On The Total Irregularity Strength of Regular Graphs

Rismawati Ramdani ${ }^{1,2}$, A.N.M. Salman ${ }^{1}$ \& Hilda Assiyatun ${ }^{1}$
${ }^{1}$ Combinatorial Mathematics Research Group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
${ }^{2}$ Department of Mathematics, Faculty of Sciences and Technologies, Universitas Islam Negeri Sunan Gunung Djati, Jalan A.H. Nasution No. 105, Bandung, 40614, Indonesia
Email: rismawatiramdani@gmail.com

Abstract

Let $G=(V, E)$ be a graph. A total labeling $f: V \cup E \rightarrow\{1,2, \cdots, k\}$ is called a totally irregular total k-labeling of G if every two distinct vertices x and y in V satisfy $w_{f}(x) \neq w_{f}(y)$ and every two distinct edges $x_{1} x_{2}$ and $y_{1} y_{2}$ in E satisfy $w_{f}\left(x_{1} x_{2}\right) \neq w_{f}\left(y_{1} y_{2}\right)$, where $w_{f}(x)=f(x)+\sum_{x z \in E(G)} f(x z)$ and $w_{f}\left(x_{1} x_{2}\right)=f\left(x_{1}\right)+f\left(x_{1} x_{2}\right)+f\left(x_{2}\right)$. The minimum k for which a graph G has a totally irregular total k-labeling is called the total irregularity strength of G, denoted by $t s(G)$. In this paper, we consider an upper bound on the total irregularity strength of m copies of a regular graph. Besides that, we give a dual labeling of a totally irregular total k-labeling of a regular graph and we consider the total irregularity strength of m copies of a path on two vertices, m copies of a cycle, and m copies of a prism $C_{n} \square P_{2}$.

Keywords: cycle; dual labeling; path; prism; regular graph; the total irregularity strength; totally irregular total k-labeling.

1 Introduction

In 2007, Bača, et al. [1] introduced vertex irregular total k-labelings and edge irregular total k-labelings. A total labeling $f: V \cup E \rightarrow\{1,2, \cdots, k\}$ is called a vertex irregular total k-labeling of G if every two distinct vertices x and y in V satisfy $w_{f}(x) \neq w_{f}(y)$, where $w_{f}(x)=f(x)+\sum_{x z \in E(G)} f(x z)$. The minimum k for which a graph G has a vertex irregular total k-labeling, denoted by $\operatorname{tvs}(G)$, is called the vertex irregularity strength of G.

Bača, et al. [1] proved that for any graph $G=(V, E)$,

$$
\begin{equation*}
\left\lceil\frac{|V(G)|+\delta(G)}{\Delta(G)+1}\right\rceil \leq \operatorname{tvs}(G) \leq|V(G)|+\Delta(G)-2 \delta(G)+1 \tag{1}
\end{equation*}
$$

Another result about tvs (G) was given by Nurdin, et al. in [2] as follows:

$$
\begin{equation*}
\operatorname{tvs}(G) \geq \max \left\{\left\lceil\frac{\delta+n_{\delta}}{\delta+1}\right\rceil,\left\lceil\frac{\delta+n_{\delta}+n_{\delta+1}}{\delta+2}\right\rceil, \cdots,\left\lceil\frac{\delta+\sum_{i=\delta}^{\Delta} n_{i}}{\Delta+1}\right\rceil\right\} \tag{2}
\end{equation*}
$$

where n_{i} denotes the number of vertices of degree $i, i=\delta, \delta+1, \cdots, \Delta$.
In [3], Majerski and Przybylo gave the best result for dense graphs so far. In [4], Anholcer, Kalkowski and Przybylo gave the best known result for general graphs. Some other results about vertex irregular total k-labeling were given by Nurdin, et al. in [5] and [6], and Wijaya, et al. in [7] and [8].

A total labeling $f: V \cup E \rightarrow\{1,2, \cdots, k\}$ is called an edge irregular total $k-$ labeling of G if every two distinct edges $x_{1} x_{2}$ and $y_{1} y_{2}$ in E satisfy $w_{f}\left(x_{1} x_{2}\right) \neq$ $w_{f}\left(y_{1} y_{2}\right)$, where $w_{f}\left(x_{1} x_{2}\right)=f\left(x_{1}\right)+f\left(x_{1} x_{2}\right)+f\left(x_{2}\right)$. The minimum k for which a graph G has an edge irregular total k-labeling, denoted by $\operatorname{tes}(G)$, is called the edge irregularity strength of G.

In [1], Bača, et al. derived a lower and an upper bounds on the total edge irregularity strength of any graph $G=(V, E)$ as follows:

$$
\begin{equation*}
\left\lceil\frac{|E(G)|+2}{3}\right\rceil \leq \operatorname{tes}(G) \leq|E(G)| \tag{3}
\end{equation*}
$$

Ivančo and Jendrol in [9] proved that

$$
\begin{equation*}
\operatorname{tes}(T)=\max \left\{\left\lceil\frac{|E(T)|+2}{3}\right\rceil,\left\lceil\frac{\Delta(T)+1}{2}\right\rceil\right\}, \tag{4}
\end{equation*}
$$

where T is a tree.

In [10], Nurdin, et al. determined the total edge irregularity strength of the corona product of a path with some graphs, which are a path, a cycle, a star, a gear, a friendship graph, and a wheel.

Some other results about edge irregular total k-labelings were given by Bača and Siddiqui in [11], Jendrol, Miškuf, and Soták in [12] and [13], and Miškuf and Jendroľ in [14].

Combining vertex irregular total k-labelings and edge irregular total k-labelings, Marzuki, Salman, and Miller, in [15], introduced a new irregular total k-labeling of a graph G. It is called 'totally irregular total k-labelings', which is required to be at the same time both vertex and edge irregular. The minimum k for which a graph G has a totally irregular total k-labeling, denoted by $t s(G)$, is called the total irregularity strength of G.

