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Abstract. Let 𝐺 = (𝑉,𝐸) be a graph. A total labeling 𝑓:𝑉 ∪ 𝐸 → {1, 2,⋯ , 𝑘} is 
called a totally irregular total 𝑘-labeling of 𝐺 if every two distinct vertices 𝑥 and 
𝑦 in 𝑉 satisfy 𝑤𝑓(𝑥) ≠ 𝑤𝑓(𝑦) and every two distinct edges 𝑥1𝑥2 and 𝑦1𝑦2 in 𝐸 
satisfy 𝑤𝑓(𝑥1𝑥2) ≠ 𝑤𝑓(𝑦1𝑦2), where 𝑤𝑓(𝑥) = 𝑓(𝑥) + ∑ 𝑓(𝑥𝑧)𝑥𝑧∈𝐸(𝐺)  and 
𝑤𝑓(𝑥1𝑥2) = 𝑓(𝑥1) + 𝑓(𝑥1𝑥2) + 𝑓(𝑥2). The minimum 𝑘 for which a graph 𝐺 has 
a totally irregular total 𝑘-labeling is called the total irregularity strength of 𝐺, 
denoted by 𝑡𝑠(𝐺). In this paper, we consider an upper bound on the total 
irregularity strength of 𝑚 copies of a regular graph. Besides that, we give a dual 
labeling of a totally irregular total 𝑘-labeling of a regular graph and we consider 
the total irregularity strength of 𝑚 copies of a path on two vertices, 𝑚 copies of a 
cycle, and 𝑚 copies of a prism 𝐶𝑛 � 𝑃2. 

Keywords: cycle; dual labeling; path; prism; regular graph; the total irregularity 
strength; totally irregular total k-labeling. 

1 0BIntroduction 
In 2007, Bac�a, et al. [1] introduced vertex irregular total 𝑘-labelings and edge 
irregular total 𝑘-labelings. A total labeling 𝑓:𝑉 ∪ 𝐸 → {1, 2,⋯ , 𝑘} is called a 
vertex irregular total 𝑘-labeling of 𝐺 if every two distinct vertices 𝑥 and 𝑦 in 𝑉 
satisfy 𝑤𝑓(𝑥) ≠ 𝑤𝑓(𝑦), where 𝑤𝑓(𝑥) = 𝑓(𝑥) + ∑ 𝑓(𝑥𝑧)𝑥𝑧∈𝐸(𝐺) . The minimum 
𝑘 for which a graph 𝐺 has a vertex irregular total 𝑘-labeling, denoted by 
𝑡𝑣𝑠(𝐺), is called the vertex irregularity strength of 𝐺. 

Bac�a, et al. [1] proved that for any graph 𝐺 = (𝑉,𝐸), 

 �|𝑉(𝐺)|+𝛿(𝐺)
Δ(𝐺)+1

� ≤ 𝑡𝑣𝑠(𝐺) ≤ |𝑉(𝐺)| + Δ(𝐺) − 2𝛿(𝐺) + 1. (1) 

Another result about 𝑡𝑣𝑠(𝐺) was given by Nurdin, et al. in [2] as follows: 

 𝑡𝑣𝑠(𝐺) ≥ max ��𝛿+𝑛𝛿
𝛿+1

� , �𝛿+𝑛𝛿+𝑛𝛿+1
𝛿+2

� ,⋯ , �𝛿+∑ 𝑛𝑖Δ
𝑖=𝛿

Δ+1
��,  (2) 
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where 𝑛𝑖 denotes the number of vertices of degree 𝑖, 𝑖 = 𝛿, 𝛿 + 1,⋯ ,Δ.  

In [3], Majerski and Przybylo gave the best result for dense graphs so far. In [4], 
Anholcer, Kalkowski and Przybylo gave the best known result for general 
graphs. Some other results about vertex irregular total 𝑘-labeling were given by 
Nurdin, et al. in [5] and [6], and Wijaya, et al. in [7] and [8]. 

A total labeling 𝑓:𝑉 ∪ 𝐸 → {1, 2,⋯ ,𝑘} is called an edge irregular total 𝑘-
labeling of 𝐺 if every two distinct edges 𝑥1𝑥2 and 𝑦1𝑦2 in 𝐸 satisfy 𝑤𝑓(𝑥1𝑥2) ≠
𝑤𝑓(𝑦1𝑦2), where 𝑤𝑓(𝑥1𝑥2) = 𝑓(𝑥1) + 𝑓(𝑥1𝑥2) + 𝑓(𝑥2). The minimum 𝑘 for 
which a graph 𝐺 has an edge irregular total 𝑘-labeling, denoted by 𝑡𝑒𝑠(𝐺), is 
called the edge irregularity strength of 𝐺. 

In [1], Bac�a, et al. derived a lower and an upper bounds on the total edge 
irregularity strength of any graph 𝐺 = (𝑉,𝐸) as follows: 

 �|𝐸(𝐺)|+2
3

� ≤ 𝑡𝑒𝑠(𝐺) ≤ |𝐸(𝐺)|.  (3) 

Ivanc�o and Jendroľ in [9] proved that 

 𝑡𝑒𝑠(𝑇) = max ��|𝐸(𝑇)|+2
3

� , �Δ(𝑇)+1
2

��,  (4) 

where 𝑇 is a tree. 

In [10], Nurdin, et al. determined the total edge irregularity strength of the 
corona product of a path with some graphs, which are a path, a cycle, a star, a 
gear, a friendship graph, and a wheel. 

Some other results about edge irregular total 𝑘-labelings were given by Bac�a 
and Siddiqui in [11], Jendroľ, Mis�kuf, and Soták in [12] and [13], and Mis�kuf 
and Jendroľ in [14]. 

Combining vertex irregular total 𝑘-labelings and edge irregular total 𝑘-labelings, 
Marzuki, Salman, and Miller, in [15], introduced a new irregular total 𝑘-labeling 
of a graph 𝐺. It is called ‘totally irregular total 𝑘-labelings’, which is required to 
be at the same time both vertex and edge irregular. The minimum 𝑘 for which a 
graph 𝐺 has a totally irregular total 𝑘-labeling, denoted by 𝑡𝑠(𝐺), is called the 
total irregularity strength of 𝐺. 

