8 research outputs found

    Defining Digital Health

    Get PDF
    Analysis of the definitions of digital health and the subthemes within it

    Is your phone so smart to affect your state? An exploratory study based on psychophysiological measures

    No full text
    Traditional stress management techniques require significant professional training and expertise to administer as well as people, time, and resources, which can be difficult to achieve. Thanks to the recent progress and diffusion of mobile electronic devices, it is possible today to set up and test an effective self-help stress management program outside a clinical setting. Although the efficacy of mobile self-help approaches have been tested through several studies, and promising applications can be developed, as yet no study has tested the feasibility of mobile platforms to actually elicit core affective states. In this study we used an advanced approach to assess the efficacy of these mobile platforms by recording and processing many psychophysiological measures, which extend the capabilities of the standard self-report questionnaires, objectifying the subjective. Our results seem to show the efficacy of inducing positive and negative affective states, using smart phones

    Entre la razón, la emoción y la tecnología : Estudios de neuropsicología con mirada internacional

    Get PDF
    La neuropsicología ha tenido diferentes épocas, donde el tipo de herramientas que utilizan los profesionistas del área ha ido cambiando. En las primeras épocas, las herramientas se limitaban al equipo que tendría a la mano un médico; después, parte de las herramientas diarias se formaron por prueba de lápiz y papel. Ahora, en el siglo XXI, se han ido incorporando poco a poco herramientas tecnológicas, desde la conversión automática de puntajes, pasando por equipos audiovisuales, hasta robots para ciertos tipos de intervenciones. El área está cambiando, respondiendo a una adaptación de la tecnología a las necesidades diversas de las poblaciones a las que atiende la neuropsicología. Este libro hace un recorrido por diferentes caminos que se están desarrollando en el área, y que forman parte de un trayecto general que llevará a una neuropsicología con nuevas herramientas.1a ed

    A computational model of observer stress

    No full text
    Stress is a major growing concern in our age, adversely impacting individuals and society. Stress research has a wide range of benefits with the potential to improve health and wellbeing, personal day-to-day activities, increase work productivity and benefit society as a whole. This makes it an interesting and socially beneficial area of research. It motivates objective understanding of how average individuals respond to events they observe in typical environments they encounter, which this thesis investigates through artificial intelligence particularly bio-inspired computing and data mining. This thesis presents a review of the sensors that show symptoms which have been used to detect stress and computational modelling of stress. It discusses non-invasive and unobtrusive sensors for measuring computed stress. The focus is on sensors that do not impede everyday activities which could be used to monitor stress levels on a regular basis. Several computational techniques have been developed previously by others to model stress based on techniques including machine learning techniques but these are quite simplistic and inadequate. This thesis presents novel enhanced methods for modelling stress for classification and prediction using real-world stress data sets. The main aims for this thesis are to propose and define the concept of observer stress and develop computational models of observer stress for typical environments. The environments considered in this thesis are abstract virtual environments (text), virtual environments (films) and real environments (real-life settings). The research comprised stress data capture for the environments, multi-sensor signal processing and fusion, and knowledge discovery methods for the computational models to recognise and predict observer stress. Experiments were designed and conducted to acquire real-world observer stress data sets for the different environments. The data sets contain physiological and physical sensor signals of observers and survey reports that validate stress in the environments. The physiological stress signals in the data sets include electroencephalogram (EEG), electrocardiogram (ECG), galvanic skin response, blood pressure and the physical signals include eye gaze, pupil dilation and videos of faces in visible and thermal spectrums. Observer stress modelling systems were developed using analytics on the stress data sets. The systems generated stress features from the data and used these features to develop computational models based on techniques such as support vector machines and artificial neural networks to capture stress patterns. Some systems also optimised features using techniques such as genetic algorithm or correlation based techniques for developing models to capture better stress patterns for observer stress recognition. Additionally, a computational stress signal predictor system was developed to model temporal stress. This system was based on a novel combination of support vector machine, genetic algorithm and an artificial neural network. This thesis contributes a significant dimension to computational stress research. It investigates observer stress, proposes novel computational methods for stress, models stress with novel stress feature sets, and proposes a model for a temporal stress measure. The research outcomes provide an objective understanding on stress levels of observers, and environments based on observer perceptions. Further research suggested includes investigating models to manage stress conditions and observer behaviours

    AN INVESTIGATION OF USER INTERFACE DESIGN AND DEVELOPMENT OF A MOBILE HEALTH SYSTEM FOR INDIVIDUALS WITH DEXTERITY IMPAIRMENTS

    Get PDF
    Mobile health (mHealth) systems have a great potential to empower individuals with chronic disease and disabilities to engage in preventive self-care. Before persons with disabilities can harness the potential of mhealth, the accessibility of mhealth systems should be addressed. An innovative mHealth system called iMHere (Internet Mobile Health and Rehabilitation) has been developed at the University of Pittsburgh to support self-care and adherence to self-care regimens for individuals with spina bifida and other complex conditions who are vulnerable to secondary complications. However, the existing design of the iMHere system was not designed to accommodate users with dexterity impairments. The overall goal of this research is to design and transform an existing mHealth system to make it more usable and accessible for users with dexterity impairment. To achieve this goal, three studies were conducted: Evaluation, Design and Development, and Validation of personalization and accessibility design in mobile health apps. The first study (Evaluation) was aimed to identify the barriers of the original iMHere apps to accessibility, and to explore the necessary features that may improve users’ experiences. The second study (Design and Development) was aimed to develop innovative designs to improve the accessibility and usability of the mHealth system. The third study (Validation) was aimed to evaluate the users’ acceptance of and preferences regarding the personalized and accessible mHealth services on a smartphone. The accessible design and development model that is presented in this dissertation incorporates user-interface components related to physical presentation (widgets, visual cues) and navigation (activity flow and layout order). Personalization that provides the ability for a user to modify the appearance of content, such as the size of the icons and the color of text, are proposed as an optimal solution to address potential issues and barriers to accessibility. The importance of personalization strategies for accessibility is also discussed

