13,300 research outputs found

    Feature Selection Method for Iris Recognition Authentication System

    Get PDF
    Iris-based biometric authentication is gaining importance in recent times. Iris biometric processing however, is a complex process and computationally very expensive. In the overall processing of iris biometric in an iris-based biometric authentication system, feature selection is an important task. In feature selection, we ex-tract iris features, which are ultimately used in matching. Since there is a large number of iris features and computational time increases as the number of features increases, it is therefore a challenge to develop an iris processing system with as few as possible number of features and at the same time without compromising the correctness. In this paper, we address this issue and present an approach to feature Selection Method

    Feature-domain super-resolution framework for Gabor-based face and iris recognition

    Get PDF
    The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics

    Iris feature extraction: a survey

    Get PDF
    Biometric as a technology has been proved to be a reliable means of enforcing constraint in a security sensitiveenvironment. Among the biometric technologies, iris recognition system is highly accurate and reliable becauseof their stable characteristics throughout lifetime. Iris recognition is one of the biometric identification thatemploys pattern recognition technology with the use of high resolution camera. Iris recognition consist of manysections among which feature extraction is an important stage. Extraction of iris features is very important andmust be successfully carried out before iris signature is stored as a template. This paper gives a comprehensivereview of different fundamental iris feature extraction methods, and some other methods available in literatures.It also gives a summarised form of performance accuracy of available algorithms. This establishes a platform onwhich future research on iris feature extraction algorithm(s) as a component of iris recognition system can bebased.Keywords: biometric authentication, false acceptance rate (FAR), false rejection rate (FRR), feature extraction,iris recognition system

    Biometrics and Network Security

    Get PDF
    This paper examines the techniques used in the two categories of biometric techniques (physiological and behavioral) and considers some of the applications for biometric technologies. Common physiological biometrics include finger characteristics (fingertip [fingerprint], thumb, finger length or pattern), palm (print or topography), hand geometry, wrist vein, face, and eye (retina or iris). Behavioral biometrics include voiceprints, keystroke dynamics, and handwritten signatures

    Multimodal biometric system for ECG, ear and iris recognition based on local descriptors

    Get PDF
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. Combination of multiple information extracted from different biometric modalities in multimodal biometric recognition system aims to solve the different drawbacks encountered in a unimodal biometric system. Fusion of many biometrics has proposed such as face, fingerprint, iris…etc. Recently, electrocardiograms (ECG) have been used as a new biometric technology in unimodal and multimodal biometric recognition system. ECG provides inherent the characteristic of liveness of a person, making it hard to spoof compared to other biometric techniques. Ear biometrics present a rich and stable source of information over an acceptable period of human life. Iris biometrics have been embedded with different biometric modalities such as fingerprint, face and palm print, because of their higher accuracy and reliability. In this paper, a new multimodal biometric system based ECG-ear-iris biometrics at feature level is proposed. Preprocessing techniques including normalization and segmentation are applied to ECG, ear and iris biometrics. Then, Local texture descriptors, namely 1D-LBP (One D-Local Binary Patterns), Shifted-1D-LBP and 1D-MR-LBP (Multi-Resolution) are used to extract the important features from the ECG signal and convert the ear and iris images to a 1D signals. KNN and RBF are used for matching to classify an unknown user into the genuine or impostor. The developed system is validated using the benchmark ID-ECG and USTB1, USTB2 and AMI ear and CASIA v1 iris databases. The experimental results demonstrate that the proposed approach outperforms unimodal biometric system. A Correct Recognition Rate (CRR) of 100% is achieved with an Equal Error Rate (EER) of 0.5%
    • …
    corecore