455 research outputs found

    Investigating the impacts of COVID-19 lockdown on air quality, surface Urban Heat Island, air temperature and lighting energy consumption in City of Melbourne

    Get PDF
    The COVID-19 pandemic has threatened city economies and residents' public health and quality of life. Similar to most cities, Melbourne imposed extreme preventive lockdown measures to address this situation. It would be reasonable to assume that during the two phases of lockdowns, in autumn (March) and winter (June to August) 2020, air quality parameters, air temperature, Surface Urban Heat Island (SUHI), and lighting energy consumption most likely increased. As such, to test this assumption, Sentinel 5, ERA-5 LAND, Sentinel 1 and 2, NASA SRTM, MODIS Aqua and Terra, and VIIRS satellite imageries are utilized to investigate the alterations of NO₂, SO₂, CO, UV Aerosol Index (UAI), air temperature, SUHI, and lighting energy consumption factors in the City of Melbourne. Furthermore, satellite imageries of SentiThe results indicate that the change rates of NO₂ (1.17 mol/m2) and CO (1.64 mol/m2) factors were positive. Further, the nighttime SUHI values increased by approximately 0.417 °C during the winter phase of the lockdown, while during the summer phase of the lockdown, the largest negative change rate was in NO₂ (−100.40 mol/m2). By contrast, the largest positive change rate was in SO₂ and SUHI at night. The SO₂ values increased from very low to 330 μm mol/m2, and the SUHI nighttime values increased by approximately 4.8 °C. From the spatial point of view, this study also shows how the effects on such parameters shifted based on the urban form and land types across the City of Melbourne by using satellite data as a significant resource to analyze the spatial coverage of these factors. The findings of this study demonstrate how air quality factors, SUHI, air temperature, and lighting energy consumption changed from pre-lockdown (2019) to lockdown (2020), offering valuable insights regarding practices for managing SUHI, lighting energy consumption, and air pollution

    New sources, opportunities and challenges

    Get PDF
    Images of the Earth at night are an exceptional source of human geographical data, because artificial light highlights human activity in a way that daytime scenes do not. The quality of such imagery dramatically improved in 2012 with two new spaceborne detectors. The higher resolution and precision of the data considerably expands the scope of possible applications. In this paper, we introduce the two new data sources and discuss their potential limitations using three case studies. Data from the Visible Infrared Imaging Radiometer Suite Day-Night Band (VIIRS DNB) is shown to have sufficient resolution to identify major sources of waste light, such as airports, and we find considerable variation in the peak radiance of the world’s largest airports. Nighttime imagery brings “cultural footprints” to light: DNB data reveals that American cities emit many times more light per capita than German cities and that cities in the former East of Germany emit more light per capita than those in the former West. Photographs from the International Space Station, the second new source of imagery, provide some limited spectral information, as well as street-level resolution. These images may be of greater use for epidemiological studies than the lower resolution DNB data

    THE GEOPOLITICS OF POWER: UNDERSTANDING CHINA’S MILITARIZATION OF THE SOUTH CHINA SEA

    Get PDF
    The South China Sea (SCS) has become an international focal point in recent years largely due to China’s reclamation and militarization of island features in contested waters. Many pundits, journalists, analysts, and researchers distill the motivation behind China’s activities, and the broader SCS international disputes, down to control of and access to resources—primarily fisheries and hydrocarbon reserves—and shipping routes. Most scholars and experts on the region agree that these factors play an important role; however, many also point to broader motivations for China’s staunch defense of its “national sovereignty.” Nonetheless, a key element is often lacking in many of the most thorough analyses of the SCS conflicts: the geographic perspective. A wide range of publicly-available spatial data makes such an assessment possible. This thesis examines the existing body of scholarly work on the SCS, its significance, and causes of conflict; assesses the main hypotheses for China’s militarization of contested features in the SCS geographically; and ultimately places each hypothesis within the broader framework of China’s practical and strategic considerations