In the same paper, Marzuki, et al. gave a lower bound on 𝑡𝑠(𝐺) and exact values 
of the total irregularity strength of cycles and paths as follows: 
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For every graph 𝐺,  

 𝑡𝑠(𝐺) ≥ max{𝑡𝑒𝑠(𝐺), 𝑡𝑣𝑠(𝐺)}, (5) 

 𝑡𝑠(𝐶𝑛) = �𝑛+2
3
� for 𝑛 ≥ 3, (6) 

 𝑡𝑠(𝑃𝑛) = �
�𝑛+2
3
�  for 𝑛 = 2 or 𝑛 = 5;

�𝑛+1
3
�  otherwise.

 (7) 

In [16], Ramdani and Salman determined the total irregularity strength of some 
Cartesian product graphs. One of some results in the paper is given as follows: 

 𝑡𝑠(𝐶𝑛� 𝑃2) = 𝑛 + 1 for 𝑛 ≥ 3. (8) 

2 Main Results 
A totally irregular total 𝑘-labeling 𝑓 of 𝐺 is called an optimal labeling of 𝐺 if 
𝑡𝑠(𝐺) = 𝑘. In the following theorem, we derive an upper bound on the total 
irregularity strength of 𝑚 copies of a regular graph. 

Theorem 2.1 Let 𝐺 be an 𝑟-regular connected graph with 𝑟 ≥ 1. Then, 

 𝑡𝑠(𝑚𝐺) ≤ 𝑚(𝑡𝑠(𝐺)) − �𝑚−1
2
�. 

Proof. Let 𝐺 = (𝑉,𝐸) be an 𝑟-regular graph with order 𝑛, 𝑡𝑠(𝐺) = 𝑡, and 𝑓 be 
an optimal labeling of 𝐺. Then, |𝐸| = 𝑛𝑟

2
. Let 𝑚𝐺 be 𝑚 copies of 𝐺 where the 

copies of 𝐺 are denoted by 𝐺𝑖 for 1 ≤ 𝑖 ≤ 𝑚. Let 𝑉(𝐺) = {𝑣1,𝑣2,⋯ , 𝑣𝑛}, 

𝐸(𝐺) = �𝑒1, 𝑒2,⋯ , 𝑒𝑛𝑟
2
�, 𝑉(𝐺𝑖) = �𝑣1𝑖 , 𝑣2𝑖 ,⋯ , 𝑣𝑛𝑖 �, and 𝐸(𝐺𝑖) = �𝑒1𝑖 , 𝑒2𝑖 ,⋯ , 𝑒𝑛𝑟

2

𝑖 �, 

where 𝐺𝑖 is isomorphic with 𝐺 with the isomorphism 

 𝑠:𝑉(𝐺) ∪ 𝐸(𝐺) → 𝑉(𝐺𝑖) ∪ 𝐸(𝐺𝑖), 

where  

 𝑠(𝑣𝑎) = 𝑣𝑎𝑖  and 𝑠(𝑒𝑥) = 𝑒𝑥𝑖  

for every 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑎 ≤ 𝑛, and 1 ≤ 𝑥 ≤ 𝑛𝑟
2

.  

Define a total labeling 𝑔 of 𝑚𝐺 as follows: 

• For 𝑖 odd, 
1) 𝑔�𝑣𝑎𝑖 � = 𝑓(𝑣𝑎) + (𝑖 − 1)𝑡 − �𝑖−1

2
� ; 

2) 𝑔�𝑒𝑥𝑖 � = 𝑓(𝑒𝑥) + (𝑖 − 1)𝑡 − �𝑖−1
2
� ; 
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• For 𝑖 even, 
1) 𝑔�𝑣𝑎𝑖 � = 𝑓(𝑣𝑎) + (𝑖 − 1)𝑡 − �𝑖

2
� ; 

2) 𝑔�𝑒𝑥𝑖 � = 𝑓(𝑒𝑥) + (𝑖 − 1)𝑡 − �𝑖
2
� + 1; 

for every 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑎 ≤ 𝑛, and 1 ≤ 𝑥 ≤ 𝑛𝑟
2

. 

Next, it will be shown that in the labeling 𝑔, there are no two edges of the same 
weight and there are no two vertices of the same weight. 

1. It will be shown that there are no two edges in 𝐺𝑖 with the same weight for 
every 𝑖, 1 ≤ 𝑖 ≤ 𝑚. 

Let 𝑒𝑥𝑖 = 𝑣𝑎𝑖𝑣𝑏𝑖  be an edge in 𝐺𝑖 for 1 ≤ 𝑖 ≤ 𝑚. We consider two cases. 

• Case 1: For 𝑖 odd, 

 

𝑤𝑔�𝑒𝑥𝑖 � = 𝑔�𝑣𝑎𝑖 � + 𝑔�𝑒𝑥𝑖 � + 𝑔�𝑣𝑏𝑖 �

= 𝑓(𝑣𝑎) + (𝑖 − 1)𝑡 − �𝑖−1
2
�+ 𝑓(𝑒𝑥) + (𝑖 − 1)𝑡 − �𝑖−1

2
�

+𝑓(𝑣𝑏) + (𝑖 − 1)𝑡 − �𝑖−1
2
�

= 𝑓(𝑣𝑎) + 𝑓(𝑒𝑥) + 𝑓(𝑣𝑏) + 3 �(𝑖 − 1)𝑡 − �𝑖−1
2
��

= 𝑤𝑓(𝑒𝑥) + 3 �(𝑖 − 1)𝑡 − �𝑖−1
2
�� .

 

• Case 2: For 𝑖 even, 

𝑤𝑔�𝑒𝑥𝑖 � = 𝑔�𝑣𝑎𝑖 � + 𝑔�𝑣𝑥𝑖 �+ 𝑔�𝑣𝑏𝑖 �

= 𝑓(𝑣𝑎) + (𝑖 − 1)𝑡 − �𝑖
2
�+ 𝑓(𝑒𝑥) + (𝑖 − 1)𝑡 − �𝑖

2
� + 1

+𝑓(𝑣𝑏) + (𝑖 − 1)𝑡 − �𝑖
2
�

= 𝑓(𝑣𝑎) + 𝑓(𝑒𝑥) + 𝑓(𝑣𝑏) + 3 �(𝑖 − 1)𝑡 − �𝑖
2
�� + 1

= 𝑤𝑓(𝑒𝑥) + 3 �(𝑖 − 1)𝑡 − �𝑖
2
�� + 1.

