts. In the 

first part, the mathematical expression is numerically derived to calculate crosstalk. In the second 

part, the results are verified through HFSS simulation of two concentric loop antennas 

configured to operate as OAM antennas. 

6.1 Mathematical Derivation from Analytical Modeling                             

The antennas presented in fig. 5.1 are modeled analytically to study their operation 

mathematically. Fig. 5.1 shows two concentric OAM antennas, each consisting of a circular 

array of patch antennas. The signal to each patch of the antenna array is phase-shifted from the 

adjacent patch to generate the required OAM mode. In the analytical model presented in this 

chapter, each circular array is modelled by a circular loop antenna excited by a short pulse of 

current that travels around the loop. In a manner similar to the phased array, the phase of the 

current varies along the loop, resulting in radiation of fields carrying OAM. In general, the 

current distribution on the inner loop antenna will induce a voltage on the outer loop, and this 

induced voltage may be interpreted as crosstalk.  
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Figure 6.1 The inner loop antenna is comprised of a wire shaped in a circle with a radius of a. 
The source coordinates are denoted by (r',θ',φ'), whereas (r,θ,φ) refers to any observation point.  

Inner Loop (Transmitter) 

The inner loop is modelled first, as a thin wire shaped as a circle with a radius of a, as 

shown in fig. 6.1. For convenience, the circle is placed at the origin on the x-y plane. The 

coordinates of the inner loop are described using the spherical coordinate system (𝒓 , 𝜽 , 𝝋 ), 

whereas any observation point uses the coordinate system (𝒓, 𝜽, 𝝋). 

 The current flow in the wire is a constant current Io, and the phase varies along the 

azimuthal angle φ, comparable to the phase shift in phased array antennas. Therefore, the current 

distribution in the loop may be represented as 𝑰 = 𝐼 𝑒 𝑒 𝒂𝝋, where 𝐼  is the constant 

current amplitude, l is the OAM mode number, 𝜔 is the angular frequency, and 𝑡 is the time. The 
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term 𝑒  depicts the time variation of the signal, and the term 𝑒  marks the phase shift in 

the signal and varies with the angle 𝜑 . Consequently, for every 2π revolution of 𝜑′, the phase of 

the current undergoes an 𝑙(2𝜋) phase shift. Hence for l=1, there is a total phase shift of 2𝜋 in a 

complete revolution around the circle. For l=2, the total phase shift is 4𝜋, and for l=3, it is 6𝜋. 

Previous chapters have shown that such a phase shift variation in the signal in the azimuthal 

direction, causes the generation of OAM carrying electromagnetic waves. For the mathematical 

analysis of the fields generated by the current flow in the loop, the standard approach involves 

determining the vector potential A, and then using it to calculate the electric and magnetic fields.  

To simplify the problem, it is assumed that the loop is made up of an infinite number of 

small segments, all of length dl. Then, the vector potential A(r), at an observation point P, can be 

written in the same way as for a linear dipole [97]: 

𝑨(𝒓′) =
𝜇

4𝜋

𝐼(𝒓′)𝑒

𝑅
𝑑𝑙    (1)   

Here, 𝜇 is the permeability of air, and k is the wave number provided by 𝑘 = . As 

indicated in fig. 6.1, 𝑹 = 𝒓 − 𝒓  and 𝑑𝑙 = 𝑎𝑑𝜑′, r is the vector from the origin to any point on 

the inner loop; 𝒓  is the vector from the origin to any observation point; and R is the vector from 

a point on the loop to any observation point. The infinitesimal dipole approximation [77]  

(|𝑟 − 𝑟 | ≈ 𝑟 − 𝑎 sin 𝜃 cos(𝜑 − 𝜑 ) for phases, and |𝑟 − 𝑟 | ≈ 𝑟 for amplitudes) can be used to 

simplify the expression in (1) as [77]: 

𝑨(𝒓) =  
𝜇𝐼 𝑎

4𝜋

𝑒 𝑒 𝑒 ( )

𝑟
(−𝒙 sin 𝜑 + 𝒚 cos 𝜑 )𝑑𝜑      
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The integration over the azimuth angle from 0 to 2𝜋 combines the contribution of each small 

segment of the loop, and provides the complete vector potential of the entire loop.  

Defining the difference 𝜑 − 𝜑 = ∅ for simplifying the integration, the above equation may be 

re-written as follows 

𝐴(𝒓) =  
𝜇𝐼 𝑎

4𝜋

𝑒 𝑒 𝑒 ∅𝑒 ( (∅))

𝑟
(−𝒙 sin 𝜑 + 𝒚 cos 𝜑 )𝑑∅      

Bessel’s first integral is given by [75] 𝐽 (𝑧) = ∫ 𝑒 𝑒 𝑑𝜃 

Therefore, the integration in the above equation can be simplified as [75] 

𝑒 ∅𝑒 (∅) 𝑑∅ = 2𝜋𝑖 𝐽 (𝑘𝑎 sin 𝜃) 

The results of the integration, in terms of spherical coordinates, are obtained from [77]: 

𝑨(𝒓) =
𝒍

[ 𝒓 sin 𝜃 + 𝜽 cos 𝜃 − 𝝋𝑗 𝐽 (𝑘𝑎 sin 𝜃) + (𝒓 sin 𝜃 + 𝜽 cos 𝜃 −

𝝋𝑗)𝐽 (𝑘𝑎 sin 𝜃)         (2) 

Here,  𝐽 (𝑘𝑎 sin 𝜃) is a Bessel function of the first kind, and 𝑘𝑎 sin 𝜃 is the variable of the Bessel 

function. The magnetic field H is derived from the vector potential using Maxwell’s equation 

(3): 

𝑯 = ∇ × 𝑨         (𝟑)          
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Due to the symmetry of the problem with respect to the z axis, the cylindrical components of the 

magnetic and electric fields are calculated. The resulting components of H(𝐻 , 𝐻 , 𝐻𝒛) are 

provided by [77],  

𝐻 = − cos 𝜃 𝑒 𝑒 𝑒 (𝐽 + 𝐽 ) + [𝑙 − (𝑘𝑎 sin 𝜃) ](𝐽 + 𝐽 )    (4)                     

𝐻 = 𝑒 cos 𝜃 𝑒 𝑒 𝑝[ (𝐽 + 𝐽 ) + (𝐽 − 𝐽 )]                                  (5)                 

𝐻𝒛 = 𝑒 sin 𝜃 𝑒 𝑒 (𝐽 − 𝐽 ) − (𝐽 + 𝐽 )[𝑙 + (𝑘𝑎) − (𝑘𝑎 sin 𝜃) ] (6) 

where C is defined as 𝐶 = −𝑗 𝑎 , 𝑟 = 𝜌 + 𝑧 , and sin 𝜃 =  [77]. The electric field E 

is similarly derived from H using (7). 

