5 research outputs found

    Development of efficient iris identification algorithm using wavelet packets for smartphone application

    Get PDF
    Nowadays, iris recognition is widely used for personal identification and verification based on biometrical technology, especially in the smartphone arena. By having this iris recognition for identification and verification, the smartphone will be secured since every person have their own iris type. In this paper, we proposed an efficient iris recognition using Wavelet Packets and Hamming distance which has lightweight computational requirements while maintaining the accuracy. There are several steps needed in order to recognize the iris which are pre-processing the iris image consists of segmentation and normalization, extract the feature that available in the iris image and identify this image to see whether it match with the person or not. For comparison purposes, different types of wavelet bases will be compared, including symlets, discrete meyer, biorthogonals, daubechies, and coiflets. Performance of the proposed algorithm was tested on Chinese Academy of Sciences Institute of Automation (CASIA) iris image database. The optimum wavelet basis function obtained is symlet. Results showed that the accuracy of the proposed algorithm is 100% identification rate

    A Survey of Iris Recognition System

    Get PDF
    The uniqueness of iris texture makes it one of the reliable physiological biometric traits compare to the other biometric traits. In this paper, we investigate a different level of fusion approach in iris image. Although, a number of iris recognition methods has been proposed in recent years, however most of them focus on the feature extraction and classification method. Less number of method focuses on the information fusion of iris images. Fusion is believed to produce a better discrimination power in the feature space, thus we conduct an analysis to investigate which fusion level is able to produce the best result for iris recognition system. Experimental analysis using CASIA dataset shows feature level fusion produce 99% recognition accuracy. The verification analysis shows the best result is GAR = 95% at the FRR = 0.1
    corecore