9,474 research outputs found

    On The Total Irregularity Strength of Regular Graphs

    Get PDF
    Let ðº = (ð‘‰, ð¸) be a graph. A total labeling ð‘“: 𑉠∪ ð¸ → {1, 2, ⋯ , ð‘˜} iscalled a totally irregular total ð‘˜-labeling of ðº if every two distinct vertices ð‘¥ and𑦠in 𑉠satisfy ð‘¤ð‘“(ð‘¥) ≠ ð‘¤ð‘“(ð‘¦) and every two distinct edges ð‘¥1ð‘¥2 and ð‘¦1ð‘¦2 in ð¸satisfy ð‘¤ð‘“(ð‘¥1ð‘¥2) ≠ ð‘¤ð‘“(ð‘¦1ð‘¦2), where ð‘¤ð‘“(ð‘¥) = ð‘“(ð‘¥) + Σð‘¥ð‘§âˆˆð¸(ðº) ð‘“(ð‘¥ð‘§) andð‘¤ð‘“(ð‘¥1ð‘¥2) = ð‘“(ð‘¥1) + ð‘“(ð‘¥1ð‘¥2) + ð‘“(ð‘¥2). The minimum 𑘠for which a graph ðº hasa totally irregular total ð‘˜-labeling is called the total irregularity strength of ðº,denoted by ð‘¡ð‘ (ðº). In this paper, we consider an upper bound on the totalirregularity strength of ð‘š copies of a regular graph. Besides that, we give a dual labeling of a totally irregular total ð‘˜-labeling of a regular graph and we consider the total irregularity strength of ð‘š copies of a path on two vertices, ð‘š copies of a cycle, and ð‘š copies of a prism ð¶ð‘› â–¡ ð‘ƒ2

    Minimum-Weight Edge Discriminator in Hypergraphs

    Full text link
    In this paper we introduce the concept of minimum-weight edge-discriminators in hypergraphs, and study its various properties. For a hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), a function λ:VZ+{0}\lambda: \mathcal V\rightarrow \mathbb Z^{+}\cup\{0\} is said to be an {\it edge-discriminator} on H\mathcal H if vEiλ(v)>0\sum_{v\in E_i}{\lambda(v)}>0, for all hyperedges EiEE_i\in \mathcal E, and vEiλ(v)vEjλ(v)\sum_{v\in E_i}{\lambda(v)}\ne \sum_{v\in E_j}{\lambda(v)}, for every two distinct hyperedges Ei,EjEE_i, E_j \in \mathcal E. An {\it optimal edge-discriminator} on H\mathcal H, to be denoted by λH\lambda_\mathcal H, is an edge-discriminator on H\mathcal H satisfying vVλH(v)=minλvVλ(v)\sum_{v\in \mathcal V}\lambda_\mathcal H (v)=\min_\lambda\sum_{v\in \mathcal V}{\lambda(v)}, where the minimum is taken over all edge-discriminators on H\mathcal H. We prove that any hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), with E=n|\mathcal E|=n, satisfies vVλH(v)n(n+1)/2\sum_{v\in \mathcal V} \lambda_\mathcal H(v)\leq n(n+1)/2, and equality holds if and only if the elements of E\mathcal E are mutually disjoint. For rr-uniform hypergraphs H=(V,E)\mathcal H=(\mathcal V, \mathcal E), it follows from results on Sidon sequences that vVλH(v)Vr+1+o(Vr+1)\sum_{v\in \mathcal V}\lambda_{\mathcal H}(v)\leq |\mathcal V|^{r+1}+o(|\mathcal V|^{r+1}), and the bound is attained up to a constant factor by the complete rr-uniform hypergraph. Next, we construct optimal edge-discriminators for some special hypergraphs, which include paths, cycles, and complete rr-partite hypergraphs. Finally, we show that no optimal edge-discriminator on any hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), with E=n(3)|\mathcal E|=n (\geq 3), satisfies vVλH(v)=n(n+1)/21\sum_{v\in \mathcal V} \lambda_\mathcal H (v)=n(n+1)/2-1, which, in turn, raises many other interesting combinatorial questions.Comment: 22 pages, 5 figure
    corecore