In the same paper, Marzuki, et al. gave a lower bound on $t s(G)$ and exact values of the total irregularity strength of cycles and paths as follows:

For every graph G,

$$
\begin{align*}
& t s(G) \geq \max \{\operatorname{tes}(G), \operatorname{tvs}(G)\} \tag{5}\\
& t s\left(C_{n}\right)=\left\lceil\frac{n+2}{3}\right\rceil \text { for } n \geq 3 \tag{6}\\
& t s\left(P_{n}\right)=\left\{\begin{array}{r}
\left\lceil\frac{n+2}{3}\right\rceil \text { for } n=2 \text { or } n=5 \\
\left\lceil\frac{n+1}{3}\right\rceil \text { otherwise. }
\end{array}\right. \tag{7}
\end{align*}
$$

In [16], Ramdani and Salman determined the total irregularity strength of some Cartesian product graphs. One of some results in the paper is given as follows:

$$
\begin{equation*}
t s\left(C_{n} \square P_{2}\right)=n+1 \text { for } n \geq 3 \tag{8}
\end{equation*}
$$

2 Main Results

A totally irregular total k-labeling f of G is called an optimal labeling of G if $t s(G)=k$. In the following theorem, we derive an upper bound on the total irregularity strength of m copies of a regular graph.

Theorem 2.1 Let G be an r-regular connected graph with $r \geq 1$. Then,

$$
t s(m G) \leq m(t s(G))-\left\lfloor\frac{m-1}{2}\right\rfloor
$$

Proof. Let $G=(V, E)$ be an r-regular graph with order n, $t s(G)=t$, and f be an optimal labeling of G. Then, $|E|=\frac{n r}{2}$. Let $m G$ be m copies of G where the copies of G are denoted by G_{i} for $1 \leq i \leq m$. Let $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, $E(G)=\left\{e_{1}, e_{2}, \cdots, e_{\frac{n r}{2}}\right\}, V\left(G_{i}\right)=\left\{v_{1}^{i}, v_{2}^{i}, \cdots, v_{n}^{i}\right\}$, and $E\left(G_{i}\right)=\left\{e_{1}^{i}, e_{2}^{i}, \cdots, e_{\frac{n r}{2}}^{i}\right\}$, where G_{i} is isomorphic with G with the isomorphism

$$
s: V(G) \cup E(G) \rightarrow V\left(G_{i}\right) \cup E\left(G_{i}\right),
$$

where

$$
s\left(v_{a}\right)=v_{a}^{i} \text { and } s\left(e_{x}\right)=e_{x}^{i}
$$

for every $1 \leq i \leq m, 1 \leq a \leq n$, and $1 \leq x \leq \frac{n r}{2}$.
Define a total labeling g of $m G$ as follows:

- For i odd,

1) $g\left(v_{a}^{i}\right)=f\left(v_{a}\right)+(i-1) t-\left(\frac{i-1}{2}\right)$;
2) $g\left(e_{x}^{i}\right)=f\left(e_{x}\right)+(i-1) t-\left(\frac{i-1}{2}\right)$;

- For i even,

1) $g\left(v_{a}^{i}\right)=f\left(v_{a}\right)+(i-1) t-\left(\frac{i}{2}\right)$;
2) $g\left(e_{x}^{i}\right)=f\left(e_{x}\right)+(i-1) t-\left(\frac{i}{2}\right)+1$;
for every $1 \leq i \leq m, 1 \leq a \leq n$, and $1 \leq x \leq \frac{n r}{2}$.
Next, it will be shown that in the labeling g, there are no two edges of the same weight and there are no two vertices of the same weight.
1. It will be shown that there are no two edges in G_{i} with the same weight for every $i, 1 \leq i \leq m$.

Let $e_{x}^{i}=v_{a}^{i} v_{b}^{i}$ be an edge in G_{i} for $1 \leq i \leq m$. We consider two cases.

- Case 1: For i odd,

$$
\begin{array}{rlc}
w_{g}\left(e_{x}^{i}\right)= & g\left(v_{a}^{i}\right)+g\left(e_{x}^{i}\right)+g\left(v_{b}^{i}\right) \\
= & f\left(v_{a}\right)+(i-1) t-\left(\frac{i-1}{2}\right)+f\left(e_{x}\right)+(i-1) t-\left(\frac{i-1}{2}\right) \\
& & +f\left(v_{b}\right)+(i-1) t-\left(\frac{i-1}{2}\right) \\
= & f\left(v_{a}\right)+f\left(e_{x}\right)+f\left(v_{b}\right)+3\left((i-1) t-\left(\frac{i-1}{2}\right)\right) \\
= & & w_{f}\left(e_{x}\right)+3\left((i-1) t-\left(\frac{i-1}{2}\right)\right) .
\end{array}
$$

- Case 2: For i even,

$$
\begin{array}{rlc}
w_{g}\left(e_{x}^{i}\right)= & g\left(v_{a}^{i}\right)+g\left(v_{x}^{i}\right)+g\left(v_{b}^{i}\right) \\
= & f\left(v_{a}\right)+(i-1) t-\left(\frac{i}{2}\right)+f\left(e_{x}\right)+(i-1) t-\left(\frac{i}{2}\right)+1 \\
& & +f\left(v_{b}\right)+(i-1) t-\left(\frac{i}{2}\right) \\
= & f\left(v_{a}\right)+f\left(e_{x}\right)+f\left(v_{b}\right)+3\left((i-1) t-\left(\frac{i}{2}\right)\right)+1 \\
= & & w_{f}\left(e_{x}\right)+3\left((i-1) t-\left(\frac{i}{2}\right)\right)+1
\end{array}
$$

