312 research outputs found

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Adapting Computer Vision Models To Limitations On Input Dimensionality And Model Complexity

    Get PDF
    When considering instances of distributed systems where visual sensors communicate with remote predictive models, data traffic is limited to the capacity of communication channels, and hardware limits the processing of collected data prior to transmission. We study novel methods of adapting visual inference to limitations on complexity and data availability at test time, wherever the aforementioned limitations exist. Our contributions detailed in this thesis consider both task-specific and task-generic approaches to reducing the data requirement for inference, and evaluate our proposed methods on a wide range of computer vision tasks. This thesis makes four distinct contributions: (i) We investigate multi-class action classification via two-stream convolutional neural networks that directly ingest information extracted from compressed video bitstreams. We show that selective access to macroblock motion vector information provides a good low-dimensional approximation of the underlying optical flow in visual sequences. (ii) We devise a bitstream cropping method by which AVC/H.264 and H.265 bitstreams are reduced to the minimum amount of necessary elements for optical flow extraction, while maintaining compliance with codec standards. We additionally study the effect of codec rate-quality control on the sparsity and noise incurred on optical flow derived from resulting bitstreams, and do so for multiple coding standards. (iii) We demonstrate degrees of variability in the amount of data required for action classification, and leverage this to reduce the dimensionality of input volumes by inferring the required temporal extent for accurate classification prior to processing via learnable machines. (iv) We extend the Mixtures-of-Experts (MoE) paradigm to adapt the data cost of inference for any set of constituent experts. We postulate that the minimum acceptable data cost of inference varies for different input space partitions, and consider mixtures where each expert is designed to meet a different set of constraints on input dimensionality. To take advantage of the flexibility of such mixtures in processing different input representations and modalities, we train biased gating functions such that experts requiring less information to make their inferences are favoured to others. We finally note that, our proposed data utility optimization solutions include a learnable component which considers specified priorities on the amount of information to be used prior to inference, and can be realized for any combination of tasks, modalities, and constraints on available data

    Video modeling via implicit motion representations

    Get PDF
    Video modeling refers to the development of analytical representations for explaining the intensity distribution in video signals. Based on the analytical representation, we can develop algorithms for accomplishing particular video-related tasks. Therefore video modeling provides us a foundation to bridge video data and related-tasks. Although there are many video models proposed in the past decades, the rise of new applications calls for more efficient and accurate video modeling approaches.;Most existing video modeling approaches are based on explicit motion representations, where motion information is explicitly expressed by correspondence-based representations (i.e., motion velocity or displacement). Although it is conceptually simple, the limitations of those representations and the suboptimum of motion estimation techniques can degrade such video modeling approaches, especially for handling complex motion or non-ideal observation video data. In this thesis, we propose to investigate video modeling without explicit motion representation. Motion information is implicitly embedded into the spatio-temporal dependency among pixels or patches instead of being explicitly described by motion vectors.;Firstly, we propose a parametric model based on a spatio-temporal adaptive localized learning (STALL). We formulate video modeling as a linear regression problem, in which motion information is embedded within the regression coefficients. The coefficients are adaptively learned within a local space-time window based on LMMSE criterion. Incorporating a spatio-temporal resampling and a Bayesian fusion scheme, we can enhance the modeling capability of STALL on more general videos. Under the framework of STALL, we can develop video processing algorithms for a variety of applications by adjusting model parameters (i.e., the size and topology of model support and training window). We apply STALL on three video processing problems. The simulation results show that motion information can be efficiently exploited by our implicit motion representation and the resampling and fusion do help to enhance the modeling capability of STALL.;Secondly, we propose a nonparametric video modeling approach, which is not dependent on explicit motion estimation. Assuming the video sequence is composed of many overlapping space-time patches, we propose to embed motion-related information into the relationships among video patches and develop a generic sparsity-based prior for typical video sequences. First, we extend block matching to more general kNN-based patch clustering, which provides an implicit and distributed representation for motion information. We propose to enforce the sparsity constraint on a higher-dimensional data array signal, which is generated by packing the patches in the similar patch set. Then we solve the inference problem by updating the kNN array and the wanted signal iteratively. Finally, we present a Bayesian fusion approach to fuse multiple-hypothesis inferences. Simulation results in video error concealment, denoising, and deartifacting are reported to demonstrate its modeling capability.;Finally, we summarize the proposed two video modeling approaches. We also point out the perspectives of implicit motion representations in applications ranging from low to high level problems

    The Devil is in the Points: Weakly Semi-Supervised Instance Segmentation via Point-Guided Mask Representation

    Full text link
    In this paper, we introduce a novel learning scheme named weakly semi-supervised instance segmentation (WSSIS) with point labels for budget-efficient and high-performance instance segmentation. Namely, we consider a dataset setting consisting of a few fully-labeled images and a lot of point-labeled images. Motivated by the main challenge of semi-supervised approaches mainly derives from the trade-off between false-negative and false-positive instance proposals, we propose a method for WSSIS that can effectively leverage the budget-friendly point labels as a powerful weak supervision source to resolve the challenge. Furthermore, to deal with the hard case where the amount of fully-labeled data is extremely limited, we propose a MaskRefineNet that refines noise in rough masks. We conduct extensive experiments on COCO and BDD100K datasets, and the proposed method achieves promising results comparable to those of the fully-supervised model, even with 50% of the fully labeled COCO data (38.8% vs. 39.7%). Moreover, when using as little as 5% of fully labeled COCO data, our method shows significantly superior performance over the state-of-the-art semi-supervised learning method (33.7% vs. 24.9%). The code is available at https://github.com/clovaai/PointWSSIS.Comment: CVPR 202
    • …
    corecore