15 research outputs found

    Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Validation 30 m V001

    Get PDF
    The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) data product provides cropland extent data of the globe for nominal year 2015 at 30 meter resolution. The monitoring of global cropland extent is critical for policymaking and provides important baseline data that are used in many agricultural cropland studies pertaining to water sustainability and food security. The GFSAD30 Validation (GFSAD30VAL) data product provides a thorough and independent accuracy assessment and validation of the cropland extent products produced for each of the seven regions. Each GFSAD30VAL shapefile contains information on sample locations, presence of cropland or no cropland, and the zones that were randomly selected for accuracy assessment across the globe

    NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Southeast Asia 30 m V001

    Get PDF
    The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) data product provides cropland extent data over Southeast and Northeast Asia for nominal year 2015 at 30 meter resolution (GFSAD30SEACE). The monitoring of global cropland extent is critical for policymaking and provides important baseline data that are used in many agricultural cropland studies pertaining to water sustainability and food security. The GFSAD30SEACE data product uses the pixel-based supervised classifiers Random Forest (RF) to retrieve cropland extent from a combination of Landsat 8 Operational Land Imager (OLI), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and elevation derived from the Shuttle Radar Topography Mission (SRTM) Version 3 data products. Each GFSAD30SEACE GeoTIFF file contains a cropland extent layer that defines areas of cropland, non-cropland, and water bodies over a 10⁰ by 10⁰ area

    NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Africa 30 m V001

    Get PDF
    The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) data product provides cropland extent data over the continent of Africa for nominal year 2015 at 30 meter resolution (GFSAD30AFCE). The monitoring of global cropland extent is critical for policymaking and provides important baseline data that are used in many agricultural cropland studies pertaining to water sustainability and food security. The GFSAD30AFCE data product uses two pixel-based supervised classifiers—Random Forest (RF) and Support Vector Machine (SVM)—and one object-oriented classifier—Recursive Hierarchical Image Segmentation (RHSEG)—to retrieve cropland extent from a combination of Landsat 8 Operational Land Imager (OLI) and Sentinel-2 MultiSpectral Instrument (MSI) data and elevation derived from the Shuttle Radar Topography Mission (SRTM) Version 3 data products. Each GFSAD30AFCE GeoTIFF file contains a cropland extent layer that defines areas of cropland, non-cropland, and water bodies over a 10⁰ by 10⁰ area

    NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Dominance 2010 Global 1 km V001

    Get PDF
    The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Dominance Global 1 kilometer (km) dataset was created using multiple input data including: Advanced Very High Resolution Radiometer (AVHRR), Satellite Probatoire d'Observation de la Terre (SPOT) vegetation, and Moderate Resolution Imaging Spectrometer (MODIS) remote sensing data; crop type data, secondary elevation data; 50-year precipitation and 20-year temperature data; reference sub-meter to 5-meter resolution ground data; and country statistic data. The GFSAD1KCD data were produced for nominal 2010 by overlaying the five dominant crops of the world produced by Ramankutty et al. (2008), Monfreda et al. (2008), and Portman et al. (2009) over the remote sensing derived global irrigated and rainfed cropland area map of the International Water Management Institute (IWMI; Thenkabail et al., 2009a, 2009b, 2011, Biradar et al., 2009) to ultimately create eight classes of crop dominance. The GFSAD1KCD nominal 2010 product is based on data ranging from years 2007 through 2012

    NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010 Global 1 km V001

    Get PDF
    The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Mask Global 1 kilometer (km) dataset was created using multiple input data including: remote sensing such as Landsat, Advanced Very High Resolution Radiometer (AVHRR), Satellite Probatoire d'Observation de la Terre (SPOT) vegetation and Moderate Resolution Imaging Spectrometer (MODIS); secondary elevation data; climate 50-year precipitation and 20-year temperature data; reference sub-meter to 5-meter resolution ground data and country statistics data. The GFSAD1KCM provides spatial distribution of a disaggregated five class global cropland extent map derived for nominal 2010 at 1-km based on four major studies: Thenkabail et al. (2009a, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010). The GFSAD1KCM nominal 2010 product is based on data ranging from years 2007 through 2012

    NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 Australia, New Zealand, China, Mongolia 30 m V001

    Get PDF
    The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) data product provides cropland extent data over Australia, New Zealand, China, and Mongolia for nominal year 2015 at 30 meter resolution (GFSAD30AUNZCNMOCE). The monitoring of global cropland extent is critical for policymaking and provides important baseline data that are used in many agricultural cropland studies pertaining to water sustainability and food security. The GFSAD30AUNZCNMOCE data product uses the pixel-based supervised classifier Random Forest (RF) to retrieve cropland extent from a combination of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data. Each GFSAD30AUNZCNMOCE GeoTIFF file contains a cropland extent layer that defines areas of cropland, non-cropland, and water bodies over a 10⁰ by 10⁰ area

    Time tracking of different cropping patterns using Landsat images under different agricultural systems during 1990-2050 in Cold China

