5,612 research outputs found

    Two Sets of Simple Formulae to Estimating Fractal Dimension of Irregular Boundaries

    Full text link
    Irregular boundary lines can be characterized by fractal dimension, which provides important information for spatial analysis of complex geographical phenomena such as cities. However, it is difficult to calculate fractal dimension of boundaries systematically when image data is limited. An approximation estimation formulae of boundary dimension based on square is widely applied in urban and ecological studies. However, the boundary dimension is sometimes overestimated. This paper is devoted to developing a series of practicable formulae for boundary dimension estimation using ideas from fractals. A number of regular figures are employed as reference shapes, from which the corresponding geometric measure relations are constructed; from these measure relations, two sets of fractal dimension estimation formulae are derived for describing fractal-like boundaries. Correspondingly, a group of shape indexes can be defined. A finding is that different formulae have different merits and spheres of application, and the second set of boundary dimensions is a function of the shape indexes. Under condition of data shortage, these formulae can be utilized to estimate boundary dimension values rapidly. Moreover, the relationships between boundary dimension and shape indexes are instructive to understand the association and differences between characteristic scales and scaling. The formulae may be useful for the pre-fractal studies in geography, geomorphology, ecology, landscape science, and especially, urban science.Comment: 28 pages, 2 figures, 9 table

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time

    The Fractal Dimension of Projected Clouds

    Full text link
    The interstellar medium seems to have an underlying fractal structure which can be characterized through its fractal dimension. However, interstellar clouds are observed as projected two-dimensional images, and the projection of a tri-dimensional fractal distorts its measured properties. Here we use simulated fractal clouds to study the relationship between the tri-dimensional fractal dimension (D_f) of modeled clouds and the dimension resulting from their projected images. We analyze different fractal dimension estimators: the correlation and mass dimensions of the clouds, and the perimeter-based dimension of their boundaries (D_per). We find the functional forms relating D_f with the projected fractal dimensions, as well as the dependence on the image resolution, which allow to estimatethe "real" D_f value of a cloud from its projection. The application of these results to Orion A indicates in a self-consistent way that 2.5 < D_f < 2.7 for this molecular cloud, a value higher than the result D_per+1 = 2.3 some times assumed in literature for interstellar clouds.Comment: 27 pages, 13 figures, 1 table. Accepted for publication in ApJ. Minor change

    Quantum Monte Carlo Study of Strongly Correlated Electrons: Cellular Dynamical Mean-Field Theory

    Full text link
    We study the Hubbard model using the Cellular Dynamical Mean-Field Theory (CDMFT) with quantum Monte Carlo (QMC) simulations. We present the algorithmic details of CDMFT with the Hirsch-Fye QMC method for the solution of the self-consistently embedded quantum cluster problem. We use the one- and two-dimensional half-filled Hubbard model to gauge the performance of CDMFT+QMC particularly for small clusters by comparing with the exact results and also with other quantum cluster methods. We calculate single-particle Green's functions and self-energies on small clusters to study their size dependence in one- and two-dimensions.Comment: 14 pages, 18 figure

    Multifractal Scaling, Geometrical Diversity, and Hierarchical Structure in the Cool Interstellar Medium

    Get PDF
    Multifractal scaling (MFS) refers to structures that can be described as a collection of interwoven fractal subsets which exhibit power-law spatial scaling behavior with a range of scaling exponents (concentration, or singularity, strengths) and dimensions. The existence of MFS implies an underlying multiplicative (or hierarchical, or cascade) process. Panoramic column density images of several nearby star- forming cloud complexes, constructed from IRAS data and justified in an appendix, are shown to exhibit such multifractal scaling, which we interpret as indirect but quantitative evidence for nested hierarchical structure. The relation between the dimensions of the subsets and their concentration strengths (the "multifractal spectrum'') appears to satisfactorily order the observed regions in terms of the mixture of geometries present: strong point-like concentrations, line- like filaments or fronts, and space-filling diffuse structures. This multifractal spectrum is a global property of the regions studied, and does not rely on any operational definition of "clouds.'' The range of forms of the multifractal spectrum among the regions studied implies that the column density structures do not form a universality class, in contrast to indications for velocity and passive scalar fields in incompressible turbulence, providing another indication that the physics of highly compressible interstellar gas dynamics differs fundamentally from incompressible turbulence. (Abstract truncated)Comment: 27 pages, (LaTeX), 13 figures, 1 table, submitted to Astrophysical Journa

    Theory and Design of Flight-Vehicle Engines

    Get PDF
    Papers are presented on such topics as the testing of aircraft engines, errors in the experimental determination of the parameters of scramjet engines, the effect of the nonuniformity of supersonic flow with shocks on friction and heat transfer in the channel of a hypersonic ramjet engine, and the selection of the basic parameters of cooled GTE turbines. Consideration is also given to the choice of optimal total wedge angle for the acceleration of aerospace vehicles, the theory of an electromagnetic-resonator engine, the dynamic characteristics of the pumps and turbines of liquid propellant rocket engines in transition regimes, and a hierarchy of mathematical models for spacecraft control engines

    Phase Diagram of Bosonic Atoms in Two-Color Superlattices

    Full text link
    We investigate the zero temperature phase diagram of a gas of bosonic atoms in one- and two-color standing-wave lattices in the framework of the Bose-Hubbard model. We first introduce some relevant physical quantities; superfluid fraction, condensate fraction, quasimomentum distribution, and matter-wave interference pattern. We then discuss the relationships between them on the formal level and show that the superfluid fraction, which is the relevant order parameter for the superfluid to Mott-insulator transition, cannot be probed directly via the matter wave interference patterns. The formal considerations are supported by exact numerical solutions of the Bose-Hubbard model for uniform one-dimensional systems. We then map out the phase diagram of bosons in non-uniform lattices. The emphasis is on optical two-color superlattices which exhibit a sinusoidal modulation of the well depth and can be easily realized experimentally. From the study of the superfluid fraction, the energy gap, and other quantities we identify new zero-temperature phases, including a localized and a quasi Bose-glass phase, and discuss prospects for their experimental observation.Comment: 18 pages, 17 figures, using REVTEX
    • …
    corecore