Since $w_{f}\left(e_{x}\right) \neq w_{f}\left(e_{y}\right)$ for every $x \neq y, 3\left((i-1) t-\left(\frac{i-1}{2}\right)\right)$ and $3\left((i-1) t-\left(\frac{i}{2}\right)\right)+1$ are constants, we get $w_{g}\left(e_{x}^{i}\right) \neq w_{g}\left(e_{y}^{i}\right)$ for every $x \neq y, 1 \leq i \leq m$, and $x, y \in\left\{1,2, \cdots, \frac{n r}{2}\right\}$.
2. Define $j=i+1$ for $1 \leq i \leq m$. It will be shown that $w_{g}\left(e_{x}^{i}\right)<w_{g}\left(e_{y}^{j}\right)$ for all edges $e_{x}^{i} \in G_{i}$ and $e_{y}^{j} \in G_{j}$ for $x, y \in\left\{1,2, \cdots, \frac{n r}{2}\right\}$.

Let $e_{x}^{i}=v_{a}^{i} v_{b}^{i}$ and $e_{y}^{j}=v_{c}^{j} v_{d}^{j}$. We consider two cases.

- Case 1 : For i odd,

$$
\begin{array}{rlc}
w_{g}\left(e_{x}^{i}\right) & = & g\left(v_{a}^{i}\right)+g\left(e_{x}^{i}\right)+g\left(v_{b}^{i}\right) \\
& = & f\left(v_{a}\right)+f\left(e_{x}\right)+f\left(v_{b}\right)+3\left((i-1) t-\left(\frac{i-1}{2}\right)\right) \\
& \leq & 3 t+3\left((i-1) t-\left(\frac{i-1}{2}\right)\right) \tag{9}\\
& = & 3 i t-3\left(\frac{i-1}{2}\right)
\end{array}
$$

On the other hand,

$$
\begin{array}{rlc}
w_{g}\left(e_{y}^{j}\right) & = & f\left(v_{c}\right)+f\left(e_{y}\right)+f\left(v_{d}\right)+3\left((j-1) t-\left(\frac{j}{2}\right)\right)+1 \\
& \geq & 3+3\left((j-1) t-\left(\frac{j}{2}\right)\right)+1 \tag{10}\\
& = & 3+3\left(i t-\left(\frac{i+1}{2}\right)\right)+1 \\
> & 3 i t-3\left(\frac{i-1}{2}\right)
\end{array}
$$

From (9) and (10), it follows $w_{g}\left(e_{y}^{j}\right)>w_{g}\left(e_{x}^{i}\right)$.

- Case 2 : For i even,

$$
\begin{array}{rlc}
w_{g}\left(e_{x}^{i}\right) & = & g\left(v_{a}^{i}\right)+g\left(e_{x}^{i}\right)+g\left(v_{b}^{i}\right) \\
& = & f\left(v_{a}\right)+f\left(e_{x}\right)+f\left(v_{b}\right)+3\left((i-1) t-\left(\frac{i}{2}\right)\right)+1 \\
& \leq & 3 t+3\left((i-1) t-\left(\frac{i}{2}\right)\right)+1 \tag{11}\\
& = & 3 i t-3\left(\frac{i}{2}\right)+1
\end{array}
$$

On the other hand,

$$
\begin{array}{rlc}
w_{g}\left(e_{y}^{j}\right) & = & f\left(v_{c}\right)+f\left(e_{y}\right)+f\left(v_{d}\right)+3\left((j-1) t-\left(\frac{j-1}{2}\right)\right) \\
& \geq & 3+3\left((j-1) t-\left(\frac{j-1}{2}\right)\right) \tag{12}\\
& = & 3+3\left(i t-\left(\frac{i}{2}\right)\right) \\
& > & 3 i t-3\left(\frac{i}{2}\right)+1 .
\end{array}
$$

From (11) and (12), we have $w_{g}\left(e_{y}^{j}\right)>w_{g}\left(e_{x}^{i}\right)$.
Hence, $w_{g}\left(e_{u}^{p}\right) \neq w_{g}\left(e_{w}^{q}\right)$ for all edges $e_{u}^{p} \in G_{p}$ and $e_{w}^{q} \in G_{q}$ with $p \neq q$, $p, q \in\{1,2, \cdots, m\}$, and $u, w \in\left\{1,2, \cdots, \frac{n r}{2}\right\}$.

1. It will be shown that there are no two vertices in G_{i} with the same weight for every $i, 1 \leq i \leq m$.
Let v_{a}^{i} be a vertex in G_{i} for $1 \leq i \leq m$. Let the edges incident with v_{a}^{i} be $e_{a_{1}}^{i}, e_{a_{2}}^{i}, \cdots, e_{a_{r}}^{i}$. We consider two cases.

- Case 1 : For i odd,

$$
\begin{array}{rlc}
w_{g}\left(v_{a}^{i}\right) & = & f\left(v_{a}\right)+(i-1) t-\left(\frac{i-1}{2}\right) \\
& & +\sum_{s=1}^{r}\left(f\left(e_{a_{s}}\right)+(i-1) t-\left(\frac{i-1}{2}\right)\right) \\
& =f\left(v_{a}\right)+\sum_{s=1}^{r} f\left(e_{a_{s}}\right)+(r+1)\left((i-1) t-\left(\frac{i-1}{2}\right)\right) \\
& = & w_{f}\left(v_{a}\right)+(r+1)\left((i-1) t-\left(\frac{i-1}{2}\right)\right)
\end{array}
$$