𝑬 = ∇ × 𝑯             (𝟕)      

The cylindrical field components of E are obtained as follows [77]: 

𝐸𝝆 = 𝑒 𝑒 𝑒 (𝐽 + 𝐽 ) + [𝑙 cos 2𝜃 (𝐽 − 𝐽 ) − 𝑠𝑖𝑛 𝜃(𝐽 +

𝐽 )]            (8)  

𝐸 = 𝑒 𝑒 𝑒 [ (𝐽 − 𝐽 ) − (𝐽 + 𝐽 )]       (9)                                                                  

𝐸 = − sin 𝜃 cos 𝜃 𝑒 𝑒 𝑒 (𝐽 + 𝐽 ) + [(𝐽 + 𝐽 ) + 2𝑙(𝐽 −

𝐽 )]      (10) 

The phase of the electric field for l=1 is plotted on a circular plane (fig. 6.2), 50m above the loop 

to verify that the signal generated by the loop antenna is, in fact, an OAM signal. The phase 

pattern is a rotating spiral phase front, as is expected for an OAM signal with a mode l=1.  
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Figure 6.2 The phase pattern of the electric field generated by the loop antenna with a mode l=1 

 

Outer Loop (Receiver) 

To test the nested antenna design featured in fig. 5.1, an outer receiver antenna is modelled using 

another wire loop with a radius of r1 and greater than a. The outer loop is placed in the field of 

the inner loop, on the same horizontal plane as the inner loop. The centers of both loops are at 

the origin. The AC current in the inner loop results in a time-varying term in the electric and 

magnetic fields. According to Faraday’s law, the changing magnetic flux induces an electric 

current in any closed loop placed in the field. The changing magnetic field produced by the 

current in the inner loop can be determined at any point on the outer loop using equations (4)-(6). 

Due to the position of the outer loop, z=0 and 𝜃 = 90° can be substituted in the equations to 

determine the field distribution H on the outer loop. Faraday’s law (11)[98] is applied to 
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determine the amount of voltage induced by the outer conductor, wherein B represents the 

magnetic flux density. 

∇ × 𝑬 = −
𝜕𝐵

𝜕𝑡
        (11) 

Using Stoke’s Theorem [98] (11), this relationship can be written as, 

𝑬 ∙ 𝒅𝒍 = −
𝜕

𝜕𝑡
𝑩 ∙ 𝒅𝑺           (12) 

In the above equation dS represents an infinitesimally small area of the outer loop, which can be 

defined as, 𝑑𝑆 = . The quantity on the left-hand side of the equation is the induced emf, 

measured in Volts. The right-hand side can be further expanded as   

𝑉 = −𝜇
𝜕

𝜕𝑡
𝐻 𝒂𝝆 + 𝐻 𝒂𝝋 + 𝐻 𝒂𝒛 . 𝑎

𝑟 𝑑𝜑

2
           (13) 

The equation reduces to  

𝑉 = −𝜇
𝜕

𝜕𝑡
𝐻

𝑟 𝑑𝜑

2
           (14) 

Given the position of the outer loop, z=0 (therefore 𝜃 =  and r=ρ in spherical coordinates), and 

ρ=r1 can be substituted in (6) so that the expression for H reduces to 

𝐻𝒛 =
𝐶

2
𝑒 𝑒 𝑒

𝑘

𝑟1
(𝐽 − 𝐽 ) −

𝑗𝑙

𝑟1
(𝐽 + 𝐽 )       (15) 

Therefore, (14) can be written as  

𝑉 = −𝜇
𝜕

𝜕𝑡
𝑒 (

𝐶

2
𝑒 𝑒

𝑘

𝑟
(𝐽 − 𝐽 ) −

𝑗𝑙

𝑟
(𝐽 + 𝐽 )   

𝑟 𝑑𝜑

2
   )        
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Performing the time differentiation, and setting the limits of the integral from 0 to φ, allows one 

to determine the voltage at any point at an angle φ along the azimuth, using the following 

equation: 

𝑉 = 𝑗𝜔𝜇 𝑒 (
𝐶

2
𝑒 𝑒

𝑘

𝑟
(𝐽 − 𝐽 ) −

𝑗𝑙

𝑟
(𝐽 + 𝐽 )   

𝑟 𝑑𝜑

2
   )   (16)   

Ignoring the time variation, all terms in equation (16) are constant, except φ. Assuming the 

product of all the constant terms as a constant Vo2, the equation reduces to  

𝑉 = 𝑉 𝑒 (𝑒 𝑑𝜑)   (17) 

The expression for the induced voltage reveals a magnitude term that remains constant at all 

points on the outer loop. The magnitude 𝑉  is dependent on the position and radius of the outer 

loop, as well as the radius and mode of the inner loop. More importantly, (17) indicates the 

azimuthal dependence of the phase. The phase term 𝑒  specifies that the phase of the signal 

increases by 𝑙𝜑 for every 𝜑, under which circumstances, there would be a total phase shift of 

𝑙(2𝜋) in one revolution around the loop. This implies that an OAM signal was induced in the 

outer loop.  

Furthermore, due to the OAM nature of the receiver antenna, the outer loop imparts an additional 

phase shift to the signal as it travels through the loop. This phase shift is dependent on the OAM 

mode l1 of the outer loop and varies in the 𝜑 direction. The signal at each point in the outer loop 

can then be added together to calculate the combined received output. Therefore, (17) becomes 
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𝑉 = 𝑉 𝑒 (𝑒 𝑒 𝑑𝜑) =  𝑉 𝑒 (𝑒 ( ) 𝑑𝜑)  (18) 

Under these circumstances, 𝑙  is the mode of the outer receiver loop and −𝑖𝑙 𝜑 is the phase shift 

at each point of the outer loop. The phase term 𝑒 ( )  means that the signal undergoes a 

phase shift of 2π, l+l1 times in one revolution around the loop. Therefore, l+l1 is the mode of the 

received signal (see Appendix B). The integration in (18) may be performed to determine the 

total voltage induced in the receiver antenna.  

𝑉 = 𝑉 𝑒
𝑒 ( ) − 1

−𝑖(𝑙 + 𝑙 )
      (19) 

Note that the term 𝑒 ( )  is always equal to 1 for all integer values of l and l1 (with the 

exception of l+l1 =0), and results in an induced emf V=0. This is an important finding because 

V=0 for all values of l and l1 except l=-l1 means that the coupling between all non-matching OAM 

antennas is 0. This finding supports the theory, that OAM modes are orthogonal, and therefore the 

coupling between them must ideally and theoretically be zero [59], [99]–[103].  

In the case of l+l1 =0 i.e l=-l1, (18) may be written as  

𝑉 = 𝑉 𝑒 (𝑒 𝑑𝜑) = 2𝜋𝑉 𝑒  

This output leads to the conclusion that an induced voltage exists only when l+l1 =0, and therefore 

l=-l1. This means that emf is induced in the outer antenna only when the inner and outer antennas 

are matched. When the mode of the transmitter and receiver antennas are matched, the phase shifts 

of the receiver completely cancel out the phases of the transmitted signals, resulting in an OAM 

mode 0 or a plane wave [104] (see Appendix B), and power is received at the receiver port. It is 
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important to note that the polarity of the OAM mode is determined with respect to the direction in 

which the radiation is propagated, i.e., whether the phase of the signal around the antenna increases 

in a clockwise or counter-clockwise direction. In the event that both antennas are on the same 

plane, the polarity of both OAM antennas is determined with respect to the positive z direction.  

