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Abstract

The low resolution of images has been one of the ma-
jor limitations in recognising humans from a distance us-
ing their biometric traits, such as face and iris. Super-
resolution has been employed to improve the resolution and
the recognition performance simultaneously, however the
majority of techniques employed operate in the pixel do-
main, such that the biometric feature vectors are extracted
from a super-resolved input image. Feature-domain super-
resolution has been proposed for face and iris, and is shown
to further improve recognition performance by capitalis-
ing on direct super-resolving the features which are used
for recognition. However, current feature-domain super-
resolution approaches are limited to simple linear features
such as Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA), which are not the most dis-
criminant features for biometrics. Gabor-based features
have been shown to be one of the most discriminant features
for biometrics including face and iris. This paper proposes
a framework to conduct super-resolution in the non-linear
Gabor feature domain to further improve the recognition
performance of biometric systems. Experiments have con-
firmed the validity of the proposed approach, demonstrating
superior performance to existing linear approaches for both
face and iris biometrics.

1. Introduction

Super-resolution (SR) techniques have previously been
employed to address the low resolution problems of
imaging systems. There are two differing SR ap-
proaches: reconstruction-based and learning-based [18].
Reconstruction-based approaches fuse the sub-pixel shifts
among multiple low resolution images to obtain a higher
resolution image. Alternatively, learning-based approaches
model the relationship between low-resolution and high-
resolution training images and learn prior knowledge to

constrain the SR process [18].
Recently, SR techniques have been applied to biomet-

ric systems. A number of SR techniques have been suc-
cessfully developed for face [2, 11, 13, 8, 22] and iris
[6, 23, 9, 17]. However, one main concern raised by both
Gunturk et al. [7] and Nguyen et al. [16] is how to apply
SR for a specific biometric modality effectively to improve
recognition performance, rather than visual clarity. Two is-
sues have been raised:

• The aim of applying SR to biometrics is not for visual
enhancement, but to improve recognition performance.
Most existing SR approaches are designed to produce
visual enhancement. If recognition improvement is de-
sired, why do we not focus on super-resolving only
items essential for recognition?

• Each biometric modality has its own characteris-
tics. Most existing SR approaches for biometrics are
general-scene SR approaches. Can any specific infor-
mation from biometric models be exploited to improve
SR performance?

Based on these concerns, feature-domain SR techniques
have been proposed for face [7, 10] and iris [16, 1] to
improve recognition performance. These approaches no
longer super-resolve images in the pixel-domain, but super-
resolve the extracted features that are used for classification
in the feature-domain, and the SR output (a super-resolved
feature vector) is directly employed for recognition. Differ-
ent linear features including Principle Component Analy-
sis (PCA) [7, 16], Linear Discriminant Analysis (LDA) [1],
and Tensor Face [10] have been investigated to improve bio-
metric performance. These features are super-resolved us-
ing a maximum a posteriori estimation approach. Specific
knowledge of face and iris models is incorporated in the
form of prior probabilities to constrain the SR process, im-
proving robustness to noise and segmentation errors. These
approaches have been shown to outperform the equivilent
pixel-domain SR approaches for face and iris recognition.
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Figure 1. A conventional iris encoding procedure [4]. The iris im-
age is segmented, then normalised to a fixed-size rectangle. This
normalised rectangle is then encoded using the phase-quadrant 2D
Gabor wavelet encoding technique to create an IrisCode. The
IrisCode is the representation of an iris.

However, the linear features such as PCA and LDA are
not optimum for recognition, and nonlinear Gabor-based
features have been shown to be one of the most discriminant
features for face [21] and iris [5]. The challenge of using
these nonlinear features in super-resolution is the difficulty
in formulating the relationship between the low-resolution
features and the high-resolution features in the feature do-
main. To further improve the recognition performance, we
seek to conduct feature-domain SR using these nonlinear
Gabor-based features.

The remainder of this paper is organised as follows:
Gabor-based encoding techniques for face and iris are anal-
ysed in Section 2; a framework for applying feature-domain
SR with these nonlinear Gabor-based features is proposed
in Sections 3 and 4; experiments applying the proposed
framework to face and iris recognition are presented in Sec-
tion 5, and the paper is concluded in Section 6.

2. Gabor-based encoding techniques for face
and iris recognition

Gabor-based features have been shown to effectively ex-
tract discriminant information for both iris [5] and face [21]
since they achieve the best trade-off in both spatial and spec-
tral resolution when mimicking the human brain cortex [3].
For Gabor-based iris recognition, a typical recognition ap-
proach is illustrated in Figure 1. The iris region is seg-
mented from the eye image, then normalised to a fixed-size
rectangle before being encoded using the phase-quadrant
Gabor wavelet encoding technique to create an IrisCode [4].

For Gabor-based face recognition, there are two types
of techniques applicable: analytical approaches and holis-
tic approaches, as illustrated in Figure 2. While the ana-
lytical approaches compute the response of an image to a
Gabor wavelet in a set of discrete locations, the holistic ap-
proaches employ a global response, which is subsequently
processed with other encoding techniques [21]. In this re-
search, we choose to work with the holistic approaches as
they are closely aligned with the iris techniques, making the
proposed framework more practical.