- Case 2 : For i even,

$$
\begin{array}{rlc}
w_{g}\left(v_{a}^{i}\right) & = & f\left(v_{a}\right)+(i-1) t-\left(\frac{i}{2}\right) \\
& & +\sum_{s=1}^{r}\left(f\left(e_{a_{s}}\right)+(i-1) t-\left(\frac{i}{2}\right)+1\right) \\
& = & f\left(v_{a}\right)+\sum_{s=1}^{r} f\left(e_{a_{s}}\right)+(r+1)\left((i-1) t-\left(\frac{i}{2}\right)\right)+r \\
& = & w_{f}\left(v_{a}\right)+(r+1)\left((i-1) t-\left(\frac{i}{2}\right)\right)+r
\end{array}
$$

Since $w_{f}\left(v_{a}\right) \neq w_{f}\left(v_{b}\right)$ for every $a \neq b,(r+1)\left((i-1) t-\left(\frac{i-1}{2}\right)\right)$ and $(r+1)\left((i-1) t-\left(\frac{i}{2}\right)\right)+r$ are constants, we get $w_{g}\left(v_{a}^{i}\right) \neq w_{g}\left(v_{b}^{i}\right)$ for every $a \neq b, 1 \leq i \leq m$, and $a, b \in\{1,2, \cdots, n\}$.
2. Define $j=i+1$ for $1 \leq i \leq m$. It will be shown that $w_{g}\left(v_{a}^{i}\right)<w_{g}\left(v_{b}^{j}\right)$ for all vertices $v_{a}^{i} \in G_{i}$ and $v_{b}^{j} \in G_{j}$ for $a, b \in\{1,2, \cdots, n\}$.
Let the edges incident with v_{a}^{i} be $e_{a_{1}}^{i}, e_{a_{2}}^{i}, \cdots, e_{a_{r}}^{i}$ and the edges incident with v_{b}^{j} be $e_{b_{1}}^{j}, e_{b_{2}}^{j}, \cdots, e_{b_{r}}^{j}$. We consider two cases.

- Case 1 : For i odd,

$$
\begin{align*}
w_{g}\left(v_{a}^{i}\right) & = & f\left(v_{a}\right)+\sum_{s=1}^{r} f\left(e_{a_{s}}\right)+(r+1)\left((i-1) t-\left(\frac{i-1}{2}\right)\right) \\
& \leq & (r+1) t+(r+1)\left((i-1) t-\left(\frac{i-1}{2}\right)\right) \tag{13}\\
& = & (r+1) i t-(r+1)\left(\frac{i-1}{2}\right)
\end{align*}
$$

On the other hand,

$$
\begin{array}{rlrl}
w_{g}\left(v_{b}^{j}\right) & = & f\left(v_{b}\right)+\sum_{s=1}^{r} f\left(e_{b_{s}}\right)+(r+1)\left((j-1) t-\left(\frac{j}{2}\right)\right)+r \\
& \geq & (r+1)+(r+1)\left((j-1) t-\left(\frac{j}{2}\right)\right)+r \\
& = & (r+1)+(r+1)\left(i t-\left(\frac{i+1}{2}\right)\right)+r \\
& = & (r+1)+(r+1)\left(i t-\left(\frac{i-1}{2}\right)-1\right)+r \\
& > & & (r+1) i t-(r+1)\left(\frac{i-1}{2}\right) \tag{14}
\end{array}
$$

From (13) and (14), we obtain $w_{g}\left(v_{b}^{j}\right)>w_{g}\left(v_{a}^{i}\right)$.

- Case 2 : For i even,

$$
\begin{align*}
w_{g}\left(v_{a}^{i}\right) & = & f\left(v_{a}\right)+\sum_{s=1}^{r} f\left(e_{a_{s}}\right)+(r+1)\left((i-1) t-\left(\frac{i}{2}\right)\right)+r \\
& \leq & (r+1) t+(r+1)\left((i-1) t-\left(\frac{i}{2}\right)\right)+r \\
& = & (r+1) i t-(r+1)\left(\frac{i}{2}\right)+r . \tag{15}
\end{align*}
$$

Moreover,

$$
\begin{align*}
w_{g}\left(v_{b}^{j}\right) & = & f\left(v_{b}\right)+\sum_{s=1}^{r} f\left(e_{b_{s}}\right)+(r+1)\left((j-1) t-\left(\frac{j-1}{2}\right)\right) \\
& \geq & (r+1)+(r+1)\left(i t-\left(\frac{i}{2}\right)\right) \tag{16}\\
& > & (r+1) i t-(r+1)\left(\frac{i}{2}\right)+r
\end{align*}
$$

From (15) and (16), we obtain $w_{g}\left(v_{b}^{j}\right)>w_{g}\left(v_{a}^{i}\right)$.

Hence, $w_{g}\left(v_{u}^{p}\right) \neq w_{g}\left(v_{w}^{q}\right)$ for all vertices $v_{u}^{p} \in G_{p}$ and $v_{w}^{q} \in G_{q}$ with $p \neq q$, $p, q \in\{1,2, \cdots, m\}$, and $u, w \in\{1,2, \cdots, n\}$.

It can easily be seen that the maximum label of g is not greater than $t+$ $(m-1) t-\left\lfloor\frac{m-1}{2}\right\rfloor=m t-\left\lfloor\frac{m-1}{2}\right\rfloor$.

