4 research outputs found

    CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999

    Get PDF
    These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft

    Nanoelectronics and quantum transport of dirac particles

    Get PDF
    In this thesis, we concentrate on the charge and spin transport in Dirac materials and discuss their implications in future electronic technologies. These materials are known for their peculiar band structures, which, unlike the conventional semiconductors, is effectively described by the massless Dirac equation, and their spectrum possesses Dirac nodes. We particularly consider two members of this class of materials: graphene and Weyl semimetals. We first investigate the manipulation of the electronic properties of graphene via adatom engineering. We demonstrate that adatom deposition induces a strong spin-orbit interaction in graphene and, furthermore, couples the spin and valley degrees of freedom, which, in turn, allows for the realization of the valley assisted spin transport and vice versa using a spin-valley device. We also show that the coupled degrees of freedom of graphene due to the presence of disorder causes the intrinsic accumulation of pseudospin charge and pseudospin polarization, which, as we demonstrate, can be used to construct a pseudospin switch device built from a graphene nanoribbon. We next study the Weyl semimetals, as the three-dimensional version of graphene, which has attracted strong interest from the fundamental viewpoint, where they constitute a low energy framework to study the quantum anomalies of the field theory. The electronic structure of these materials is also interesting owing to the fact that the tilting of the band crossing point causes giant electronic conduction and hence a more favorable feature for the electronics industry. We then study the quantum kinetic theory of anomalous transport in these systems to analyze the origin of the chiral anomaly and chiral magnetic effect in Weyl semimetals. Finally, we study the electronic response of tilted Weyl semimetals by associating a relativistic feature to the tiltedWeyl cones and then compare our results with the standard linear response approach. Our calculations show that both the covariant transport equation and Kubo formula methods offer correct and equivalent results which strongly agree with the experimental finding

    Lattice deformations and spin-orbit effects in two dimensional materials

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de la Materia Condensada. Fecha de lectura: 18-09-2014This thesis deals with the interplay between structural and electronic properties of two-dimensional materials such as graphene, and the novel and very interesting phenomena, both from the point of view of fundamental Physics and potential applications, which emerge when lattice distortions such as strains or superlattice modulations are combined with the dynamics of the electrons confined in two spatial dimensions. The main microscopic ingredient which is behind all these phenomena is the spin-orbit interaction. On the one hand, we analyze in detail how the spin-orbit interaction modifies the electronic structure of these materials, and on the other, how structural changes affect the spin-orbit interaction suffered by the electrons of the solid, then modifying its electronic response in a very peculiar manner due to the entanglement of the spin and orbital degrees of freedom. The contents of the thesis are divided in three blocks. The first part is devoted to study the effect of out-of-plane (flexural) vibration modes on the electronic properties of graphene. We examine in detail the influence of the electron-phonon coupling on the mobilities of suspended graphene samples, and we compare our findings with transport experiments, revealing that scattering by these phonon modes constitute the main intrinsic limitation to electron mobilities. Then, we study how flexural phonons contribute to enhance the spin-orbit coupling in graphene, which is in principle very weak due to the lightness of carbon. In the second part we analyze in detail different spin relaxation mechanisms mediated by the spin-orbit interaction. We focus on the standard Elliot-Yafet and D’yakonov- Perel’ mechanisms, and how such conventional theories are modified when spatially varying spin-orbit fields are considered due to the presence of impurities or curvature. In the last part we propose novel platforms for engineering topological states of matter based on the interplay between strain and superlattice perturbations in combination with the spin-orbit interaction. Our first proposal relies on the application of shear strain in monolayers of transition metal dichalcogenides in order to cretae spin-polarized pseudo-Landau levels. The resulting system resembles a time reversal invariant version of the quantum Hall effect. We also study a system consisting on graphene grown on iridium with some monolayers of lead intercalated between them. The experiments show that the local density of states develops a sequence of regularly spaced sharp resonances due to the presence of the lead. These resonances are attributed to the confinement due to spatially modulated spin-orbit fields created by lead, which mimic the effect of a magnetic field.Esta tesis trata de la interacción entre las propiedades estructurales y electrónicas de materiales bidimensionales como el grafeno, y los fenómenos que emergen cuando deformaciones de la red como las tensiones elásticas o las modulaciones producidas por super-redes se combinan con la dinámica de los electrones confinados en dos dimensiones espaciales, muy interesantes tanto desde el punto de vista de la Física fundamental como del de las aplicaciones. El ingrediente microscópico esencial que está detrás de esta fenomenología es la interacción espín-órbita. Por un lado, analizamos en detalle cómo la interacción espín-órbita modifica la estructura electrónica de estos materiales, y por otro, cómo los cambios estructurales afectan a la interacción espín-órbita experimentada por los electrones del sólido, modificando su respuesta electrónica de una manera muy peculiar debido al entrelazamiento de los grados de libertad orbitales y de espín. Los contenidos de esta tesis están divididos en tres bloques. El primero está dedicado al estudio del efecto de las vibraciones fuera del plano (flexurales) en las propiedas electrónicas del grafeno. Examinamos en detalle la influencia del acoplo electrónfonón en las movilidades de las muestras de grafeno suspendido, y comparamos nuestros hallazgos con experimentos de transporte que revelan que la dispersión debida a estos modos de fonones constituye la principal limitación intrínseca de las movilidades electrónicas. Estudiamos entonces cómo estos modos de fonones flexurales conribuyen al aumento del acoplo espín-órbita en grafeno, que es en principio muy débil debido al bajo número atómico del carbono. En la segunda parte analizamos en detalle diferentes mecanismos de relajación de espín mediados por la interacción espín-órbita. Nos centramos en los mecanismos convencionales de Elliot-Yafet y D’yakonov-Perel’, y cómo éstos se modifican cuando se incluye el efecto de campos espín-órbita que varían en el espacio debido a la presencia de impurezas o curvatura. En la última parte proponemos nuevas plataformas para el diseño de estados topológicos de la materia basados en la combinación de tensiones y perturbaciones debido a super-redes con la interacción espín-órbita. Nuestra primera propuesta se basa en la aplicación de tensiones de cizalladura en monocapas de dicalcogenuros de metales de transición con el objeto de crear pseudo-niveles de Landau polarizados en espín. El sistema resultante recuerda a una versión invariante bajo inversión temporal del efecto Hall cuántico. También estudiamos el sistema formado por grafeno crecido sobre iridio con algunas monocapas de plomo intercaladas entre ambos. Los experimentos muestran que la densidad local de estados desarrolla una secuencia de resonancias muy nítidas y regularmente espaciadas debidas a la presencia del plomo. Estas resonancias se atribuyen al confinamiento debido a la modulación espacial de campos espín-órbita creados por el plomo que imitan el efecto de un campo magnético
    corecore