    Get PDF
    Rapid cropland reclamation is underway in Cold China in response to increases in food demand, while the lack analyses of time series cropping pattern mappings limits our understanding of the acute transformation process of cropland structure and associated environmental effects. The Cold China contains different agricultural systems (state and private farming), and such systems could lead to different cropping patterns. So far, such changes have not been revealed yet. Based on the Landsat images, this study tracked cropping information in five-year increments (1990-1995, 1995-2000, 2000-2005, 2005-2010, and 2010-2015) and predicted future patterns for the period of 2020-2050 under different agricultural systems using developed method for determining cropland patterns. The following results were obtained: The available time series of Landsat images in Cold China met the requirements for long-term cropping pattern studies, and the developed method exhibited high accuracy (over 91%) and obtained precise spatial information. A new satellite evidence was observed that cropping patterns significantly differed between the two farm types, with paddy field in state farming expanding at a faster rate (from 2.66 to 68.56%) than those in private farming (from 10.12 to 34.98%). More than 70% of paddy expansion was attributed to the transformation of upland crop in each period at the pixel level, which led to a greater loss of upland crop in state farming than private farming (9505.66 km(2) vs. 2840.29 km(2)) during 1990-2015. Rapid cropland reclamation is projected to stagnate in 2020, while paddy expansion will continue until 2040 primarily in private farming in Cold China. This study provides new evidence for different land use change pattern mechanisms between different agricultural systems, and the results have significant implications for understanding and guiding agricultural system development

    Wavelength Selection Method Based on Partial Least Square from Hyperspectral Unmanned Aerial Vehicle Orthomosaic of Irrigated Olive Orchards

    Get PDF
    Identifying and mapping irrigated areas is essential for a variety of applications such as agricultural planning and water resource management. Irrigated plots are mainly identified using supervised classification of multispectral images from satellite or manned aerial platforms. Recently, hyperspectral sensors on-board Unmanned Aerial Vehicles (UAV) have proven to be useful analytical tools in agriculture due to their high spectral resolution. However, few efforts have been made to identify which wavelengths could be applied to provide relevant information in specific scenarios. In this study, hyperspectral reflectance data from UAV were used to compare the performance of several wavelength selection methods based on Partial Least Square (PLS) regression with the purpose of discriminating two systems of irrigation commonly used in olive orchards. The tested PLS methods include filter methods (Loading Weights, Regression Coefficient and Variable Importance in Projection); Wrapper methods (Genetic Algorithm-PLS, Uninformative Variable Elimination-PLS, Backward Variable Elimination-PLS, Sub-window Permutation Analysis-PLS, Iterative Predictive Weighting-PLS, Regularized Elimination Procedure-PLS, Backward Interval-PLS, Forward Interval-PLS and Competitive Adaptive Reweighted Sampling-PLS); and an Embedded method (Sparse-PLS). In addition, two non-PLS based methods, Lasso and Boruta, were also used. Linear Discriminant Analysis and nonlinear K-Nearest Neighbors techniques were established for identification and assessment. The results indicate that wavelength selection methods, commonly used in other disciplines, provide utility in remote sensing for agronomical purposes, the identification of irrigation techniques being one such example. In addition to the aforementioned, these PLS and non-PLS based methods can play an important role in multivariate analysis, which can be used for subsequent model analysis. Of all the methods evaluated, Genetic Algorithm-PLS and Boruta eliminated nearly 90% of the original spectral wavelengths acquired from a hyperspectral sensor onboard a UAV while increasing the identification accuracy of the classification

    Development of decadal (1985–1995–2005) land use and land cover database for India

    Get PDF
    India has experienced significant Land-Use and Land-Cover Change (LULCC) over the past few decades. In this context, careful observation and mapping of LULCC using satellite data of high to medium spatial resolution is crucial for understanding the long-term usage patterns of natural resources and facilitating sustainable management to plan, monitor and evaluate development. The present study utilizes the satellite images to generate national level LULC maps at decadal intervals for 1985, 1995 and 2005 using onscreen visual interpretation techniques with minimum mapping unit of 2.5 hectares. These maps follow the classification scheme of the International Geosphere Biosphere Programme (IGBP) to ensure compatibility with other global/regional LULC datasets for comparison and integration. Our LULC maps with more than 90% overall accuracy highlight the changes prominent at regional level, i.e., loss of forest cover in central and northeast India, increase of cropland area in Western India, growth of peri-urban area, and relative increase in plantations. We also found spatial correlation between the cropping area and precipitation, which in turn confirms the monsoon dependent agriculture system in the country. On comparison with the existing global LULC products (GlobCover and MODIS), it can be concluded that our dataset has captured the maximum cumulative patch diversity frequency indicating the detailed representation that can be attributed to the on-screen visual interpretation technique. Comparisons with global LULC products (GlobCover and MODIS) show that our dataset captures maximum landscape diversity, which is partly attributable to the on-screen visual interpretation techniques. We advocate the utility of this database for national and regional studies on land dynamics and climate change research. The database would be updated to 2015 as a continuing effort of this study

    Spectral Characteristics and Mapping of Rice Fields using Multi-Temporal Landsat and MODIS Data: A Case of District Narowal

    Get PDF
    Availability of remote sensed data provides powerful access to the spatial and temporal information of the earth surface Real-time earth observation data acquired during a cropping season can assist in assessing crop growth and development performance As remote sensed data is generally available at large scale rather than at field-plot level use of this information would help to improve crop management at broad-scale Utilizing the Landsat TM ETM ISODATA clustering algorithm and MODIS Terra the normalized difference vegetation index NDVI and enhanced vegetation index EVI datasets allowed the capturing of relevant rice cropping differences In this study we tried to analyze the MODIS Terra EVI NDVI February 2000 to February 2013 datasets for rice fractional yield estimation in Narowal Punjab province of Pakistan For large scale applications time integrated series of EVI NDVI 250-m spatial resolution offer a practical approach to measure crop production as they relate to the overall plant vigor and photosynthetic activity during the growing season The required data preparation for the integration of MODIS data into GIS is described with a focus on the projection from the MODIS Sinusoidal to the national coordinate systems However its low spatial resolution has been an impediment to researchers pursuing more accurate classification results and will support environmental planning to develop sustainable land-use practices These results have important implications for parameterization of land surface process models using biophysical variables estimated from remotely sensed data and assist for forthcoming rice fractional yield assessmen
    corecore