Since there are no two edges of the same weight and there are no two vertices of the same weight in $m G, g$ is a totally irregular total $\left(m t-\left\lfloor\frac{m-1}{2}\right\rfloor\right)$-labeling of $m G$. We can conclude that

$$
t s(m G) \leq m(t s(G))-\left\lfloor\frac{m-1}{2}\right\rfloor .
$$

The upper bound in Theorem 2.1 can be decreased for some graphs.
Theorem 2.2 Let G be an r-regular connected graph with $r \geq 1$. Let f be an optimal labeling of G such that $w_{f}(e)<3 t s(G)$ for every $e \in E(G)$ and $w_{f}(v)<(r+1) t s(G)$ for every $v \in V(G)$. Then,

$$
t s(m G) \leq m(t s(G)-1)+1 .
$$

Proof. Let $G=(V, E)$ be an r-regular graph with order $n, t s(G)=t$, and f be an optimal labeling of G. Then, $|E|=\frac{n r}{2}$. Let $m G$ be m copies of G where the copies of G are denoted by G_{i} for $1 \leq i \leq m$. Let $(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, $E(G)=\left\{e_{1}, e_{2}, \cdots, e_{\frac{n r}{2}}\right\}, V\left(G_{i}\right)=\left\{v_{1}^{i}, v_{2}^{i}, \cdots, v_{n}^{i}\right\}$, and $E\left(G_{i}\right)=\left\{e_{1}^{i}, e_{2}^{i}, \cdots, e_{\frac{n r}{2}}^{i}\right\}$, where G_{i} is isomorphic with G with the isomorphism

$$
s: V(G) \cup E(G) \rightarrow V\left(G_{i}\right) \cup E\left(G_{i}\right),
$$

where $s\left(v_{a}\right)=v_{a}^{i}$ and $s\left(e_{x}\right)=e_{x}^{i}$ for every $1 \leq i \leq m, 1 \leq a \leq n$, and $1 \leq x \leq \frac{n r}{2}$.

Define a total labeling g of $m G$ as follows:

1) $g\left(v_{a}^{i}\right)=f\left(v_{a}\right)+(i-1)(t-1)$;
2) $g\left(e_{x}^{i}\right)=f\left(e_{x}\right)+(i-1)(t-1)$;
for every $1 \leq i \leq m, 1 \leq a \leq n$, and $1 \leq x \leq \frac{n r}{2}$.
Next, it will be shown that in the labeling g, there are no two edges of the same weight and there are no two vertices of the same weight.
1. It will be shown that there are no two edges in G_{i} with the same weight for every $i, 1 \leq i \leq m$.

Let $e_{x}^{i}=v_{a}^{i} v_{b}^{i}$ be an edge in G_{i} for $1 \leq i \leq m$. Then,

$$
\begin{array}{rlc}
w_{g}\left(e_{x}^{i}\right) & = & g\left(v_{a}^{i}\right)+g\left(e_{x}^{i}\right)+g\left(v_{b}^{i}\right) \\
& = & f\left(v_{a}\right)+(i-1)(t-1)+f\left(e_{x}\right)+(i-1)(t-1) \\
& & \\
& & \\
& =f\left(v_{b}\right)+(i-1)(t-1) \\
& & \left.v_{a}\right)+f\left(e_{x}\right)+f\left(v_{b}\right)+3(i-1)(t-1) \\
& & \left.w_{f}\right)+3(i-1)(t-1) .
\end{array}
$$

Since $w_{f}\left(e_{x}\right) \neq w_{f}\left(e_{y}\right)$ for every $x \neq y$ and $3(i-1)(t-1)$ is a constant, $w_{g}\left(e_{x}^{i}\right) \neq w_{g}\left(e_{y}^{i}\right)$ for every $x \neq y, 1 \leq i \leq m$, and $x, y \in\left\{1,2, \cdots, \frac{n r}{2}\right\}$.
2. Define $j=i+1$ for $1 \leq i \leq m$. Let $e_{x}^{i}=v_{a}^{i} v_{b}^{i}$ and $e_{y}^{j}=v_{c}^{j} v_{d}^{j}$. Then,

$$
\begin{array}{rlc}
w_{g}\left(e_{x}^{i}\right) & = & f\left(v_{a}\right)+f\left(e_{x}\right)+f\left(v_{b}\right)+3(i-1)(t-1) \\
& < & 3 t+3(i-1)(t-1) \tag{17}\\
& = & 3 i(t-1)+3
\end{array}
$$

On the other hand,

$$
\begin{array}{rlc}
w_{g}\left(e_{y}^{j}\right) & = & f\left(v_{c}\right)+f\left(e_{y}\right)+f\left(v_{d}\right)+3(j-1)(t-1) \\
\geq & 3+3(j-1)(t-1) \tag{18}\\
& = & 3+3 i(t-1)
\end{array}
$$

From (17) and (18), $w_{g}\left(e_{y}^{j}\right)>w_{g}\left(e_{x}^{i}\right)$.
Hence, $w_{g}\left(e_{u}^{p}\right) \neq w_{g}\left(e_{w}^{q}\right)$ for all edges $e_{u}^{p} \in G_{p}$ and $e_{w}^{q} \in G_{q}$ with $p \neq q$, $p, q \in\{1,2, \cdots, m\}$, and $u, w \in\left\{1,2, \cdots, \frac{n r}{2}\right\}$.

1. It will be shown that there are no two vertices in G_{i} with the same weight for every $i, 1 \leq i \leq m$.
Let v_{a}^{i} be a vertex in G_{i} for $1 \leq i \leq m$. Let the edges incident with v_{a}^{i} be $e_{a_{1}}^{i}, e_{a_{2}}^{i}, \cdots, e_{a_{r}}^{i}$. Then,

$$
\begin{array}{rlc}
w_{g}\left(v_{a}^{i}\right) & = & f\left(v_{a}\right)+(i-1)(t-1) \\
& & +\sum_{s=1}^{r}\left(f\left(e_{a_{s}}\right)+(i-1)(t-1)\right) \\
& = & f\left(v_{a}\right)+\sum_{s=1}^{r} f\left(e_{a_{s}}\right)+(r+1)(i-1)(t-1) \\
& = & w_{f}\left(v_{a}\right)+(r+1)(i-1)(t-1) .
\end{array}
$$

Since $w_{f}\left(v_{a}\right) \neq w_{f}\left(v_{b}\right)$ for every $a \neq b$ and $(r+1)(i-1)(t-1)$ is a constant, $w_{g}\left(v_{a}^{i}\right) \neq w_{g}\left(v_{b}^{i}\right)$ for every $a \neq b, \quad 1 \leq i \leq m$, and $a, b \in$ $\{1,2, \cdots, n\}$.
2. It will be shown that $w_{g}\left(v_{u}^{p}\right) \neq w_{g}\left(v_{w}^{q}\right)$ for all vertices $v_{u}^{p} \in G_{p}$ and $v_{w}^{q} \in G_{q}$ with $p \neq q, p, q \in\{1,2, \cdots, m\}$, and $u, w \in\{1,2, \cdots, n\}$.