  

Since 𝑤𝑓(𝑒𝑥) ≠ 𝑤𝑓�𝑒𝑦� for every 𝑥 ≠ 𝑦, 3 �(𝑖 − 1)𝑡 − �𝑖−1
2
�� and 

3 �(𝑖 − 1)𝑡 − �𝑖
2
�� + 1 are constants, we get 𝑤𝑔�𝑒𝑥𝑖 � ≠ 𝑤𝑔�𝑒𝑦𝑖 � for every 

𝑥 ≠ 𝑦, 1 ≤ 𝑖 ≤ 𝑚, and 𝑥,𝑦 ∈ �1,2,⋯ , 𝑛𝑟
2
�. 
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2. Define 𝑗 = 𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑚. It will be shown that 𝑤𝑔�𝑒𝑥𝑖 � < 𝑤𝑔�𝑒𝑦
𝑗� 

for all edges 𝑒𝑥𝑖 ∈ 𝐺𝑖 and 𝑒𝑦
𝑗 ∈ 𝐺𝑗 for 𝑥,𝑦 ∈ �1,2,⋯ , 𝑛𝑟

2
�. 

Let 𝑒𝑥𝑖 = 𝑣𝑎𝑖𝑣𝑏𝑖  and 𝑒𝑦
𝑗 = 𝑣𝑐

𝑗𝑣𝑑
𝑗 . We consider two cases. 

• Case 1 : For 𝑖 odd, 

 

𝑤𝑔�𝑒𝑥𝑖 � = 𝑔�𝑣𝑎𝑖 � + 𝑔�𝑒𝑥𝑖 � + 𝑔�𝑣𝑏𝑖 �

= 𝑓(𝑣𝑎) + 𝑓(𝑒𝑥) + 𝑓(𝑣𝑏) + 3 �(𝑖 − 1)𝑡 − �𝑖−1
2
��

≤ 3𝑡 + 3 �(𝑖 − 1)𝑡 − �𝑖−1
2
��

= 3𝑖𝑡 − 3 �𝑖−1
2
� .

 (9) 

On the other hand, 

 

𝑤𝑔�𝑒𝑦
𝑗� = 𝑓(𝑣𝑐) + 𝑓�𝑒𝑦� + 𝑓(𝑣𝑑) + 3 �(𝑗 − 1)𝑡 − �𝑗

2
�� + 1

≥ 3 + 3 �(𝑗 − 1)𝑡 − �𝑗
2
�� + 1

= 3 + 3 �𝑖𝑡 − �𝑖+1
2
��+ 1

> 3𝑖𝑡 − 3 �𝑖−1
2
� .

 (10) 

From (9) and (10), it follows 𝑤𝑔�𝑒𝑦
𝑗� > 𝑤𝑔�𝑒𝑥𝑖 �. 

• Case 2 : For 𝑖 even, 

 

𝑤𝑔�𝑒𝑥𝑖 � = 𝑔�𝑣𝑎𝑖 � + 𝑔�𝑒𝑥𝑖 � + 𝑔�𝑣𝑏𝑖 �

= 𝑓(𝑣𝑎) + 𝑓(𝑒𝑥) + 𝑓(𝑣𝑏) + 3 �(𝑖 − 1)𝑡 − �𝑖
2
�� + 1

≤ 3𝑡 + 3 �(𝑖 − 1)𝑡 − �𝑖
2
�� + 1

= 3𝑖𝑡 − 3 �𝑖
2
� + 1.

 (11) 

On the other hand, 
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𝑤𝑔�𝑒𝑦
𝑗� = 𝑓(𝑣𝑐) + 𝑓�𝑒𝑦� + 𝑓(𝑣𝑑) + 3 �(𝑗 − 1)𝑡 − �𝑗−1

2
��

≥ 3 + 3 �(𝑗 − 1)𝑡 − �𝑗−1
2
��

= 3 + 3 �𝑖𝑡 − �𝑖
2
��

> 3𝑖𝑡 − 3 �𝑖
2
� + 1.

  (12) 

From (11) and (12), we have 𝑤𝑔�𝑒𝑦
𝑗� > 𝑤𝑔�𝑒𝑥𝑖 �. 

Hence, 𝑤𝑔�𝑒𝑢
𝑝� ≠ 𝑤𝑔�𝑒𝑤

𝑞� for all edges 𝑒𝑢
𝑝 ∈ 𝐺𝑝 and 𝑒𝑤

𝑞 ∈ 𝐺𝑞 with 𝑝 ≠ 𝑞, 
𝑝, 𝑞 ∈ {1, 2,⋯ ,𝑚}, and 𝑢,𝑤 ∈ �1, 2,⋯ , 𝑛𝑟

2
�. 

1. It will be shown that there are no two vertices in 𝐺𝑖 with the same weight 
for every 𝑖, 1 ≤ 𝑖 ≤ 𝑚. 

Let 𝑣𝑎𝑖  be a vertex in 𝐺𝑖 for 1 ≤ 𝑖 ≤ 𝑚. Let the edges incident with 𝑣𝑎𝑖  be 
𝑒𝑎1
𝑖 , 𝑒𝑎2

𝑖 ,⋯ , 𝑒𝑎𝑟
𝑖 . We consider two cases. 

• Case 1 : For 𝑖 odd, 

𝑤𝑔�𝑣𝑎𝑖 � = 𝑓(𝑣𝑎) + (𝑖 − 1)𝑡 − �𝑖−1
2
�

+∑ �𝑓�𝑒𝑎𝑠� + (𝑖 − 1)𝑡 − �𝑖−1
2
��𝑟

𝑠=1

= 𝑓(𝑣𝑎) + ∑ 𝑓�𝑒𝑎𝑠�
𝑟
𝑠=1 + (𝑟 + 1) �(𝑖 − 1)𝑡 − �𝑖−1

2
��

= 𝑤𝑓(𝑣𝑎) + (𝑟 + 1) �(𝑖 − 1)𝑡 − �𝑖−1
2
�� .