To summarize, the results (18) may be written as  

𝑉 =
2𝜋𝑉 𝑒                                        𝑓𝑜𝑟 𝑙 = −𝑙
0                                                         𝑓𝑜𝑟 𝑙 ≠ −𝑙

          (20)           

The values of the various parameters in (16) can be set to obtain a value of 𝑉  and calculate V for 

𝑙 = −𝑙 . Setting a=34mm and r1=60mm as in the nested patch arrays from chapter 5, 𝐼 = 1, 𝜇 =

1.25 × 10 𝑚 𝑘𝑔 𝑠 𝐴 , and 𝑙 = 1. The value is normalized with respect to the constant 

magnitude. The values of the normalized crosstalk S12 between the local antennas are represented 

in the graph in fig. 6.3. 

 

Figure 6.3 The voltage induced in the outer loop with the OAM mode of the receiver. 
Theoretically, power would be coupled to the receiver only if both OAM antennas have the same 
modes with opposite polarities   
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Fig. 6.3 shows an example of crosstalk values between the inner and outer OAM antennas for a 

transmitting antenna with mode l=1. The bar graph demonstrates that coupling between the inner 

and outer antennas occurs only if both antennas have the same OAM modes, but with opposite 

polarities l=-l1, and is zero for all other OAM modes. This occurs due to the orthogonality of the 

OAM modes, and therefore the coupling between non-matching OAM modes is theoretically 

zero. This is an important concept and is the basis of this research. The derivation presented in 

this section is proof of the concept of orthogonality between the OAM modes, and moreover 

speaks to the advantage of using it in reducing crosstalk between local antennas. However, 

although the crosstalk between non-matching OAM modes is theoretically zero, previous 

chapters of this dissertation have demonstrated that, in practice, the crosstalk is not completely 

eliminated. The fact that OAM waves and phase shifts are not perfect, environmental effects, 

backward radiation, and noise—these are just some of the reasons that crosstalk between non-

matching modes may be significant.  

6.2 Simulation in HFSS                            

To verify the results of the derivation, a similar model was analyzed in HFSS. Two 

concentric waveguide loops were constructed to model the loop antennas. Previous studies have 

explored the use of travelling wave circular loop antennas (CLA) to generate OAM waves [35], 

[77], [78], [105]. Of these [78], also proposes a nested configuration of loop antennas for the 

purpose of multiplexing. However, there is not enough research on the isolation of CLA- based 

OAM antennas in a nested design. This section describes a nested CLA model based on the 

design demonstrated in [78]. The inner antenna is used as a transmitter with an OAM mode of 

l=+1, whereas the mode of the outer loop remains varied. To study the crosstalk between the 

inner and outer loops, the model is simulated in HFSS.  
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6.2.1 Waveguide Loop Antenna Design 

The circular loop antenna with a radius r is made of a coaxial waveguide(fig. 6.4), 

excited by two ports that have an angular distance of λ/4 between them, where λ  is the waveguide 

wavelength. The two signals that are fed to the ports are mutually orthogonal, and have an equal 

amplitude but a phase delay of ±90°, thereby ensuring a traveling wave current distribution 

[106]. As the signal propagates through the circular loop, it undergoes a phase shift that is 

dependent on the distance covered, which can be written as 𝑒 , where k is the wave number 

 and 𝜆 is the effective wavelength in the waveguide. R is the circumferential distance covered, 

given by 𝑟𝜑. Therefore, the phase of the signal changes with the azimuth angle φ, and the 

circumference of the loop may be adjusted to cause the signal to undergo a total phase shift of 

2𝜋𝑙 in one revolution around the loop. Slots cut into the outer conductor of the OAM waves, 

allowing the waveguide to emanate electromagnetic radiation. The phase change in the current in 

the azimuth direction causes the electromagnetic waves emitted to assume helical phase fronts, 

and therefore carry orbital angular momentum. The mode of the OAM wave generated is 

dependent on the radius of the ring. The radius of the loop can be calculated by setting the phase 

shift over the circumference of the loop, to 2𝜋𝑙. Since the circumference of the circle is 2𝜋𝑟, the 

phase shift due to propagation over the complete circumference is 𝑒 ( ). To generate an 

OAM signal with mode l, the radius of the ring can be determined by the following:  

𝑟 = 𝑎𝑏𝑠 𝜆.
𝑙

2𝜋
       (8) 
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Figure 6.4 A slotted loop antenna used to generate an OAM signal 

For a 5.64GHz signal, with λ=53mm, r is calculated as 8.5mm to generate a signal with 

an OAM mode of 1. The antenna used to generate a mode 1 signal, modelled in HFSS, is shown 

in fig. 6.5. The radii of the inner and outer conductors are a=2mm and b=3.3mm, respectively. 

The radius of the antenna to generate mode l=2 is calculated using (8) as r1=16.9mm, and as 

25.5mm for mode l=3. As the radius of the antenna increases, the distance between the slots 

increases; therefore, the number of slots may be likewise increased to obtain a more continuous 

waveform. The slots are cut with a 0.5 duty factor, and are each a length of 2mm. This means 

that individual loop antennas must be designed and modelled for each OAM mode. The polarity 

of the OAM modes can be reversed by changing the phase difference between the two ports from 

+90° to -90°. 

The amplitude and phase pattern of the electric field generated by the antenna for l=1 is 

observed on a plane above the antenna in HFSS. The plots presented in fig. 6.5 show the donut- 
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shaped amplitude plot of a vortex beam, and the rotating spiral phase pattern characteristic of an 

OAM beam with a mode of 2.  

  

 

 

 

Figure 6.5 Amplitude and phase patterns of the electric field generated by the loop antenna with 
l=2 in HFSS 
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𝑙 = 7 

Figure 6.6 Radiation patterns of antennas with OAM modes 1 to 7 in the φ=0 plane. The 
divergence angles of each radiation is marked.  

The radiation patterns for the OAM antennas with modes ranging from 1 to 7 are also 

shown in fig. 6.6. What is most striking about the patterns is that the radiation pattern of mode 1 

does not have a dip in the center. Presumably this null 0° is washed out by the diffraction of the 

two lobes. As was seen in section 6.1, the radiation generated by the loop antennas is a Bessel 

function. According to [78], the radiation pattern of mode 1 is not dipped in the center because 

the radiation is maximum in the axial direction when the order of the Bessel function is 1, as in 

the case of mode 1, and the radiation degrades as it travels. For higher order modes, the central 

dip increases as the mode number increases (-15dB for mode 2 and -28dB for mode 7), and the 

divergence angle also increases (40° for mode 2, and 60° for mode 7). Therefore, with this 

method of OAM generation, mode 1 is not a good choice, and will not be used for any of the 

studies included in this section. Further, it can be noted that the radiation patterns are not 

perfectly symmetrical and are particularly contorted on the right side. The reason for this is that 

60° 
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although the constant current is assumed around the loop antenna in theory, in practice, there is 

an inhomogeneous current distribution in the azimuthal direction around the loop [78] due to 

losses.  

 

Figure 6.7 The radiation pattern of OAM mode 2 generated using the patch antenna array 
described in chapter 5 (blue), and that generated using loop antennas (red). Both patterns are 
plotted in the φ=0 plane. 