Define $j=i+1$ for $1 \leq i \leq m$. Let the edges incident with v_{a}^{i} be $e_{a_{1}}^{i}, e_{a_{2}}^{i}, \cdots, e_{a_{r}}^{i}$ and the edges incident with v_{b}^{j} be $e_{b_{1}}^{j}, e_{b_{2}}^{j}, \cdots, e_{b_{r}}^{j}$. Then,

$$
\begin{align*}
w_{g}\left(v_{a}^{i}\right) & =w_{f}\left(v_{a}\right)+(r+1)(i-1)(t-1) \\
& <(r+1) t+(r+1)(i-1)(t-1) \tag{19}\\
& =(r+1)(t-1) i+(r+1) .
\end{align*}
$$

Also,

$$
\begin{align*}
w_{g}\left(v_{b}^{j}\right) & =w_{f}\left(v_{a}\right)+(r+1)(j-1)(t-1) \tag{20}\\
& \geq(r+1)+(r+1)(t-1) i
\end{align*}
$$

From (19) and (20), $w_{g}\left(v_{b}^{j}\right)>w_{g}\left(v_{a}^{i}\right)$. Hence, the claim follows.
It can easily be seen that the maximum label of g is $t+(m-1)(t-1)=$ $m(t-1)+1$.

Since there are no two edges of the same weight and there are no two vertices of the same weight in $m G, g$ is a totally irregular total $(m(t-1)+1)$-labeling of $m G$. We can conclude that

$$
t s(m G) \leq m(t s(G)-1)+1 .
$$

In the third theorem, we determine a dual labeling of a totally irregular total k labeling of arbitrary regular graph.

Definition 2.1 Let G be an r-regular graph. Let f be an optimal labeling of G. The dual labeling of f, denoted by \hat{f}, is defined by

$$
\hat{f}(v)=t s(G)+1-f(v), \forall v \in V(G) \text { and }
$$

$$
\hat{f}(e)=t s(G)+1-f(e), \forall e \in E(G) .
$$

Theorem 2.3. Let G be an r-regular graph. Let f be an optimal labeling of G. Then, \hat{f} is an also optimal labeling of G.

Proof. It will be shown that in the labeling \hat{f}, there are no two edges of the same weight and there are no two vertices of the same weight.

Let $c=u_{i} v_{i}$ and $d=u_{j} v_{j}$ be different edges in $E(G)$. Then,

$$
\begin{array}{rlc}
w_{\hat{f}}(c) & = & \hat{f}\left(u_{i}\right)+\hat{f}(c)+\hat{f}\left(v_{i}\right) \\
& = & t s(G)+1-f\left(u_{i}\right)+t s(G)+1-f(c)+t s(G)+1-f\left(v_{i}\right) \\
& = & 3(t s(G)+1)-\left(f\left(u_{i}\right)+f(c)+f\left(v_{i}\right)\right) \\
& = & 3(t s(G)+1)-w_{f}(c) .
\end{array}
$$

Also,

$$
\begin{array}{rlc}
w_{\hat{f}}(d) & = & \hat{f}\left(u_{j}\right)+\hat{f}(d)+\hat{f}\left(v_{j}\right) \\
& = & t s(G)+1-f\left(u_{j}\right)+t s(G)+1-f(d)+t s(G)+1-f\left(v_{j}\right) \\
& = & 3(t s(G)+1)-\left(f\left(u_{j}\right)+f(d)+f\left(v_{j}\right)\right) \\
& = & 3(t s(G)+1)-w_{f}(d) .
\end{array}
$$

Since $w_{f}(c) \neq w_{f}(d)$ for every $c \neq d$ and $3(t s(G)+1)$ is a constant, $w_{\hat{f}}(c) \neq$ $w_{\hat{f}}(d)$.

Let v_{a} and v_{b} be different vertices in G. Let the edges incident with v_{a} be $e_{a_{1}}, e_{a_{2}}, \cdots, e_{a_{r}}$ and the edges incident with v_{b} be $e_{b_{1}}, e_{b_{2}}, \cdots, e_{b_{r}}$. Then,

$$
\begin{array}{rlc}
w_{\hat{f}}\left(v_{a}\right) & = & \hat{f}\left(v_{a}\right)+\sum_{s=1}^{r} \hat{f}\left(e_{a_{s}}\right) \\
& = & t s(G)+1-f\left(v_{a}\right)+r(t s(G)+1)-\sum_{s=1}^{r} f\left(e_{a_{s}}\right) \\
& = & (r+1)(t s(G)+1)-\left(f\left(v_{a}\right)+\sum_{s=1}^{r} f\left(e_{a_{s}}\right)\right) \\
& = & (r+1)(t s(G)+1)-w_{f}\left(v_{a}\right) .
\end{array}
$$

On the other hand,

$$
\begin{array}{rlc}
w_{\hat{f}}\left(v_{b}\right) & = & \hat{f}\left(v_{b}\right)+\sum_{s=1}^{r} \hat{f}\left(e_{b_{s}}\right) \\
& = & t s(G)+1-f\left(v_{b}\right)+r(t s(G)+1)-\sum_{s=1}^{r} f\left(e_{b_{s}}\right) \\
& = & (r+1)(t s(G)+1)-\left(f\left(v_{b}\right)+\sum_{s=1}^{r} f\left(e_{b_{s}}\right)\right) \\
& = & (r+1)(t s(G)+1)-w_{f}\left(v_{b}\right) .
\end{array}
$$

Since $w_{f}\left(v_{a}\right) \neq w_{f}\left(v_{b}\right)$ for every $v_{a} \neq v_{b}$ and $(r+1)(t s(G)+1)$ is a constant, $w_{\hat{f}}\left(v_{a}\right) \neq w_{\hat{f}}\left(v_{b}\right)$.

