2,332 research outputs found

    Probabilistic model for Intrusion Detection in Wireless Sensor Network

    Get PDF
    Intrusion detection in Wireless Sensor Network (WSN) is important through the view of security in WSN. Sensor Deployment Strategy gives an extent to security in WSNs. This paper compares the probability of intrusion detection in both the Poisson as well as Gaussian deployment strategies. It focuses on maximizing intrusion detection probability by assuming the combination of these two deployment strategies and it gives theoretical proposal with respect to intrusion detection

    Collision Free Navigation of a Multi-Robot Team for Intruder Interception

    Full text link
    In this report, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continuation, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. Furthermore, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Then we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment where is occupied by multiple obstacles to trap a target. We prove that each individual team member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Intrusion Detection in Homogeneous and Heterogeneous Wireless Sensor Networks (WSN)

    Get PDF
    Intrusion detection in Wireless Sensor Network (WSN) is of practical interest in many applications such as detecting an intruder in a combat zone. The intrusion detection is defined as machinery for a WSN to detect the subsistence of unfortunate, incorrect, or anomalous moving attackers. For this purpose, it is a fundamental issue to differentiate the WSN parameters such as node density and sensing range in terms of a desirable detection probability. In this paper, we consider this issue according to two WSN models: homogeneous and heterogeneous WSN. Furthermore, we derive the detection possibility by considering two sensing models: single-singing detection and multiple-sensing detection. In addition, we converse the network connectivity and broadcast reach ability, which are necessary conditions to make certain the corresponding detection probability in a WSN. Our simulation results validate the analytical values for both homogeneous and heterogeneous WSNs

    Utilization Of A Large-Scale Wireless Sensor Network For Intrusion Detection And Border Surveillance

    Get PDF
    To control the border more effectively, countries may deploy a detection system that enables real-time surveillance of border integrity. Events such as border crossings need to be monitored in real time so that any border entries can be noted by border security forces and destinations marked for apprehension. Wireless Sensor Networks (WSNs) are promising for border security surveillance because they enable enforcement teams to monitor events in the physical environment. In this work, probabilistic models have been presented to investigate senor development schemes while considering the environmental factors that affect the sensor performance. Simulation studies have been carried out using the OPNET to verify the theoretical analysis and to find an optimal node deployment scheme that is robust and efficient by incorporating geographical coordination in the design. Measures such as adding camera and range-extended antenna to each node have been investigated to improve the system performance. A prototype WSN based surveillance system has been developed to verify the proposed approach

    Energy aware performance evaluation of WSNs

    Get PDF
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. Energy-efficient solutions are required for each aspect of WSN design to deliver the potential advantages of the WSN phenomenon, hence in both existing and future solutions for WSNs, energy efficiency is a grand challenge. The main contribution of this thesis is to present an approach considering the collaborative nature of WSNs and its correlation characteristics, providing a tool which considers issues from physical to application layer together as entities to enable the framework which facilitates the performance evaluation of WSNs. The simulation approach considered provides a clear separation of concerns amongst software architecture of the applications, the hardware configuration and the WSN deployment unlike the existing tools for evaluation. The reuse of models across projects and organizations is also promoted while realistic WSN lifetime estimations and performance evaluations are possible in attempts of improving performance and maximizing the lifetime of the network. In this study, simulations are carried out with careful assumptions for various layers taking into account the real time characteristics of WSN. The sensitivity of WSN systems are mainly due to their fragile nature when energy consumption is considered. The case studies presented demonstrate the importance of various parameters considered in this study. Simulation-based studies are presented, taking into account the realistic settings from each layer of the protocol stack. Physical environment is considered as well. The performance of the layered protocol stack in realistic settings reveals several important interactions between different layers. These interactions are especially important for the design of WSNs in terms of maximizing the lifetime of the network

    Smart container monitoring using custom-made WSN technology : from business case to prototype

    Get PDF
    This paper reports on the development of a prototype solution for tracking and monitoring shipping containers. Deploying wireless sensor networks (WSNs) in an operational environment remains a challenging task. We strongly believe that standardized methodologies and tools could enhance future WSN deployments and enable rapid prototype development. Therefore, we choose to use a step-by-step approach where each step gives us more insight in the problem at hand while shielding some of the complexity of the final solution. We observed that environment emulation is of the utmost importance, especially for harsh wireless conditions inside a container stacking. This lead us to extend our test lab with wireless link emulation capabilities. It is also essential to assess feasibility of concepts and design choices after every stage during prototype development. This enabled us to create innovative WSN solutions, including a multi-MAC framework and a robust gateway selection algorithm
    corecore