  

• Case 2 : For 𝑖 even,  

𝑤𝑔�𝑣𝑎𝑖 � = 𝑓(𝑣𝑎) + (𝑖 − 1)𝑡 − �𝑖
2
�

+∑ �𝑓�𝑒𝑎𝑠�+ (𝑖 − 1)𝑡 − �𝑖
2
� + 1�𝑟

𝑠=1

= 𝑓(𝑣𝑎) + ∑ 𝑓�𝑒𝑎𝑠�
𝑟
𝑠=1 + (𝑟 + 1) �(𝑖 − 1)𝑡 − �𝑖

2
�� + 𝑟

= 𝑤𝑓(𝑣𝑎) + (𝑟 + 1) �(𝑖 − 1)𝑡 − �𝑖
2
�� + 𝑟.

  

Since 𝑤𝑓(𝑣𝑎) ≠ 𝑤𝑓(𝑣𝑏) for every 𝑎 ≠ 𝑏, (𝑟 + 1) �(𝑖 − 1)𝑡 − �𝑖−1
2
�� and 

(𝑟 + 1) �(𝑖 − 1)𝑡 − �𝑖
2
�� + 𝑟 are constants, we get 𝑤𝑔�𝑣𝑎𝑖 � ≠ 𝑤𝑔�𝑣𝑏𝑖 � for 

every 𝑎 ≠ 𝑏, 1 ≤ 𝑖 ≤ 𝑚, and 𝑎, 𝑏 ∈ {1, 2,⋯ ,𝑛}. 
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2. Define 𝑗 = 𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑚. It will be shown that 𝑤𝑔�𝑣𝑎𝑖 � < 𝑤𝑔�𝑣𝑏
𝑗� for 

all vertices 𝑣𝑎𝑖 ∈ 𝐺𝑖 and 𝑣𝑏
𝑗 ∈ 𝐺𝑗 for 𝑎, 𝑏 ∈ {1, 2,⋯ ,𝑛}. 

Let the edges incident with 𝑣𝑎𝑖  be 𝑒𝑎1
𝑖 , 𝑒𝑎2

𝑖 ,⋯ , 𝑒𝑎𝑟
𝑖  and the edges incident 

with 𝑣𝑏
𝑗 be 𝑒𝑏1

𝑗 , 𝑒𝑏2
𝑗 ,⋯ , 𝑒𝑏𝑟

𝑗 . We consider two cases. 

• Case 1 : For 𝑖 odd,  

 

𝑤𝑔�𝑣𝑎𝑖 � = 𝑓(𝑣𝑎) + ∑ 𝑓�𝑒𝑎𝑠�
𝑟
𝑠=1 + (𝑟 + 1) �(𝑖 − 1)𝑡 − �𝑖−1

2
��

≤ (𝑟 + 1)𝑡 + (𝑟 + 1) �(𝑖 − 1)𝑡 − �𝑖−1
2
��

= (𝑟 + 1)𝑖𝑡 − (𝑟 + 1) �𝑖−1
2
� .

 (13) 

On the other hand, 
𝑤𝑔�𝑣𝑏

𝑗� = 𝑓(𝑣𝑏) + ∑ 𝑓�𝑒𝑏𝑠�
𝑟
𝑠=1 + (𝑟 + 1) �(𝑗 − 1)𝑡 − �𝑗

2
�� + 𝑟

≥ (𝑟 + 1) + (𝑟 + 1) �(𝑗 − 1)𝑡 − �𝑗
2
�� + 𝑟

= (𝑟 + 1) + (𝑟 + 1) �𝑖𝑡 − �𝑖+1
2
�� + 𝑟

= (𝑟 + 1) + (𝑟 + 1) �𝑖𝑡 − �𝑖−1
2
� − 1� + 𝑟

> (𝑟 + 1)𝑖𝑡 − (𝑟 + 1) �𝑖−1
2
� .

  

(14) 

From (13) and (14), we obtain 𝑤𝑔�𝑣𝑏
𝑗� > 𝑤𝑔�𝑣𝑎𝑖 �. 

• Case 2 : For 𝑖 even, 

 

𝑤𝑔�𝑣𝑎𝑖 � = 𝑓(𝑣𝑎) + ∑ 𝑓�𝑒𝑎𝑠�
𝑟
𝑠=1 + (𝑟 + 1) �(𝑖 − 1)𝑡 − �𝑖

2
�� + 𝑟

≤ (𝑟 + 1)𝑡 + (𝑟 + 1) �(𝑖 − 1)𝑡 − �𝑖
2
�� + 𝑟

= (𝑟 + 1)𝑖𝑡 − (𝑟 + 1) �𝑖
2
� + 𝑟.

 

(15) 
Moreover, 

 

𝑤𝑔�𝑣𝑏
𝑗� = 𝑓(𝑣𝑏) + ∑ 𝑓�𝑒𝑏𝑠�

𝑟
𝑠=1 + (𝑟 + 1) �(𝑗 − 1)𝑡 − �𝑗−1

2
��

≥ (𝑟 + 1) + (𝑟 + 1) �𝑖𝑡 − �𝑖
2
��

> (𝑟 + 1)𝑖𝑡 − (𝑟 + 1) �𝑖
2
�+ 𝑟.

  (16) 

From (15) and (16), we obtain 𝑤𝑔�𝑣𝑏
𝑗� > 𝑤𝑔�𝑣𝑎𝑖 �. 
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Hence, 𝑤𝑔�𝑣𝑢
𝑝� ≠ 𝑤𝑔�𝑣𝑤

𝑞� for all vertices 𝑣𝑢
𝑝 ∈ 𝐺𝑝 and 𝑣𝑤

𝑞 ∈ 𝐺𝑞 with 𝑝 ≠ 𝑞, 
𝑝, 𝑞 ∈ {1, 2,⋯ ,𝑚}, and 𝑢,𝑤 ∈ {1, 2,⋯ ,𝑛}.  