 Comparisons can be made between the OAM modes generated using patch array 

antennas, and those generated using loop antennas, by plotting the radiation pattern of both on 

the same figure. Fig. 6.7 shows the radiation pattern for OAM mode 2 generated by a phased 

array antenna (blue), and a loop antenna (red). One can observe that the radiation from the loop 

antennas does not feature side lobes. However, the gain of the radiation pattern generated by the 

loop antenna is lower (3dB) than the gain of the beam generated by the phased array (10dB). 

Moreover, the loop antenna has a higher back radiation (3dB) compared to the phased array (-

11dB). The angle of divergence is also greater for the antenna generated by the loop antenna. 
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The differences in the radiation patterns will ultimately impact the way these antennas interact 

with other antennas. 

6.2.2 Collimation Using Dish Antennas              

It is important to note that the radiation patterns shown in fig. 6.5 also illustrate the 

angular direction in which the beams are propagating. OAM beams tend to diverge as they 

propagate, and the divergence is greater for higher order modes. As discussed in chapter 5, 

parabolic dish antennas may be employed to collimate the diverging OAM beams, to transmit 

them over long distances. The dish antennas can be redesigned for OAM loop antennas, as they 

were previously designed for array-based OAM antennas. From section 5.2, we learned that F/D 

is defined in terms of the curvature of the antenna by the following expression: 

𝐹

𝐷
=

1

4 tan
𝜃
2

           (9) 

Here, 𝜃  is the curvature of the dish , and the beam width is the angle (in degrees) on the 

radiation pattern of the dish, where the beam power has reduced to half of the maximum (i.e., 

3dB). For a dish of diameter D with a beam of wavelength  𝜆 incident on it, the beam width is 

given by    

 

𝐵𝑒𝑎𝑚 𝑤𝑖𝑑𝑡ℎ Ψ =
70𝜆

𝐷
    (10) 

In section 5.2, it was concluded that it is more useful to design the dish for the highest 

order mode. Therefore, the dish will be designed for mode 7. From fig. 6.6, it can be observed 

that the beam divergence angle for mode 7 is 60°. If the array is placed at the focal point F of a 
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parabolic dish, then the beam radius after travelling a distance F is given by 𝑑 = 𝐹 tan 60 =

1.73𝐹. To ensure that the incident beam is not extending outside of the surface of the dish, the 

radius of the dish must be greater than the beam radius of the incident beam. Therefore, the dish 

diameter must satisfy 𝐷 > 2𝑑 = 3.46𝐹. And  

𝐹

𝐷
< 0.29         (11) 

Taking the example of a parabolic dish with a beam width of Ψ =7.4, D can be calculated 

using (10) as D=0.5m. And from (4), selecting = 0.28, the focal distance can be calculated as 

F=0.14m. Therefore, a dish with a diameter of D=0.5m, and a focal distance of F=0.14m, would 

be suitable for collimating mode 7. 

Similarly, keeping the OAM antennas with other modes, at the same focal point 

F=0.14m, the diameter D of the dish can be calculated for each of these modes. For OAM mode 

l=2 of the outer array, the angle of divergence is 40 ° (see fig. 6.6). Therefore, the beam radius d, 

after traveling a horizontal distance F, is 𝑑 = 𝐹 tan 40 = 0.84𝐹. And to ensure that the beam 

does not diverge outside the dish, the diameter 𝐷 > 2𝑑 = 1.68𝐹. For F=0.14m (which was 

calculated for mode 7), D>0.23m. Therefore, a dish with a diameter of 0.5m would be suitable 

for use with a feed antenna generating mode 2. As all other modes have divergent angles ranging 

from 40° to 60°, the dish designed should also be suitable for use with them. Since mode 1 

radiates mainly in the axial direction, its divergence will not be considered.  

 The loop antenna is used as a feed to the parabolic dish antenna designed, which will be 

called the East dish, DishE. The resulting collimated signal travels a distance to another parabolic 

dish called the West dish, DishW. DishW converges the signal back to its original size, at its focal 
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point. A receiving loop antenna may be placed at the focal point of DishW to collect the signal. 

The complete communication path is illustrated in fig. 6.8. To illustrate, the input feed is 

provided by a loop antenna of OAM mode 7. The signal received at the focal point of DishW, 

placed 1m away, is shown in fig. 6.9. The figure presents a distinct donut shape, signifying that 

the OAM signal has been successfully collimated and transmitted over a distance. 

 

Figure 6.8 The signal transmitted by the East loop antenna is collimated by DishE and 
transmitted to DishW which converges it to its focal point. The transparency of the dish antennas 
has been increased to show the position of the feeding antenna and the observation point 
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Figure 6.9 The signal received at the focal point of DishW when an OAM mode 7 is transmitted 
by the antenna on the East dish 

 A receiving loop antenna may be placed at the focal point of DishW to create a complete 

communication path. A simulation is constructed in HFSS by creating the complete 

communication path and using a loop antenna with an OAM mode of 2 as the transmitter. The 

OAM modes of the receiver are varied from -7 to +7 (excluding mode 0, which cannot be 

generated with a loop antenna), and the power coupling between the transmitter and the receiver 

antennas is measured as S12E-W. One may recall that the polarity of the OAM mode depends on 

the direction in which the phase of the signal increases while looking in the direction of 

propagation of the beam generated. In this case, the direction of propagation of both antennas is 

in the opposite direction. 

The values of S12E-W are plotted in fig. 6.10, for each mode of the receiver. The plot 

demonstrates that the power coupling is highest (-73dB) when the receiver has the same OAM 

mode as the transmitter, i.e., mode l=+2. This is because matched OAM modes have the highest 
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coupling, and all non-matching OAM modes are orthogonal, as previously discussed. The 

coupling is lower than -80dB for all other receiver modes exhibiting lower coupling between 

non-matching modes. There is no remarkable trend identified in the variation of S12E-W values as 

the receiver mode changes. It should be noted, however, that the power of the received signal is 

also dependent on the distance between the East and West antennas, and therefore, the purpose 

of observing S12E-W is to determine the variation of the power coupling with the OAM mode at 

any fixed distance.    

 

Figure 6.10 The power coupling S12E-W between the East and West antennas communicating 
over a distance, with the aid of parabolic dish antennas 

A similar study was stimulated using patch array antennas, and was discussed in section 

5.4. In this case, an OAM mode of 1 was used for the transmitter, and similar results were 

produced, with the highest coupling obtained for matching OAM modes. However, the S12E-W 

values were much higher in this case, with -21dB obtained for matching OAM modes, and less 
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than -42dB for non-matching modes. The lower coupling powers for loop antennas may be 

attributed to the lower gain of the loop antennas compared to phased array antennas, as was seen 

in fig. 6.7. 

6.2.3 Nested Loop Design 

Once it has been established that the loop antenna generates OAM, different antenna modes can 

be placed concentrically on a single plane to create a nested antenna design, as exemplified in fig. 