    A Mobile Holistic Enterprise Transformation Framework

    Get PDF
    Mobile phones and tablets shipments are surpassing those of the PC category, as well as in relation to Internet usage as of 2016; all details which have made mobile adoption a priority for many enterprises and a challenge for them as well. Many enterprises have fallen into a paradox of spending on creating and updating mobile services, and gaining less than expected in return. Reasons for this include the lack of vision, and the lack of a clearly defined, well communicated mobile strategy. Enterprise Architecture ‘EA’ facilitates a successful transformation by controlling and managing the transitions in order to arrive at a clearly defined future state. It is regarded as the science of change to many. However, EA frameworks are very comprehensive and require weeks of training and resources, and are often too generic for mobile transformation. Therefore, an EA-based mobile holistic enterprise framework has been developed to support enterprises in making mobile initiatives a priority. The proposed framework ensures a clearly defined, well-communicated, holistic future state that is continually evaluated, as opposed to many of the existing frameworks. The proposed Mobile Holistic Enterprise Architecture Framework - ‘MHETF’ - is based on the realisation of the capabilities of smartphones that are aimed at individual average consumers (the backbone of the current mobile trend). The capabilities are categorised and translated into four sets of services categories for business use. They are linked to another two components of the framework which are: (i) the categorisation of goals and objectives that are incorporated into the Balanced Scorecard for evaluation at a later stage in planning, and continually referred to during transitions and (ii) the categorisation of the implementation forms (categorisation of end solutions’ functionalities). The framework is supported by EA inter-operability and maturity models to ensure continuity and alignment with the existing initiatives, the enterprise’s strategic objectives, and the change required in the scope of transformation. An evaluation for the available enterprise architecture frameworks was carried out and resulted in the selection of The Open Group Architecture Framework (TOGAF). The decision was also commended by the participants in the case study evaluation due to their familiarity with this framework, which is being adopted as the Saudi E Government Standard in contrast to the other major frameworks of Zachman and Federal Enterprise Architecture (FEA). MHETF has been applied to three case studies in the Kingdom of Saudi Arabia; two applications for a leading national outsourcing company, and the third for the outpatient clinics in a large hospital in the capital city of Riyadh. The results have shown major improvements in the four goal areas of mobile transformation; productivity, processes, satisfaction improvement and facilitating new opportunities. Eventually, the final evolution has shown that the participants are satisfied with the framework overall, and indicates that the framework changed their perspective of the power of mobile applications significantly, is relatively easy to understand, and that they are planning to adopt it for future mobile initiatives

    A Mobile Holistic Enterprise Transformation Framework

    Get PDF
    Mobile phones and tablets shipments are surpassing those of the PC category, as well as in relation to Internet usage as of 2016; all details which have made mobile adoption a priority for many enterprises and a challenge for them as well. Many enterprises have fallen into a paradox of spending on creating and updating mobile services, and gaining less than expected in return. Reasons for this include the lack of vision, and the lack of a clearly defined, well communicated mobile strategy. Enterprise Architecture ‘EA’ facilitates a successful transformation by controlling and managing the transitions in order to arrive at a clearly defined future state. It is regarded as the science of change to many. However, EA frameworks are very comprehensive and require weeks of training and resources, and are often too generic for mobile transformation. Therefore, an EA-based mobile holistic enterprise framework has been developed to support enterprises in making mobile initiatives a priority. The proposed framework ensures a clearly defined, well-communicated, holistic future state that is continually evaluated, as opposed to many of the existing frameworks. The proposed Mobile Holistic Enterprise Architecture Framework - ‘MHETF’ - is based on the realisation of the capabilities of smartphones that are aimed at individual average consumers (the backbone of the current mobile trend). The capabilities are categorised and translated into four sets of services categories for business use. They are linked to another two components of the framework which are: (i) the categorisation of goals and objectives that are incorporated into the Balanced Scorecard for evaluation at a later stage in planning, and continually referred to during transitions and (ii) the categorisation of the implementation forms (categorisation of end solutions’ functionalities). The framework is supported by EA inter-operability and maturity models to ensure continuity and alignment with the existing initiatives, the enterprise’s strategic objectives, and the change required in the scope of transformation. An evaluation for the available enterprise architecture frameworks was carried out and resulted in the selection of The Open Group Architecture Framework (TOGAF). The decision was also commended by the participants in the case study evaluation due to their familiarity with this framework, which is being adopted as the Saudi E Government Standard in contrast to the other major frameworks of Zachman and Federal Enterprise Architecture (FEA). MHETF has been applied to three case studies in the Kingdom of Saudi Arabia; two applications for a leading national outsourcing company, and the third for the outpatient clinics in a large hospital in the capital city of Riyadh. The results have shown major improvements in the four goal areas of mobile transformation; productivity, processes, satisfaction improvement and facilitating new opportunities. Eventually, the final evolution has shown that the participants are satisfied with the framework overall, and indicates that the framework changed their perspective of the power of mobile applications significantly, is relatively easy to understand, and that they are planning to adopt it for future mobile initiatives
    corecore