It can easily be seen that the maximum label of 𝑔 is not greater than 𝑡 +
(𝑚 − 1)𝑡 − �𝑚−1

2
� = 𝑚𝑡 − �𝑚−1

2
�. 

Since there are no two edges of the same weight and there are no two vertices of 
the same weight in 𝑚𝐺, 𝑔 is a totally irregular total �𝑚𝑡 − �𝑚−1

2
�� −labeling of 

𝑚𝐺. We can conclude that 

 𝑡𝑠(𝑚𝐺) ≤ 𝑚(𝑡𝑠(𝐺)) − �𝑚−1
2
�. 

∎ 
The upper bound in Theorem 2.1 can be decreased for some graphs.  

Theorem 2.2 Let 𝐺 be an 𝑟-regular connected graph with 𝑟 ≥ 1. Let 𝑓 be an 
optimal labeling of 𝐺 such that 𝑤𝑓(𝑒) < 3𝑡𝑠(𝐺) for every 𝑒 ∈ 𝐸(𝐺) and 
𝑤𝑓(𝑣) < (𝑟 + 1)𝑡𝑠(𝐺) for every 𝑣 ∈ 𝑉(𝐺). Then, 

 𝑡𝑠(𝑚𝐺) ≤ 𝑚(𝑡𝑠(𝐺) − 1) + 1. 

Proof. Let 𝐺 = (𝑉,𝐸) be an 𝑟-regular graph with order 𝑛, 𝑡𝑠(𝐺) = 𝑡, and 𝑓 be 
an optimal labeling of 𝐺. Then, |𝐸| = 𝑛𝑟

2
. Let 𝑚𝐺 be 𝑚 copies of 𝐺 where the 

copies of 𝐺 are denoted by 𝐺𝑖 for 1 ≤ 𝑖 ≤ 𝑚. Let (𝐺) = {𝑣1,𝑣2,⋯ , 𝑣𝑛}, 
𝐸(𝐺) = �𝑒1, 𝑒2,⋯ , 𝑒𝑛𝑟

2
�, 𝑉(𝐺𝑖) = �𝑣1𝑖 , 𝑣2𝑖 ,⋯ , 𝑣𝑛𝑖 �, and 𝐸(𝐺𝑖) = �𝑒1𝑖 , 𝑒2𝑖 ,⋯ , 𝑒𝑛𝑟

2

𝑖 �, 

where 𝐺𝑖 is isomorphic with 𝐺 with the isomorphism 

 𝑠:𝑉(𝐺) ∪ 𝐸(𝐺) → 𝑉(𝐺𝑖) ∪ 𝐸(𝐺𝑖), 

where  𝑠(𝑣𝑎) = 𝑣𝑎𝑖  and 𝑠(𝑒𝑥) = 𝑒𝑥𝑖  for every 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑎 ≤ 𝑛, and 
1 ≤ 𝑥 ≤ 𝑛𝑟

2
.  

 
Define a total labeling 𝑔 of 𝑚𝐺 as follows: 

1) 𝑔�𝑣𝑎𝑖 � = 𝑓(𝑣𝑎) + (𝑖 − 1)(𝑡 − 1); 
2) 𝑔�𝑒𝑥𝑖 � = 𝑓(𝑒𝑥) + (𝑖 − 1)(𝑡 − 1); 

for every 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑎 ≤ 𝑛, and 1 ≤ 𝑥 ≤ 𝑛𝑟
2

. 

Next, it will be shown that in the labeling 𝑔, there are no two edges of the same 
weight and there are no two vertices of the same weight. 
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1. It will be shown that there are no two edges in 𝐺𝑖 with the same weight for 
every 𝑖, 1 ≤ 𝑖 ≤ 𝑚. 

Let 𝑒𝑥𝑖 = 𝑣𝑎𝑖𝑣𝑏𝑖  be an edge in 𝐺𝑖 for 1 ≤ 𝑖 ≤ 𝑚. Then, 

 

𝑤𝑔�𝑒𝑥𝑖 � = 𝑔�𝑣𝑎𝑖 � + 𝑔�𝑒𝑥𝑖 � + 𝑔�𝑣𝑏𝑖 �
= 𝑓(𝑣𝑎) + (𝑖 − 1)(𝑡 − 1) + 𝑓(𝑒𝑥) + (𝑖 − 1)(𝑡 − 1)

+𝑓(𝑣𝑏) + (𝑖 − 1)(𝑡 − 1)
= 𝑓(𝑣𝑎) + 𝑓(𝑒𝑥) + 𝑓(𝑣𝑏) + 3(𝑖 − 1)(𝑡 − 1)
= 𝑤𝑓(𝑒𝑥) + 3(𝑖 − 1)(𝑡 − 1).

  

Since 𝑤𝑓(𝑒𝑥) ≠ 𝑤𝑓�𝑒𝑦� for every 𝑥 ≠ 𝑦 and 3(𝑖 − 1)(𝑡 − 1) is a constant, 
𝑤𝑔�𝑒𝑥𝑖 � ≠ 𝑤𝑔�𝑒𝑦𝑖 � for every 𝑥 ≠ 𝑦, 1 ≤ 𝑖 ≤ 𝑚, and 𝑥,𝑦 ∈ �1,2,⋯ , 𝑛𝑟

2
�. 

2. Define 𝑗 = 𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑚. Let 𝑒𝑥𝑖 = 𝑣𝑎𝑖𝑣𝑏𝑖  and 𝑒𝑦
𝑗 = 𝑣𝑐

𝑗𝑣𝑑
𝑗 . Then, 

 
𝑤𝑔�𝑒𝑥𝑖 � = 𝑓(𝑣𝑎) + 𝑓(𝑒𝑥) + 𝑓(𝑣𝑏) + 3(𝑖 − 1)(𝑡 − 1)

< 3𝑡 + 3(𝑖 − 1)(𝑡 − 1)
= 3𝑖(𝑡 − 1) + 3.