6.11. For convenience, both loop antennas are placed at the origin, on the x-y plane. The inner 

loop is used as a transmitter, with the OAM mode fixed at l=2. By varying the radius of the loop 

and increasing the number of slots, the mode of the outer loop ranges from -7 to 7. In using this 

setup, it is not possible to determine the crosstalk that occurs when both the inner and outer 

antennas have the same modes, because loops with the same modes will have the same radius and 

cannot be placed concentrically. Similarly, it is not possible to generate a mode 0 using this method 

of OAM wave generation since a loop with a radius of 0 is not physically possible. For this reason, 

receiver modes of 2,-2, and 0 are excluded from the study.  

 

 

Figure 6.11 Loop antenna with mode 2 is used as a transmitter in the center, and the outer loop 
with mode 4 is used as a reciever. Both antennas are placed concentrically in a nested loop 
design 
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Figure 6.12 The schematic created in ANSYS Circuit consists of a power divider used for 
splitting the signal into 2 equal signals, each of which is then phase-shifted by the phase-shifters 
and connected to the ports in the loop antenna 

A feeding network for the transmitter and receiver antennas is created in ANSYS Circuit, as 

shown in fig. 6.12. It consists of a two-way power divider/combiner that is used to split the 

signal sent to the transmitter ports, or combine the signal collected by the receiver ports. The 

signal in each branch undergoes a phase shift of 0 or 90°, which is created by the phase-shifters 

in the schematic. A component representing the HFSS model of the antennas’ setup is 

dynamically linked to the HFSS file. The 2 pins on one side of the component representing the 

HFSS model are linked to the ports of the inner antenna, and the other 2 pins are linked to the 

outer receiver loop antenna. 

 The crosstalk coupling between the inner and outer loop was determined as S12crosstalk 

using ANSYS Circuit, for each mode of the receiver. In fig. 6.13, the values obtained for 

S12crosstalk are plotted against the receiver mode. The figure indicates a low crosstalk for all 

modes of the receiver array. The maximum crosstalk value of -89dB is obtained for mode l=-3. 
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All other crosstalk values are below this value.  The crosstalk values, although existent, are 

insignificant, and are proof that OAM orthogonality can be used for crosstalk reduction. There is 

no remarkable trend seen in the crosstalk values. Although the crosstalk values for receiver mode 

l=+2 and l=-2 are not included, based on the results of section 6.2.2, the crosstalk value is 

expected to be maximum for receiver mode l=-2. The results of this study are in conformance 

with the mathematical derivation in section 6.1, which showed no crosstalk between non-

matching OAM modes. 

 

Figure 6.13 Crosstalk between the inner and outer loop antennas for varying modes of receiver 
OAM antennas, with the inner loop transmitting an OAM mode of 2  

 A similar study was carried out in section 5.3, but it used patch antenna arrays to create 

the nested OAM antenna design, instead of using the loop antennas to generate OAM. The 
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results for each are not based off identical data sets, though, because a mode of 0,2, and -2 could 

not be generated by the receiver loop antennas, and the maximum OAM mode that could be 

generated by the phased array antenna with the given number of array elements is 5. Moreover, 

the transmitter in section 5.3 was used to transmit an OAM mode l=1, whereas in this section, a 

transmitter with an OAM mode of l=+2 is used. However, an inspection of the available data 

indicates that the crosstalk that takes place between the inner and outer arrays is generally lower 

for loop-based OAM antennas for all non-matching modes. The much lower gain of the loop- 

based antenna, as illustrated in fig. 6.7, may be the reason for the lower crosstalk values, 

compared to phased array-based OAM antennas. 

Another major difference in the crosstalk values of the two kinds of antennas is in their 

behavior with respect to odd and even modes. In the case of phased arrays, the crosstalk S12local 

is much higher for odd modes than for even modes. However, such a trend is not seen in the 

S12local values of the loop-based design. Since both methods generate OAM, it may be concluded 

that the difference in the crosstalk for odd and even modes in phased array-based design is not 

due to the nature of the signal generated, but is contributed by the physical structure of the 

antenna itself. Antenna elements in the phased arrays are in close proximity to one another and 

exhibit coupling between them. Additionally, the patch antennas of the outer array are also in the 

near field of the inner antenna, so there may be coupling between the inner and outer antenna 

elements, which could help explain the anomalous behavior of the odd and even modes. It should 

be kept in mind that, theoretically, the crosstalk between all non-matching OAM modes is 

essentially zero, as was seen in the derivation in section 6.1.  
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6.3 Conclusion 

 It has been observed theoretically and through numerical simulations that the OAM 

nature of waves affects the crosstalk between antennas placed in close proximity. This chapter 

serves as a conclusion to this dissertation, and presented a mathematical analysis of the crosstalk 

that occurs between two concentrically placed local OAM antennas. The first section of this 

chapter examined a wire loop carrying an electric current with a phase variance in the azimuth 

direction. The expressions for the field distribution near the loop were derived and graphed to 

show an OAM wave propagation. Further, the effect of the field on an outer wire loop was 

determined by deriving the voltage induced in the outer loop. It was proven, through 

mathematical analysis, that the coupling between the inner and outer OAM antennas occurs only 

if the antennas have the same mode, but different mode polarities. This isolation between the 

different modes of OAM is due to their orthogonality, and therefore, theoretically, and 

mathematically speaking, no voltage can be induced in the outer antenna by the crosstalk signal 

if the antennas do not satisfy l=-l1. 

Loop antennas were then modelled in HFSS using slotted coaxial waveguides. The 

antennas were designed to generate various OAM modes by changing their radii, and were 

placed concentrically to create a nested design. While the OAM mode of the inner antenna was 

fixed at l=2, the mode of the outer receiver antenna varied from -7 to +7 (excluding -2,+2 and 0), 

and the crosstalk between the two antennas could then be determined. Although it was not 

possible to determine the crosstalk when both antennas had the same OAM modes, it was shown 

that the crosstalk between non-matching modes of OAM is a low value (below -90dB) for all 
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modes of the receiver. Thus, the isolation of OAM modes due to their orthogonality is also 

demonstrated in the simulation.  
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CONCLUSION 
 

OAM orthogonality has recently attracted much attention in wireless communication for its ability 

to transmit multiple signals simultaneously at the same frequency.  Most of the research in this 

area, has been in this area has been primarily related to spatial multiplexing. This work shows that 

OAM orthogonality may be used to reduce the crosstalk between local transmitting and receiving 

antennas, thus unlike other studies that focus on the multiplexing of orthogonal OAM modes, this 

dissertation studied, for the first time, the crosstalk between OAM antennas, providing extra 

margin for full duplex link operation.  

 This study necessitated a design that allowed the OAM antennas to operate at a frequency 

of 5.64 GHz. The antennas were thus designed based on phased arrays of rectangular patches. The 

number of patches and the phase difference between adjacent patches was selected according to 

the number of the OAM mode to be generated. Chapter 2 provides a detailed description of the 

antenna design, fabrication and characterization process of the OAM antenna in practice and 

through simulations. 

