1,137 research outputs found

    Solving Problems on Graphs of High Rank-Width

    Full text link
    A modulator of a graph G to a specified graph class H is a set of vertices whose deletion puts G into H. The cardinality of a modulator to various tractable graph classes has long been used as a structural parameter which can be exploited to obtain FPT algorithms for a range of hard problems. Here we investigate what happens when a graph contains a modulator which is large but "well-structured" (in the sense of having bounded rank-width). Can such modulators still be exploited to obtain efficient algorithms? And is it even possible to find such modulators efficiently? We first show that the parameters derived from such well-structured modulators are strictly more general than the cardinality of modulators and rank-width itself. Then, we develop an FPT algorithm for finding such well-structured modulators to any graph class which can be characterized by a finite set of forbidden induced subgraphs. We proceed by showing how well-structured modulators can be used to obtain efficient parameterized algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use well-structured modulators to develop an algorithmic meta-theorem for deciding problems expressible in Monadic Second Order (MSO) logic, and prove that this result is tight in the sense that it cannot be generalized to LinEMSO problems.Comment: Accepted at WADS 201

    Some results on triangle partitions

    Full text link
    We show that there exist efficient algorithms for the triangle packing problem in colored permutation graphs, complete multipartite graphs, distance-hereditary graphs, k-modular permutation graphs and complements of k-partite graphs (when k is fixed). We show that there is an efficient algorithm for C_4-packing on bipartite permutation graphs and we show that C_4-packing on bipartite graphs is NP-complete. We characterize the cobipartite graphs that have a triangle partition

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page
    • …
    corecore