  (17) 

On the other hand, 

 
𝑤𝑔�𝑒𝑦

𝑗� = 𝑓(𝑣𝑐) + 𝑓�𝑒𝑦� + 𝑓(𝑣𝑑) + 3(𝑗 − 1)(𝑡 − 1)
≥ 3 + 3(𝑗 − 1)(𝑡 − 1)
= 3 + 3𝑖(𝑡 − 1)

  (18) 

From (17) and (18), 𝑤𝑔�𝑒𝑦
𝑗� > 𝑤𝑔�𝑒𝑥𝑖 �. 

Hence, 𝑤𝑔�𝑒𝑢
𝑝� ≠ 𝑤𝑔�𝑒𝑤

𝑞� for all edges 𝑒𝑢
𝑝 ∈ 𝐺𝑝 and 𝑒𝑤

𝑞 ∈ 𝐺𝑞 with 𝑝 ≠ 𝑞, 
𝑝, 𝑞 ∈ {1, 2,⋯ ,𝑚}, and 𝑢,𝑤 ∈ �1, 2,⋯ , 𝑛𝑟

2
�. 

1. It will be shown that there are no two vertices in 𝐺𝑖 with the same weight for 
every 𝑖, 1 ≤ 𝑖 ≤ 𝑚. 

Let 𝑣𝑎𝑖  be a vertex in 𝐺𝑖 for 1 ≤ 𝑖 ≤ 𝑚. Let the edges incident with 𝑣𝑎𝑖  be 
𝑒𝑎1
𝑖 , 𝑒𝑎2

𝑖 ,⋯ , 𝑒𝑎𝑟
𝑖 . Then, 
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𝑤𝑔�𝑣𝑎𝑖 � = 𝑓(𝑣𝑎) + (𝑖 − 1)(𝑡 − 1)

+∑ �𝑓�𝑒𝑎𝑠� + (𝑖 − 1)(𝑡 − 1)�𝑟
𝑠=1

= 𝑓(𝑣𝑎) +∑ 𝑓�𝑒𝑎𝑠�
𝑟
𝑠=1 + (𝑟 + 1)(𝑖 − 1)(𝑡 − 1)

= 𝑤𝑓(𝑣𝑎) + (𝑟 + 1)(𝑖 − 1)(𝑡 − 1).

  

Since 𝑤𝑓(𝑣𝑎) ≠ 𝑤𝑓(𝑣𝑏) for every 𝑎 ≠ 𝑏 and (𝑟 + 1)(𝑖 − 1)(𝑡 − 1) is a 
constant, 𝑤𝑔�𝑣𝑎𝑖 � ≠ 𝑤𝑔�𝑣𝑏𝑖 � for every 𝑎 ≠ 𝑏, 1 ≤ 𝑖 ≤ 𝑚, and 𝑎, 𝑏 ∈
{1, 2,⋯ ,𝑛}. 

2. It will be shown that 𝑤𝑔�𝑣𝑢
𝑝� ≠ 𝑤𝑔�𝑣𝑤

𝑞� for all vertices 𝑣𝑢
𝑝 ∈ 𝐺𝑝 and 

𝑣𝑤
𝑞 ∈ 𝐺𝑞 with 𝑝 ≠ 𝑞, 𝑝, 𝑞 ∈ {1, 2,⋯ ,𝑚}, and 𝑢,𝑤 ∈ {1, 2,⋯ ,𝑛}. 

Define 𝑗 = 𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑚. Let the edges incident with 𝑣𝑎𝑖  be 
𝑒𝑎1
𝑖 , 𝑒𝑎2

𝑖 ,⋯ , 𝑒𝑎𝑟
𝑖  and the edges incident with 𝑣𝑏

𝑗 be 𝑒𝑏1
𝑗 , 𝑒𝑏2

𝑗 ,⋯ , 𝑒𝑏𝑟
𝑗 . Then, 

 
𝑤𝑔�𝑣𝑎𝑖 � = 𝑤𝑓(𝑣𝑎) + (𝑟 + 1)(𝑖 − 1)(𝑡 − 1)

< (𝑟 + 1)𝑡 + (𝑟 + 1)(𝑖 − 1)(𝑡 − 1)
= (𝑟 + 1)(𝑡 − 1)𝑖 + (𝑟 + 1).

 (19) 

Also, 

 𝑤𝑔�𝑣𝑏
𝑗� = 𝑤𝑓(𝑣𝑎) + (𝑟 + 1)(𝑗 − 1)(𝑡 − 1)

≥ (𝑟 + 1) + (𝑟 + 1)(𝑡 − 1)𝑖
  (20) 

From (19) and (20), 𝑤𝑔�𝑣𝑏
𝑗� > 𝑤𝑔�𝑣𝑎𝑖 �. Hence, the claim follows. 

It can easily be seen that the maximum label of 𝑔 is 𝑡 + (𝑚 − 1)(𝑡 − 1) =
𝑚(𝑡 − 1) + 1. 

Since there are no two edges of the same weight and there are no two vertices of 
the same weight in 𝑚𝐺, 𝑔 is a totally irregular total (𝑚(𝑡 − 1) + 1)-labeling of 
𝑚𝐺. We can conclude that 

𝑡𝑠(𝑚𝐺) ≤ 𝑚(𝑡𝑠(𝐺) − 1) + 1. 
∎ 

In the third theorem, we determine a dual labeling of a totally irregular total 𝑘-
labeling of arbitrary regular graph. 

Definition 2.1 Let 𝐺 be an 𝑟-regular graph. Let 𝑓 be an optimal labeling of 𝐺. 
The dual labeling of 𝑓, denoted by 𝑓, is defined by 

 𝑓(𝑣) = 𝑡𝑠(𝐺) + 1 − 𝑓(𝑣),∀ 𝑣 ∈ 𝑉(𝐺) and 
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 𝑓(𝑒) = 𝑡𝑠(𝐺) + 1 − 𝑓(𝑒),∀ 𝑒 ∈ 𝐸(𝐺). 

Theorem 2.3. Let 𝐺 be an 𝑟-regular graph. Let 𝑓 be an optimal labeling of 𝐺. 
Then, 𝑓 is an also optimal labeling of 𝐺. 

Proof. It will be shown that in the labeling 𝑓, there are no two edges of the same 
weight and there are no two vertices of the same weight. 