Therefore, in the labeling \hat{f}, there are no two edges of the same weight and there are no two vertices of the same weight. Moreover, the maximum label of \hat{f} is less than or equal $t s(G)$. We can conclude that \hat{f} is an optimal labeling of G.

Three last theorems in this paper consider the total irregularity strength of a 1regular graph, a 2-regular graph, and a 3-regular graph.

Theorem 2.4 Let P_{2} be a path with 2 vertices. Then, $\operatorname{ts}\left(m P_{2}\right)=m+1$ for $m \geq 1$.

Proof. The graph $m P_{2}$ has $2 m$ vertices and m edges and is 1-regular graph. From (1) and (3), we get tvs $\left(m P_{2}\right) \geq\left\lceil\frac{2 m+1}{2}\right\rceil=m+1$ and $\operatorname{tes}\left(m P_{2}\right) \geq\left\lceil\frac{m+2}{3}\right\rceil$. Therefore, from (5), we get $t s\left(m P_{2}\right) \geq m+1$. Besides that, from (7) we get $t s\left(P_{2}\right)=2$.

Let the vertex set of P_{2} be $\left\{v_{1}, v_{2}\right\}$. Given a totally irregular total 2-labeling f of P_{2} as follows:

$$
f\left(v_{i}\right)=i \text { for } 1 \leq i \leq 2 ; f\left(v_{1} v_{2}\right)=1
$$

It can be seen that f is an optimal labeling of P_{2} such that $w_{f}\left(v_{1} v_{2}\right)<$ $3\left(t s\left(P_{2}\right)\right)$ and $w_{f}(v)<2\left(t s\left(P_{2}\right)\right)$ for every $v \in V\left(P_{2}\right)$. Therefore, from Theorem 2.2, we get

$$
\begin{array}{rlc}
t s\left(m P_{2}\right) & \leq & m\left(t s\left(P_{2}\right)-1\right)+1 \\
& = & m(2-1)+1 \\
& = & m+1
\end{array}
$$

We conclude that $t s\left(m P_{2}\right)=m+1$.
Theorem 2.5. Let C_{n} be a cycle of order n. For $n \geq 3$ and $n \equiv 0 \bmod 3$, $t s\left(m C_{n}\right)=\left\lceil\frac{m n+2}{3}\right\rceil$.

Proof. The $m C_{n}$ has $m n$ vertices and $m n$ edges and is 2-regular. From (1), (3), and (5), we get

$$
\begin{equation*}
t s\left(m C_{n}\right) \geq\left\lceil\frac{m n+2}{3}\right\rceil \tag{21}
\end{equation*}
$$

Next, we will prove that $t s\left(m C_{n}\right) \leq\left\lceil\frac{m n+2}{3}\right\rceil$.
Let the disconnected graph C_{n} consists of the vertex set and edge set as follows:

- $V\left(C_{n}\right)=\left\{v_{i} \mid 1 \leq i \leq n\right\} ;$
- $E\left(C_{n}\right)=\left\{e_{i}=v_{i} v_{i+1} \mid 1 \leq i \leq n\right\} ;$
where the subscript $n+1$ is replaced by 1 .
From (6), we get $t s\left(C_{n}\right)=\left\lceil\frac{n+2}{3}\right\rceil$.
Given a totally irregular total $\left\lceil\frac{n+2}{3}\right\rceil$-labeling f of C_{n} for $n \equiv 0 \bmod 3$ as follows:

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{c}
\left\lceil\frac{i}{3}\right\rceil+\left\lfloor\frac{i}{3}\right\rfloor \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil+1 ; \\
\left\lceil\frac{n-i+1}{3}\right\rceil+\left\lfloor\frac{n-i+1}{3}\right\rfloor+1 \text { for }\left\lfloor\frac{n}{2}\right\rceil+2 \leq i \leq n ;
\end{array}\right. \\
& f\left(e_{i}\right)=\left\{\begin{array}{c}
\left\lceil\frac{i}{3}\right\rfloor+\left\lfloor\frac{i+1}{3}\right\rfloor \text { for } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1 ; \\
\left\lceil\frac{n-i}{3}\right\rceil+\left\lfloor\frac{n-i+1}{3}\right\rfloor+1 \text { for }\left\lfloor\frac{n}{2}\right\rfloor+2 \leq i \leq n .
\end{array}\right.
\end{aligned}
$$

The labeling gives the weight of vertices and the weight of edges of C_{n} as follows:

$$
\begin{aligned}
& w_{f}\left(v_{i}\right)=\left\{\begin{array}{c}
3 \text { for } i=1 ; \\
2 i \text { for } 2 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1 ; \\
2(n-i)+5 \text { for }\left\lfloor\frac{n}{2}\right\rfloor+2 \leq i \leq n ;
\end{array}\right. \\
& w_{f}\left(e_{i}\right)=\left\{\begin{array}{c}
2 i+1 \text { for } 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil ; \\
2(n-i)+4 \text { for }\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n .
\end{array}\right.
\end{aligned}
$$