 The OAM antenna was used in an experiment to determine the amount of crosstalk 

reduction that may be attributed to OAM orthogonality, and the variation that occurs with greater 

distance between adjacent OAM antennas. The experiment and results were described in chapter 

4. It consisted of two OAM antennas connected to their feeding networks, which were comprised 

of phase-shifters and power-dividers. One of the antennas was configured to transmit an OAM 

mode of 1, and the other antenna was used as a receiver. The receiver mode varied between a mode 

of +1 and -1. The crosstalk values were noted in each case and the difference between the values 

is the differential crosstalk.  
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The differential crosstalk was obtained for various distances. The resulting data showed an 

oscillatory trend in differential crosstalk, with distance indicating the constructive and destructive 

addition of the signal phase that accompanies the receiver phase shifts as the signal phase shift 

changes with propagation distance. This is one of the major contributions of this study, as it 

provides insight into the nature of the crosstalk variation. The data may also help in selecting the 

optimal distance between the antennas for maximum isolation. The isolation measured through 

this experiment is based purely on OAM orthogonality, as all other factors, such as physical 

placement, are negated by the difference between the two crosstalk values. A maximum isolation 

of 2.6 dB was achieved experimentally.  

  Chapter 4 provided the details of the experiment simulated using HFSS. A moving average 

filter was used to remove the numerical noise from the weak crosstalk signals. The results of the 

simulated and practical experiments were compared and found to be in good agreement. An 

oscillatory trend was seen in the variation of differential crosstalk that occurs with distance, similar 

to that which was reported by the experimental results. The half-wavelength of the obtained 

sinusoid is approximately equal to the half-wavelength of a 5.64 GHz signal. A maximum isolation 

of 3.6 dB was achieved through simulations. Although the maximum isolation based on OAM 

orthogonality—obtained through both the experiment and simulation of the system—is only a 

small value, it confirms the hypothesis that OAM orthogonality does indeed create an added 

isolation. Moreover, it provides insight into how this effect is produced. 

While chapter 3 and 4, proved the existence of, and highlighted the usefulness of OAM 

isolation due to OAM orthogonality at a theoretical level, chapter 5 proposes and analyses a 

practical antenna setup utilizing OAM orthogonality-based isolation that can be used in a full 

duplex system. The antenna setup is a nested antenna design, in which the OAM antennas are 
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placed concentrically. The radii of the patch antennas' inner and outer arrays are modified to 

accommodate both antennas on the same substrate. An OAM beam has the tendency to diverge as 

it propagates. Since OAM uses line of sight communication, the signal reaching the receiver must 

be the same as its original size. Therefore, to mitigate the problem of beam divergence, parabolic 

dish antennas are designed to collimate the signal. The collimated signal can travel over longer 

distances without diverging, and can be converged at the receiving end to its original transmitted 

size by an identical dish antenna. A receiver antenna is placed at the focal point of the receiving 

dish to collect the signal. An end-to-end communication link between the outer arrays of two 

antenna setups was simulated in HFSS. One of the antennas was configured to transmit an OAM 

mode of +1, whereas the other antenna was used as a receiver, with receiver modes ranging from 

-5 to +5. In all of the experiments simulated, the OAM mode of the antenna is determined with 

respect to the direction of propagation of the signal. In each case, the power and mode of the 

received signal was determined. The results showed that the received power is at its maximum 

when the receiver mode is the same as that of the transmitter, and a low power is received for other 

receiver modes, confirming the orthogonality of non-matching OAM modes.  

Another study is simulated to determine the crosstalk power between the inner and outer 

antenna arrays in the nested antenna design. The inner array is used to transmit an OAM mode 

l=+1, and the mode of the receiver is varied between -5 to +5. The power coupling between the 

inner and outer arrays was observed as S12local. The resulting data showed a high crosstalk value 

when the receiver had a mode of -1, and lower values for other modes. A maximum isolation of 

more than 60 dB was achieved using this antenna setup, with a receiver mode of -4. It was also 

observed that a higher power is received for odd modes compared to even modes. From this 
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finding, one can deduce that there is a higher orthogonality between even-odd OAM pairs. And a 

higher isolation can be achieved by selecting an even OAM mode for the receiver.  

Chapter 6 concludes this dissertation, which provides the mathematical derivation and analysis of 

the crosstalk-induced voltage in a receiver antenna in the nested antenna design. The antennas 

were modelled by two wire loops placed concentrically. The current distribution in the inner loop 

was taken as 𝑰 = 𝐼 𝑒 𝑒 𝒂𝝋, which means the magnitude of the current is constant and the 

phase is changing around the loop. Assuming the loop to be made up of a large number of 

infinitesimally small dipoles, the vector potential due to the loop at any observation point is 

calculated. The vector potential was then used to calculate the electric and magnetic fields 

generated by the inner loop. According to Faraday’s law of Electromagnetic induction, voltage 

must be induced in a closed loop placed in the time-varying magnetic field of the inner loop. 

Because the outer loop in this experiment met the above conditions, the induced voltage was 

calculated using Faraday’s law. It was found that the induced voltage is at its maximum when the 

inner and outer loop antennas have the same OAM modes, but is at zero when both loops have 

different OAM modes. This confirms the theory, which is the basis of this dissertation, that non-

matching OAM modes are orthogonal, and there is no crosstalk between non-matching OAM 

modes. 

The second half of chapter 6 introduces a coaxial waveguide antenna design for OAM 

generation to demonstrate the validity of the mathematical derivation. The waveguide antenna is 

designed in the form of a circular loop. Two ports provide the same input magnitude, but are 90° 

phase-shifted, to create a travelling wave effect. As the signal propagates in the loop, there is a 

phase-shift in the signal due to the distance of propagation. The radius of the loop is selected so as 

to create a total phase shift of 2𝜋𝑙 in one complete revolution around the loop. Here l is the OAM 
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mode number. Therefore, to generate a mode 1 OAM beam, there is a 2𝜋 phase-shift in the signal, 

over one complete revolution around the loop. Slots are cuts in the outer layer of the coaxial 

waveguide antenna to allow the field to be radiated outwards.  

As in chapter 5, for phased array-based OAM antennas, parabolic dish antennas are 

designed to collimate the beam generated by the loop antennas, and to transmit the beam over long 

distances from one antenna to another. In such a setup, the power coupling between a transmitting 

and receiving loop were studied at a distance of 1m. The resulting data showed that the power 

coupling between the same mode of OAM antennas is higher compared to non-matching modes, 

verifying the orthogonality of non-matching OAM modes.  

The loop antennas were then placed concentrically in a nested design, to study the crosstalk 

between the two antennas for different modes of the outer receiver antenna. The inner antenna was 

used to transmit an OAM mode of 2. Since the radius of the loops determine the OAM mode 

generated, mode 0 could not be generated, as a loop with radius 0 is not physically possible. Also, 

receiver modes 2 and -2 could not be placed concentric to the transmitter antenna, which was also 

transmitting a mode of 2, as both antennas have the same radius. Therefore, modes 0, +2, and -2 

were excluded from the study. The results showed crosstalk of less than -90dB between the inner 

and outer antennas, for all modes studied. This means there is a high isolation between non-

matching OAM modes. Although matching OAM antenna modes could not be studied, it is 

expected that the crosstalk would be higher for receiver mode l=-2, as matching OAM modes are 

not orthogonal. The results of this study are in good agreement with the mathematical analysis in 

section 6.1. However, comparison with the results of the same study which was described in 

chapter 5, using phased array based OAM antenna shows that for the case of phased array a 

difference was seen in the crosstalk for odd and even OAM modes, which was not seen in the 
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results of loop based OAM antennas. This leads to the conclusion that the difference in behaviour 

with regard to odd and even OAM modes, shown by phased array-based OAM antennas, is 

supplied by the antenna structure, rather than by the OAM nature of the signal generated.    