Let 𝑐 = 𝑢𝑖𝑣𝑖 and 𝑑 = 𝑢𝑗𝑣𝑗 be different edges in 𝐸(𝐺). Then, 

𝑤�̂�(𝑐) = 𝑓(𝑢𝑖) + 𝑓(𝑐) + 𝑓(𝑣𝑖)
= 𝑡𝑠(𝐺) + 1 − 𝑓(𝑢𝑖) + 𝑡𝑠(𝐺) + 1 − 𝑓(𝑐) + 𝑡𝑠(𝐺) + 1 − 𝑓(𝑣𝑖)
= 3(𝑡𝑠(𝐺) + 1) − �𝑓(𝑢𝑖) + 𝑓(𝑐) + 𝑓(𝑣𝑖)�
= 3(𝑡𝑠(𝐺) + 1) −𝑤𝑓(𝑐).

  

Also, 

𝑤�̂�(𝑑) = 𝑓�𝑢𝑗� + 𝑓(𝑑) + 𝑓�𝑣𝑗�
= 𝑡𝑠(𝐺) + 1 − 𝑓�𝑢𝑗� + 𝑡𝑠(𝐺) + 1 − 𝑓(𝑑) + 𝑡𝑠(𝐺) + 1 − 𝑓�𝑣𝑗�

= 3(𝑡𝑠(𝐺) + 1) − �𝑓�𝑢𝑗� + 𝑓(𝑑) + 𝑓�𝑣𝑗��
= 3(𝑡𝑠(𝐺) + 1) −𝑤𝑓(𝑑).

  

Since 𝑤𝑓(𝑐) ≠ 𝑤𝑓(𝑑) for every 𝑐 ≠ 𝑑 and 3(𝑡𝑠(𝐺) + 1) is a constant, 𝑤�̂�(𝑐) ≠
𝑤�̂�(𝑑). 

Let 𝑣𝑎 and 𝑣𝑏 be different vertices in 𝐺. Let the edges incident with 𝑣𝑎 be 
𝑒𝑎1 , 𝑒𝑎2 ,⋯ , 𝑒𝑎𝑟 and the edges incident with 𝑣𝑏 be 𝑒𝑏1 , 𝑒𝑏2 ,⋯ , 𝑒𝑏𝑟 . Then, 

 

𝑤�̂�(𝑣𝑎) = 𝑓(𝑣𝑎) +∑ 𝑓�𝑒𝑎𝑠�
𝑟
𝑠=1

= 𝑡𝑠(𝐺) + 1 − 𝑓(𝑣𝑎) + 𝑟(𝑡𝑠(𝐺) + 1) − ∑ 𝑓�𝑒𝑎𝑠�
𝑟
𝑠=1

= (𝑟 + 1)(𝑡𝑠(𝐺) + 1) − �𝑓(𝑣𝑎) + ∑ 𝑓�𝑒𝑎𝑠�
𝑟
𝑠=1 �

= (𝑟 + 1)(𝑡𝑠(𝐺) + 1) −𝑤𝑓(𝑣𝑎).

  

On the other hand, 

 

𝑤�̂�(𝑣𝑏) = 𝑓(𝑣𝑏) + ∑ 𝑓�𝑒𝑏𝑠�
𝑟
𝑠=1

= 𝑡𝑠(𝐺) + 1 − 𝑓(𝑣𝑏) + 𝑟(𝑡𝑠(𝐺) + 1) − ∑ 𝑓�𝑒𝑏𝑠�
𝑟
𝑠=1

= (𝑟 + 1)(𝑡𝑠(𝐺) + 1) − �𝑓(𝑣𝑏) + ∑ 𝑓�𝑒𝑏𝑠�
𝑟
𝑠=1 �

= (𝑟 + 1)(𝑡𝑠(𝐺) + 1) −𝑤𝑓(𝑣𝑏).
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Since 𝑤𝑓(𝑣𝑎) ≠ 𝑤𝑓(𝑣𝑏) for every 𝑣𝑎 ≠ 𝑣𝑏 and (𝑟 + 1)(𝑡𝑠(𝐺) + 1) is a 
constant, 𝑤�̂�(𝑣𝑎) ≠ 𝑤�̂�(𝑣𝑏). 

Therefore, in the labeling 𝑓, there are no two edges of the same weight and 
there are no two vertices of the same weight. Moreover, the maximum label of 
𝑓 is less than or equal 𝑡𝑠(𝐺). We can conclude that 𝑓 is an optimal labeling of 
𝐺. 

∎ 

Three last theorems in this paper consider the total irregularity strength of a 1-
regular graph, a 2-regular graph, and a 3-regular graph. 

Theorem 2.4 Let 𝑃2 be a path with 2 vertices. Then, 𝑡𝑠(𝑚𝑃2) = 𝑚 + 1 for 
𝑚 ≥ 1. 

Proof. The graph 𝑚𝑃2 has 2𝑚 vertices and 𝑚 edges and is 1-regular graph. 
From (1) and (3), we get 𝑡𝑣𝑠(𝑚𝑃2) ≥ �2𝑚+1

2
� = 𝑚 + 1 and 𝑡𝑒𝑠(𝑚𝑃2) ≥ �𝑚+2

3
�. 

Therefore, from (5), we get 𝑡𝑠(𝑚𝑃2) ≥ 𝑚 + 1. Besides that, from (7) we get 
𝑡𝑠(𝑃2) = 2. 

Let the vertex set of 𝑃2 be {𝑣1,𝑣2}. Given a totally irregular total 2-labeling 𝑓 of 
𝑃2 as follows: 

 𝑓(𝑣𝑖) = 𝑖 for 1 ≤ 𝑖 ≤ 2;  𝑓(𝑣1𝑣2) = 1. 

It can be seen that 𝑓 is an optimal labeling of 𝑃2 such that 𝑤𝑓(𝑣1𝑣2) <
3(𝑡𝑠(𝑃2)) and 𝑤𝑓(𝑣) < 2(𝑡𝑠(𝑃2)) for every 𝑣 ∈ 𝑉(𝑃2). Therefore, from 
Theorem 2.2, we get 

 
𝑡𝑠(𝑚𝑃2) ≤ 𝑚(𝑡𝑠(𝑃2) − 1) + 1

= 𝑚(2 − 1) + 1
= 𝑚 + 1.