    CIRA annual report FY 2016/2017

    Get PDF
    Reporting period April 1, 2016-March 31, 2017

    Potential Loss of Ecosystem Service Value Due to Vessel Activity Expansion in Indonesian Marine Protected Areas

    Get PDF
    Sustainable Development Goal (SDG) number 14 pertains to the preservation of sustainable marine ecosystems by establishing marine protected areas (MPAs). However, studies have reported massive damage to Indonesian marine ecosystems due to shipping pollution, anchors, and fishing nets. Thus, this study estimated the potential loss of ecosystem service value due to vessel activity expansion in the MPAs of Indonesia. This study was divided into three stages. The first stage is vessel activity expansion zone modeling based on kernel density. The second stage is marine ecosystem service value modeling through semantic harmonization, reclassification, and spatial harmonization. The last stage is the overlay of the vessel expansion zone model, marine ecosystem service value model, and the MPA of Indonesia. The results of this study indicate that the marine neritic zone of Indonesia has an ecosystem service value of USD 814.23 billion, of which USD 159.87 billion (19.63%) are in the MPA. However, the increase in vessel activity that occurred in 2013–2018 could potentially lead to the loss of the ecosystem service value of USD 27.63 billion in 14 protected areas. These results can assist policymakers in determining priority conservation areas based on the threat of vessel activity and value of ecosystem services.</p

    Reconstructing Three-decade Global Fine-Grained Nighttime Light Observations by a New Super-Resolution Framework

    Full text link
    Satellite-collected nighttime light provides a unique perspective on human activities, including urbanization, population growth, and epidemics. Yet, long-term and fine-grained nighttime light observations are lacking, leaving the analysis and applications of decades of light changes in urban facilities undeveloped. To fill this gap, we developed an innovative framework and used it to design a new super-resolution model that reconstructs low-resolution nighttime light data into high resolution. The validation of one billion data points shows that the correlation coefficient of our model at the global scale reaches 0.873, which is significantly higher than that of other existing models (maximum = 0.713). Our model also outperforms existing models at the national and urban scales. Furthermore, through an inspection of airports and roads, only our model's image details can reveal the historical development of these facilities. We provide the long-term and fine-grained nighttime light observations to promote research on human activities. The dataset is available at \url{https://doi.org/10.5281/zenodo.7859205}

    Urbanization, environmental stabilization and temporal persistence of bird species: A view from Latin America

    Get PDF
    Background. A scarcely studied consequence of urbanization is the effect of temporal stabilization of the environment on bird communities. This alteration is thought to dampen environmental variations between day and night, seasons and years, promoting a temporal persistence of bird composition in urban areas. The aim of this study was to review current evidence of temporal stabilization of biotic and abiotic factors in urban environments and the potential effects of such stabilization on temporal variation of bird species presence at different temporal scales. Methods. I selected the literature by searching published articles and book chapters using Scopus and Google scholar. I only included articles that compared the temporal variation of bird composition or resources between different levels of urbanization. Results. In general, there is evidence of temporal stabilization of abiotic and biotic factors at the three time scales considered. At the diurnal scale, the main factor considered was artificial light in the context of light pollution. At the seasonal and interannual scales, several case studies found a smaller temporal variation of primary productivity in urban than in natural and rural areas. Bird species composition showed more stabilization in urban environments at the three temporal scales: (1) several case studies reported bird activity at night, associated with artificial light; (2) studies in urban parks and along urbanization gradients showed smaller seasonal variation of bird composition in the more urbanized areas; and (3) in general, case studies along urbanization gradients showed smaller interannual variation of bird composition in the more urbanized areas, although some studies showed no relationships or opposite trends than expected. Discussion. The published evidence suggests that urban areas dampen the natural cycles at several temporal scales. The stabilization of biotic and abiotic factors, such as light, temperature, food and habitat structure, is desynchronized from natural diurnal, seasonal and interannual cycles. However, there is a dearth of long-term comparisons of bird composition and studies that simultaneously analyze the relationship between resources and bird composition stabilization at the seasonal and interannual scales. More research is needed in the Southern hemisphere, where there is a lack of studies dealing with the seasonal and interannual variations of primary productivity along urbanization gradients and nocturnal activity of bird species. A future research agenda should include differentiation of spatial and temporal homogenization of avifaunas.Fil: Leveau, Lucas Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Remote sensing of night lights: a review and an outlook for the future