Future Directions 

The primary aim of this dissertation is to promote the use of OAM orthogonality in full 

duplex systems as a direction for future research, and as a practical paradigm for full duplex 

systems. These initial findings are promising in both a theoretical and applied sense. Although 

the orthogonality between different OAM modes is a well-researched area, the role of  

orthogonality in creating isolation between local antennas was studied for the first time. The 

sinusoidal variation of the differential crosstalk with distance between the two antennas sheds 

light on the phase variation of the signal as it propagates over a distance, and the impact of this 

phase variation on the crosstalk value. This is an important finding and can lead to further 

research that may wish to take advantage of the phase variation that occurs with distance.  

  The dissertation proposed and analyzed a practical and compact nested antenna design, 

for use in full duplex systems. The design would also allow a single dish antenna to be used for 

both the inner and outer antennas. The high isolation between the inner and outer antennas, 

provides an added isolation between local antennas in a full duplex system, in addition to the 

isolation achieved through methods currently being used, such as digital signal processing and 

analog subtraction methods. A practical analysis and implementation of the full duplex system 

proposed would be a valuable contribution to the field of communication. The studies using the 

nested antennas design also suggest that high isolation may be achieved by other antenna 

topologies, as well. Moreover, since there is a difference observed in the results produced by 
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OAM antennas with different structures, it is proposed that more studies be carried out using 

other methods of OAM generation.  
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APPENDIX A 
 

MATLAB code for Link Budget 

This MATLAB code was used to plot the link budget shown in fig. 5.13. It consists of a plot of 

power of the signal as it propagates over a distance, which was calculated using equation (1) in 

chapter 5. The equation is evaluated in this code, and the power is plotted against distance. The 

code also plots the crosstalk value for receiver modes l=2 and l=3, by deducting the isolation due 

to OAM orthogonality and crosstalk coding methods (analog subtraction and digital signal 

processing) from the transmitter power leaking from the transmitter antenna to receiver antenna.  

 
clear all 
f=5.64*10^9;               %% frequency of operation 
lamb=(3*10^8)./f; 
R=34*10^-3; 
R=60*10^-3;                %% Radius of array 
rr=R./lamb; 
 
N=12;     %%number of patches 
P1=(N.*4.*(pi.^2).*(rr.^2)).^2; %%initial power without the loss 

%%term  
p1=10.*log10(P1); 
 
P2=(lamb./(4.*pi.*D)).^4;         %%loss term 
p2=10.*log10(P2); 
LB=p1+p2+85;                 %%power after losses (eq. from 

%% paper)+transmit power 
Pr1=LB(end)+30;               %%received power at D=1000 + dish 
antenna gain (30dB) 
Pr1=cat(2,LB(end),Pr1); 
figure 
semilogx(D,LB,'blue','linewidth',4);   %% plot link budget equation 
 xlabel('D(m)','fontsize',12); 
 ylabel('Pr(dBm)','fontsize',12); 
grid on 
 hold on 
 
D=100; 
P11=(N.*4.*(pi.^2).*(rr.^2)).^2; 
p11=10.*log10(P1); 
D=1:10:2000; 
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P22=(lamb./(4.*pi.*D)).^4; 
p22=10.*log10(P22); 
LB4=p11+p22+85;             %% link budget equation till D=100 
 
semilogx(D,LB4,'blue','linewidth',4);  %%plot power equation till 

 D=100 
xlabel('D(m)','fontsize',12); 
ylabel('Pr(dBm)','fontsize',12); 
grid on 
hold on 
Pr2=LB4(end)+30;                 %%add antenna gain (30dB) to the 

 received power value at D=100 
Pr2=cat(2,LB4(end),Pr2); 
D=[2000,2000]; 
semilogx(D,Pr2,'blue','linewidth',4); %%to draw vertical line showing 

%% power after adding dish gain at  
%%D=100 

hold on 
 
 
P11=(N.*4.*(pi.^2).*(rr.^2)).^2;           %%Repeat for D till 300 
p11=10.*log10(P1); 
D=1:10:10000; 
 
P22=(lamb./(4.*pi.*D)).^4; 
p22=10.*log10(P22); 
LB4=p11+p22+85; 
 
semilogx(D,LB4,'blue','linewidth',4); 
xlabel('D(m)','fontsize',12); 
ylabel('Pr(dBm)','fontsize',12); 
grid on 
hold on 
Pr2=LB4(end)+30 
Pr2=cat(2,LB4(end),Pr2); 
D=[10000,10000]; 
semilogx(D,Pr2,'blue','linewidth',4); 
hold on 
 
D=1:10:10000; 
 
Pt=85-30;   %transmit power without gain 
Pt1=Pt-60;       %%power for mode -2 
Pt2=Pt1-90;        %% - crosstalk coding gain 
 Ptg1=Pt-27;       %%power for mode 3 
 Ptg2=Ptg1-90;     %% -after crosstalk coding gain for mode 3 
D=[1,5]; 
P=[Pt,Pt]; 
semilogx(D,P,'red','linewidth',4); 
hold on 
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grid on 
xlim([1 10000]); 
ylim([-150 80]); 
yticks(-140:20:80); 
xlabel('D(m)','fontsize',12); 
 ylabel('Pr(dBm)','fontsize',12); 
set(gca,'FontName','TimesNewRoman','FontWeight','bold','FontSize',12); 
set(gca,'LineWidth',2); 
set(gcf,'color','w'); 
xticks([1 10 100 1000 10000]); 
D=[1,5,5,21]; 
P=[Pt,Pt,Pt1,Pt1]; 
semilogx(D,P,'red','linewidth',4); 
Pg=[Pt,Pt,Ptg1,Ptg1]; 
semilogx(D,Pg,'green','linewidth',4); 
hold on 
D=[1,5,5,21,21]; 
P=[Pt,Pt,Pt1,Pt1,Pt2]; 
semilogx(D,P,'red','linewidth',4); 
hold on 
D=[1,4,4,20,20]; 
Pg=[Pt,Pt,Ptg1,Ptg1,Ptg2]; 
semilogx(D,Pg,'green','linewidth',4); 
D=21:10:10000; 
[r,c]=size(D) 
 zz(1:c,1)=(Pt2); 
 [r1,c1]=size(zz) 
 semilogx(D,zz,'red','linewidth',4); 
 hold on 
D=21:10:10000; 
[r,c]=size(D) 
 zz(1:c,1)=(Ptg2); 
 [r1,c1]=size(zz) 
 semilogx(D,zz,'green','linewidth',4); 
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APPENDIX B 
Power Coupling between Patch Antenna Arrays facing each other 

The communication between two patch arrays facing each other, in the near field is 

investigated. When the distance between the OAM antennas is one wavelength, the OAM signal 

has not diverged significantly over this distance. Secondly, the phase shift in the signals due to 

propagation distance, would be zero over a distance λ. The outer array in the antenna system of 

fig. 5.1 can be used to transmit an OAM signal to a receiving outer array of an identical antenna 

system on the other end. The study of such an end-to-end communication link may be useful in 

understanding the working of the antenna arrays, and the behavior of crosstalk between the inner 

and outer arrays. The inner array would communicate similarly with the inner array on the other 

end, and is ignored in this investigation. Two quantities are measured from this setup: 

i. Power of received signal 

ii. Mode of received signal 

Received power Measurement 

In this part of the study, the mode of the receiver antenna is varied, and the received 

power is measured when an OAM mode l=+1 is transmitted. The experiment is simulated in 

HFSS, and the feeding networks are connected in ANSYS circuit as before. The antennae’s 

structure and placement in HFSS are shown in fig. B.1. The schematic created in ANSYS Circuit 

is shown in fig. B.2. 