 

We conclude that 𝑡𝑠(𝑚𝑃2) = 𝑚 + 1.             ∎ 

Theorem 2.5. Let 𝐶𝑛 be a cycle of order 𝑛. For 𝑛 ≥ 3 and 𝑛 ≡ 0 mod 3, 
𝑡𝑠(𝑚𝐶𝑛) = �𝑚𝑛+2

3
�. 

Proof. The 𝑚𝐶𝑛 has 𝑚𝑛 vertices and 𝑚𝑛 edges and is 2-regular. From (1), (3), 
and (5), we get 

 𝑡𝑠(𝑚𝐶𝑛) ≥ �𝑚𝑛+2
3

�.                                                 (21) 
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Next, we will prove that 𝑡𝑠(𝑚𝐶𝑛) ≤ �𝑚𝑛+2
3

�. 

Let the disconnected graph 𝐶𝑛 consists of the vertex set and edge set as follows: 

 𝑉(𝐶𝑛) = {𝑣𝑖| 1 ≤ 𝑖 ≤ 𝑛}; 

 𝐸(𝐶𝑛) = {𝑒𝑖 = 𝑣𝑖𝑣𝑖+1| 1 ≤ 𝑖 ≤ 𝑛}; 

where the subscript 𝑛 + 1 is replaced by 1. 

From (6), we get 𝑡𝑠(𝐶𝑛) = �𝑛+2
3
�. 

Given a totally irregular total �𝑛+2
3
�-labeling 𝑓 of 𝐶𝑛 for 𝑛 ≡ 0 mod 3 as 

follows: 

 𝑓(𝑣𝑖) = �
�𝑖
3
� + �𝑖

3
�  for 1 ≤ 𝑖 ≤ �𝑛

2
� + 1;

�𝑛−𝑖+1
3

� + �𝑛−𝑖+1
3

� + 1 for �𝑛
2
� + 2 ≤ 𝑖 ≤ 𝑛;

  

 𝑓(𝑒𝑖) = �
�𝑖
3
� + �𝑖+1

3
�  for 1 ≤ 𝑖 ≤ �𝑛

2
� + 1;

�𝑛−𝑖
3
� + �𝑛−𝑖+1

3
� + 1 for �𝑛

2
� + 2 ≤ 𝑖 ≤ 𝑛.

  

The labeling gives the weight of vertices and the weight of edges of 𝐶𝑛 as 
follows: 

𝑤𝑓(𝑣𝑖) =

⎩
⎪
⎨

⎪
⎧ 3 for 𝑖 = 1;

2𝑖 for 2 ≤ 𝑖 ≤ �
𝑛
2�

+ 1;

2(𝑛 − 𝑖) + 5 for �
𝑛
2�

+ 2 ≤ 𝑖 ≤ 𝑛;

 

𝑤𝑓(𝑒𝑖) = �
2𝑖 + 1 for 1 ≤ 𝑖 ≤ �

𝑛
2�

;

2(𝑛 − 𝑖) + 4 for �
𝑛
2�

+ 1 ≤ 𝑖 ≤ 𝑛.
 

 
Hence, there are no two vertices of the same weight and there are no two edges 
of the same weight. Moreover, it can be seen 𝑤𝑓(𝑒) < 3(𝑡𝑠(𝐶𝑛)) for every 
𝑒 ∈ 𝐸(𝐶𝑛) and 𝑤𝑓(𝑣) < 3(𝑡𝑠(𝐶𝑛)) for every 𝑣 ∈ 𝑉(𝑃2). Therefore, from 
Theorem 2.2, we get 
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𝑡𝑠(𝑚𝐶𝑛) ≤ 𝑚(𝑡𝑠(𝐶𝑛)− 1) + 1
= 𝑚��𝑛+2

3
� − 1� + 1

= 𝑚�𝑛
3

+ 1 − 1� + 1

= 𝑚�𝑛
3
� + 1

= �𝑚𝑛+2
3

� .

                                   (22) 

From (21) and (22), we conclude that 𝑡𝑠(𝑚𝐶𝑛) = �𝑚𝑛+2
3

� for 𝑛 ≡ 0 mod 3. 

Theorem 2.6 For 𝑛 ≥ 3, 𝑡𝑠�𝑚(𝐶𝑛� 𝑃2)� = 𝑚𝑛 + 1. 

Proof. The graph 𝑚(𝐶𝑛� 𝑃2) has 2𝑚𝑛 vertices and 3𝑚𝑛 edges and is 3-regular. 
From (1) and (3), we get 𝑡𝑣𝑠�𝑚(𝐶𝑛� 𝑃2)� ≥ �2𝑚𝑛+3

4
� and 𝑡𝑒𝑠�𝑚(𝐶𝑛� 𝑃2)� ≥

𝑚𝑛 + 1. Therefore, from (5), 𝑡𝑠�𝑚(𝐶𝑛� 𝑃2)� ≥ 𝑛𝑚 + 1. Moreover, from (8), 
𝑡𝑠(𝐶𝑛� 𝑃2) = 𝑛 + 1.  

In [14], Ramdani and Salman gave an optimal labeling 𝑓 of 𝐶𝑛� 𝑃2 such that 
𝑤𝑓(𝑒) < 3(𝑡𝑠(𝐶𝑛� 𝑃2)) for every 𝑒 ∈ 𝐸(𝐶𝑛� 𝑃2) and 𝑤𝑓(𝑣) < 4(𝑡𝑠(𝐶𝑛� 𝑃2)) 
for every 𝑣 ∈ 𝑉(𝐶𝑛� 𝑃2). Therefore, from Theorem 2.2, we get 

𝑡𝑠�𝑚(𝐶𝑛� 𝑃2)� ≤ 𝑚(𝑡𝑠(𝐶𝑛� 𝑃2) − 1) + 1
= 𝑚(𝑛 + 1 − 1) + 1
= 𝑚𝑛 + 1.

 

We conclude that 𝑡𝑠�𝑚(𝐶𝑛� 𝑃2)� = 𝑚𝑛 + 1.            ∎ 
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