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordRemote sensing of night light emissions in the visible band offers a unique opportunity to directly observe human activity from space. This has allowed a host of applications including mapping urban areas, estimating population and GDP, monitoring disasters and conflicts. More recently, remotely sensed night lights data have found use in understanding the environmental impacts of light emissions (light pollution), including their impacts on human health. In this review, we outline the historical development of night-time optical sensors up to the current state of the art sensors, highlight various applications of night light data, discuss the special challenges associated with remote sensing of night lights with a focus on the limitations of current sensors, and provide an outlook for the future of remote sensing of night lights. While the paper mainly focuses on space borne remote sensing, ground based sensing of night-time brightness for studies on astronomical and ecological light pollution, as well as for calibration and validation of space borne data, are also discussed. Although the development of night light sensors lags behind day-time sensors, we demonstrate that the field is in a stage of rapid development. The worldwide transition to LED lights poses a particular challenge for remote sensing of night lights, and strongly highlights the need for a new generation of space borne night lights instruments. This work shows that future sensors are needed to monitor temporal changes during the night (for example from a geostationary platform or constellation of satellites), and to better understand the angular patterns of light emission (roughly analogous to the BRDF in daylight sensing). Perhaps most importantly, we make the case that higher spatial resolution and multispectral sensors covering the range from blue to NIR are needed to more effectively identify lighting technologies, map urban functions, and monitor energy use.European Union Horizon 2020Helmholtz AssociationNatural Environment Research Council (NERC)Chinese Academy of ScienceLeibniz AssociationIGB Leibniz Institut

    Impacts of the COVID-19 confinement on air quality, the Land Surface Temperature and the urban heat island in eight cities of Andalusia (Spain)

    Get PDF
    The COVID-19 outbreak and ensuing global lockdown situation have generated a very negative impact on the world economy, but they have also lent us a unique opportunity to research and better grasp the impacts of human activity on environmental pollution and urban climates. Such studies will be of vital importance for decision-making on measures needed to mitigate the effects of climate change in urban areas, in order to turn them into resilient environments. This study looks at eight cities in the region of Andalusia (southern Spain) to comprehensively assess their environmental quality with parameters (Pm-10, So(2), No-2, Co and O-3) obtained from meteorological stations. The aim was to determine how these parameters affect the Land Surface Temperature (LST) and the Surface Urban Heat Island (SUHI), on the basis of Sentinel 3 satellite thermal images. Knowing to what extent improved air quality can reduce the LST and SUHI of cities will be essential in the context of future environmental studies on which to base sustainable decisions. The geographic situation of cities in the Mediterranean Sea basin, highly vulnerable to climate change, and the high pollution rates and high daily temperature variations of these urban areas make them particularly attractive for analyses of this sort. During the confinement period, average reductions of some environmental pollutants were achieved: So(2) (-33.5%), Pm-10 (-38.3%), No-2 (-44.0%) and Co (-26.5%). However, the environmental variable O-3 underwent an average growth of 5.9%. The LST showed an average reduction of -4.6 degrees C (-19.3%), while the SUHI decreased by 1.02 degrees C (-59.8%). These values exhibit high spatio-temporal variations be-tween day and night, and between inland and coastal cities

    CIRA annual report FY 2017/2018

    Get PDF
    Reporting period April 1, 2017-March 31, 2018
    corecore