The HFSS model of fig. B.1, is symbolized by a component in ANSYS circuit which is 

dynamically linked to the HFSS model. The outer arrays are connected to feeding networks. The 

phase shifters provide the required phase shift to the signals feeding each patch, to configure the 

desired OAM mode on the arrays. The S12 value between the transmitter and receiver ports is the 

power received and can be measured in ANSYS circuit. Keeping the transmitter mode fixed at 
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l=+1, the OAM mode of the receiver array is varied from l=-3 to l=+3. The S12 values are noted 

for each case. 

 

Figure B.1 End-to-end communication link created between the outer arrays of the two antenna 
systems placed 1λ apart 

 

Figure B.2 Circuit schematic for measurement of S12 between East Tx and West Rx antennas 

Power dividers 
Phase shifters 

Tx port Rx port 
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It is important to note that since both antennas are facing in the opposite directions, the 

direction of propagation is opposite for both. Therefore, the OAM mode polarity will be positive 

with respect to one direction of propagation, but negative with respect to the other. To avoid 

confusion, in these experiments, the OAM mode is defined with respect to the direction of 

propagation of the antenna of interest.  

 

Figure B.3 S12 values for Tx mode l=+1 and varying modes of Rx antenna 

The results for the S12 values are listed in table 1. The maximum signal power (-4.2 dB) 

is received by the antenna with the same OAM mode as the transmitter i.e., mode l=+1. This 

means that OAM antennas with the same mode can communicate effectively. For all other 

modes the value of S12 is lower due to the orthogonality of these modes with the transmitted 

mode l=+1. However, it must be noted that the power received by a receiver with mode l=+3 (i.e. 
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-27 dB) is higher than that for mode l=+2 (i.e. -37dB). This leads to the conclusion that the odd 

modes of the receiver have a higher reception of mode 1 signal compared to even modes. The 

lower crosstalk between the transmitted mode 1 and even receiver modes, leads to the prediction 

of a higher orthogonality between even-odd OAM mode pairs.  

Mode of Received signal 

The second part of the experiment is to observe the mode of the received signal in an end-to-end 

link between two outer arrays. It is expected that, when the transmitter and receiver arrays have 

the same OAM mode, an opposite phase delay is added to the signal received by each patch, 

causing the phase of the transmitted signal to add destructively to the phase added by the beam 

forming network of the receiver [57]. In the case where transmitter and receiver have opposite 

OAM modes (receiver has the same OAM mode, according to the change of propagation 

direction), the phase delays add constructively. Therefore, the mode of the received signal may 

be determined as lTx-lRx. A study is stimulated in HFSS to verify that the mode of the received 

signal is lTx-lRx when both antennas are facing each other.  

The same HFSS model of fig. B.1 is used, and the feeding networks are created in 

ANSYS circuit as before. However, the output of the receiver antenna is fed into a separate patch 

array. The received signal being used to feed an antenna like this allows us to observe the field of 

the received signal. A component linked to the patch array is also placed in the schematic. The 

signal collected at the receiver patches is passed through the receiver phase shifts in ANSYS 

circuit, and fed to the patches of the patch array, as shown in the schematic of fig. B.4. Hence, 

the received signal is used as input to the patch array. The Electric field of the signal emitted by 

the array can then be calculated and observed in HFSS.  
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 The East antenna is used to transmit an OAM mode l=+1. The West antenna is 

configured to receive OAM modes varied from l=-3 to l=+3, by altering the phase shift values in 

the receiver network. For each OAM mode of the receiver, the phase of the electric field of the 

signal generated by the patch array is observed in HFSS.  

Figure B.4 Circuit schematic created to view the phase front of the received signal 

Fig. B.5 shows the phase fronts of the waves resulting from an OAM mode l=+1 passing through 

the receiver antenna. The number of arms of the spiral in the phase front depict the mode number 

of the OAM. A transmitted mode l=+1, received by an OAM mode l=+1 receiver, results in a 

mode 0 (fig. B.5 (a)). This is in conformance with the results for received power. The receiver 

phase shifts cancel the transmitter phase shifts perfectly, which means both antennas can 

communicate effectively. However, all other modes are orthogonal to the transmitted mode 1. A 

receiving antenna with OAM mode l=-1, converts a transmitted l=+1 to mode 2, as can be seen 

by the 2 arms of the spiral in the phase front in fig. B.5 (b). Similarly, receiver mode l=+2 results 

in a mode 1 output (fig. B.5(c)), and a receiver mode l=-2 results in a mode 3 (fig. B.5(d)). The 

Phase shifters 
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results confirm the mode of the received signal may be determined as lTx-lRx, where the 

subtraction occurs due to the opposite direction of propagation of both antennas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.5 The phase front of the signal received by the outer array when an OAM mode l=+1 is 
transmitted for receiver modes configured to (a) l=+1 (b) l=-1 (c) l=+2 (d) l=-2 (e) l=+3 (f) l=-3 

(a) (b) 

(c) (d) 

(e) (f) 
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APPENDIX C 
Crosstalk between Nested Loops with Inner Loop mode l=1 

In section 6.2.2 the nested loop design was studied. Since the OAM mode l=1 generated by a 

loop antenna does not have a distinct null in the center, an OAM mode l=1 was not used in the 

study to determine the crosstalk between the inner and outer loops. Instead an OAM mode l=2 

was used as a transmitter. Here, the study is repeated by using an OAM mode l=1 as transmitter, 

to observe if it impacts the crosstalk values.  

 The setup of fig. 6.9 is recreated in HFSS, with the mode 2 loop antenna replaced with a 

mode 1 antenna. The schematic of fig. 6.10 is used. The mode of the inner transmitter is fixed at 

l=+1, and the mode of the outer receiver antenna is varied between -7 to +7. As discussed earlier, 

the mode l=0 can not be generated by the loop antenna as a loop of radius 0 is not physically 

possible. And modes l=+1 and l=-1 cannot be placed concentric to a mode l=1 transmitter 

antenna as they all have the same radius. Therefore, modes l=0, +1 and -1 are excluded from the 

study. The crosstalk signal S12local is determined for each receiver mode. The results are graphed 

for reference, in fig. C.1.  



 

125 
 

 

Figure C.1 Crosstalk between the inner and outer loop antennas for varying modes of receiver 
OAM antennas, with the inner loop transmitting an OAM mode of 1 
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