Hence, there are no two vertices of the same weight and there are no two edges of the same weight. Moreover, it can be seen $w_{f}(e)<3\left(t s\left(C_{n}\right)\right)$ for every $e \in E\left(C_{n}\right)$ and $w_{f}(v)<3\left(t s\left(C_{n}\right)\right)$ for every $v \in V\left(P_{2}\right)$. Therefore, from Theorem 2.2, we get

$$
\begin{align*}
t s\left(m C_{n}\right) & \leq m\left(t s\left(C_{n}\right)-1\right)+1 \\
& =m\left(\left\lceil\frac{n+2}{3}\right\rceil-1\right)+1 \\
& =m\left(\frac{n}{3}+1-1\right)+1 \tag{22}\\
& =m\left(\frac{n}{3}\right)+1 \\
& =\quad\left\lceil\frac{m n+2}{3}\right\rceil .
\end{align*}
$$

From (21) and (22), we conclude that $t s\left(m C_{n}\right)=\left\lceil\frac{m n+2}{3}\right\rceil$ for $n \equiv 0 \bmod 3$.
Theorem 2.6 For $n \geq 3$, $t s\left(m\left(C_{n} \square P_{2}\right)\right)=m n+1$.
Proof. The graph $m\left(C_{n} \square P_{2}\right)$ has $2 m n$ vertices and $3 m n$ edges and is 3-regular. From (1) and (3), we get $\operatorname{tvs}\left(m\left(C_{n} \square P_{2}\right)\right) \geq\left\lceil\frac{2 m n+3}{4}\right\rceil$ and $\operatorname{tes}\left(m\left(C_{n} \square P_{2}\right)\right) \geq$ $m n+1$. Therefore, from (5), $t s\left(m\left(C_{n} \square P_{2}\right)\right) \geq n m+1$. Moreover, from (8), $t s\left(C_{n} \square P_{2}\right)=n+1$.

In [14], Ramdani and Salman gave an optimal labeling f of $C_{n} \square P_{2}$ such that $w_{f}(e)<3\left(t s\left(C_{n} \square P_{2}\right)\right)$ for every $e \in E\left(C_{n} \square P_{2}\right)$ and $w_{f}(v)<4\left(t s\left(C_{n} \square P_{2}\right)\right)$ for every $v \in V\left(C_{n} \square P_{2}\right)$. Therefore, from Theorem 2.2, we get

$$
\begin{array}{rlc}
t s\left(m\left(C_{n} \square P_{2}\right)\right) & \leq & m\left(t s\left(C_{n} \square P_{2}\right)-1\right)+1 \\
& = & m(n+1-1)+1 \\
& = & m n+1 .
\end{array}
$$

We conclude that $t s\left(m\left(C_{n} \square P_{2}\right)\right)=m n+1$.

References

[1] Bača, M., Jendroľ, S., Miller, M. \& Ryan, J., On Irregular Total Labeling, Discrete Math., 307, pp. 1378-1388, 2007.
[2] Nurdin, Baskoro, E.T., Salman, A.N.M. \& Gaos, N.N., On the Total Vertex Irregularity Strength of Trees, Discrete Math., 310, pp. 30433048, 2010.
[3] Majerski, P. \& Przybylo, J., Total Vertex Irregularity Strength of Dense Graphs, J. Graph Theory, 76(1), pp. 34-41, 2014.
[4] Anholcer, M., Kalkowski, M. \& Przybylo, J., A New Upper Bound for the Total Vertex Irregularity Strength of Graphs. Discrete Math., 309, pp. 6316-6317, 2009.
[5] Nurdin, Baskoro, E.T., Salman, A.N.M. \& Gaos, N.N., On the Total Vertex Irregular Labelings for Several Types of Trees, Utilitas Mathematica, 83, pp. 277-290, 2010.
[6] Nurdin, Salman, A.N.M., Gaos, N.N. \& Baskoro, E.T., On the Total Vertex-Irregular Strength of a Disjoint Union of T Copies of a Path, J. Combin. Math. Combin. Comput., 71, pp. 227-233, 2009.
[7] Wijaya, K. \& Slamin, Total Vertex Irregular Labeling of Wheels, Fans, Suns and Friendship Graphs, J. Combin. Math. Combin. Comput., 65, pp. 103-112, 2008
[8] Wijaya, K., Slamin, Surahmat \& Jendrol, S., Total Vertex Irregular Labeling of Complete Bipartite Graphs, J. Combin. Math. Combin. Comput., 55, pp. 129-136, 2005.
[9] Ivančo, J. \& Jendroľ, S., Total Edge Irregularity Strength of Trees, Discussiones Math. Graph Theory, 26, pp. 449-456, 2006.
[10] Nurdin, Salman, A.N.M. \& Baskoro, E.T., The Total Edge-Irregular Strengths of the Corona Product of Paths with some Graphs, J. Combin. Math. Combin. Comput., 65, pp. 163-175, 2008.
[11] Bača, M. \& Siddiqui, M.K., Total Edge Irregularity Strength of Generalized Prism, Applied Math. Comput., 235, pp. 168-173, 2014.
[12] Jendroľ, S., Miškuf, J. \& Soták, R., Total Edge Irregularity Strength of Complete and Complete Bipartite Graphs, Electron Notes Discrete Math., 28, pp. 281-285, 2007.
[13] Jendroľ, S., Miškuf, J. \& Soták, R., Total Edge Irregularity Strength of Complete Graphs and Complete Bipartite Graphs, Discrete Math., 310, pp. 400-407, 2010.
[14] Miškuf, J. \& Jendroľ, S., On Total Edge Irregularity Strength of the Grids, Tatra Mt. Math. Publ., 36, pp. 147-151, 2007.
[15] Marzuki, C.C., Salman, A.N.M. \& Miller, M., On the Total Irregularity Strength on Cycles and Paths, Far East Journal of Mathematical Sciences, 82(1), pp. 1-21, 2013.
[16] Ramdani, R. \& Salman, A.N.M., On the Total Irregularity Strength of Some Cartesian Product Graphs, AKCE Int. J. Graphs Comb., 10(2), pp. 199-209, 2013.