Despite of the superior recognition performance when
compared to linear techniques such as PCA and LDA
[5, 21], these Gabor-based features have not been exploited

Figure 2. There are two types of encoding techniques based on Ga-
bor features for face recognition: analytical approaches and holis-
tic approaches. While the analytical approaches compute the re-
sponse of an image to a Gabor wavelet in a set of discrete loca-
tions, the holistic approaches employ a global response, which is
subsequently processed with another encoding techniques [21].

for feature-domain SR. The major challenge that prevents
feature-domain SR from being successfully applied to the
Gabor-based encoding techniques is the non-linear nature
of the encoding technique (e.g. phase-quadrant [4] for
iris; and Local Gabor Binary Pattern Histogram Sequence
(LGBPHS) [24], Gabor Fisher Classifier (GFC) [15], Ker-
nel PCA [14] for face). The existing feature domain SR
frameworks of [7, 16, 10, 1] are unable to super-resolve
nonlinear features such as Gabor-based features. In this
paper, to further improve the recognition performance of
feature-domain SR approaches when applying to biomet-
rics, we propose a framework to enable feature-domain SR
in nonlinear features such as Gabor phase-quadrant for iris
and LGBPHS for face. The framework is introduced in the
next section.

3. Feature-domain SR framework for Gabor-
based face and iris recognition

3.1. General framework

When investigating Gabor-based face and iris recogni-
tion processes, we observe that at a high level there is a com-
mon framework for Gabor-based iris approaches and holis-
tic Gabor-based face approaches, as illustrated in Figure 3.
Both approaches compute the global response of the nor-
malised image with a Gabor wavelet before further encod-
ing with other nonlinear techniques (e.g. phase-quadrant for
iris, and LGBPHS for face).

Importantly, we note that the global Gabor response
is linear, whilst the nonlinearity of the overall encoding
techniques results from the secondary encoding steps (e.g.
phase-quadrant for iris, and LGBPHS for face). Hence, if
feature-domain SR is conducted on the global Gabor re-
sponse, rather than the final features; we can take advantage



Figure 3. The common encoding flow in iris and face recognition
systems using Gabor-based features. Both face and iris systems
calculate the global response by convolving the whole image with
the Gabor filter. After that, the Gabor images are further encoded
with nonlinear steps such as phase-quadrant, LGBPHS.

of the linear property of the global Gabor response. This
global Gabor response is in the form of complex-valued 2D
Gabor features. From this observation regarding the ori-
gins of the non-linearity, we propose a framework to apply
feature-domain SR using nonlinear Gabor-based features as
presented in Figure 4.

3.2. Feature-domain SR approach

Stage 1: Observation model in the spatial domain
Let x be the original HR iris/face image, and y(i) be

the ith observed LR iris/face image after being degraded
by downsampling, D(i); blurring, B(i); and warping, W (i).
The relation between x, y(i) is described as follows,

y(i) = D(i)B(i)W (i)x+ n(i), (1)

where n(i) is the observation noise.

Stage 2: Observation model in the feature domain
We seek to transform the observation model from the

spatial domain to the feature domain. The nonlinear 2D
Gabor-based features (phase-quandrant 2D Gabor features
for iris and LGBPHS for face) of HR irises/faces, H , and
LR irises/faces, h(i), are represented as follows,

HRe,Im = signRe,Im(G),

h
(i)
Re,Im = signRe,Im(g(i)), (2)

for iris, and

HRe,Im = LBPHS(G),

h
(i)
Re,Im = LBPHS(g(i)), (3)

for face, whereG and g(i) are the complex-valued 2D Gabor
features of HR irises/faces and LR irises/faces given by,

G =

∫
ρ

∫
φ

xe−((r0−ρ)2/α2+(θ0−φ)2/β2)e−iω(θ0−φ)ρdρdφ,

(4)

g(i) =

∫
ρ

∫
φ

y(i)e−((r0−ρ)2/α2+(θ0−φ)2/β2)e−iω(θ0−φ)ρdρdφ.

(5)

Figure 4. Feature-domain super-resolution framework for Gabor-
based face and iris recognition.

Substituting the spatial observation model of Equation (1)
into the HR feature representation of Equations (5), we
have,

g(i) =

∫
ρ

∫
φ

(D(i)B(i)W (i)x+ n(i))×

e−((r0−ρ)2/α2+(θ0−φ)2/β2)e−iω(θ0−φ)ρdρdφ

=

∫
ρ

∫
φ

D(i)B(i)W (i)xe−((r0−ρ)2/α2+(θ0−φ)2/β2) ×

e−iω(θ0−φ)ρdρdφ

+

∫
ρ

∫
φ

n(i)e−((r0−ρ)2/α2+(θ0−φ)2/β2)e−iω(θ0−φ)ρdρdφ

= G1 +G2 (6)

We make the following assumptions:
1. For each iris/face image, blurring and warping factors,
which degrade the quality of the iris/face image, are chang-
ing along the image. This explicitly means the blurring and
warping level varies due to the location of the pixel in the
image. In this case,B(i) andW (i) are a function of ρ and φ.
However, we can make an approximation and assume that
B(i) andW (i) are uniform over the normalised iris/face im-
age. With this assumption, the first component of Equation
(6) can be represented as,

G1 =

∫
ρ

∫
φ

D(i)B(i)W (i)xe−((r0−ρ)2/α2+(θ0−φ)2/β2) ×

e−iω(θ0−φ)ρdρdφ

= D(i)B(i)W (i)

∫
ρ

∫
φ

xe−((r0−ρ)2/α2+(θ0−φ)2/β2) ×

e−iω(θ0−φ)ρdρdφ

= D(i)B(i)W (i)G (7)

2. Noise n(i) is properly assumed to be an Independently
Identical Distributed (IID) Gaussian signal. The 2D Ga-
bor wavelet transform can be considered as a local Fourier
transform. Moreover, the 2D Fourier transform of an Gaus-
sian signal has a Gaussian form. Hence, the 2D Gabor



wavelet transform of the noise, which is the second compo-
nent in Equation (6), can be approximated as an IID Gaus-
sian signal.

G2 = v(i) (8)

With these two assumptions, Equation (6) can be re-
written as,

g(i) = D(i)B(i)W (i)G+ v(i). (9)

Equation (9) shows the relationship between the HR and
observed LR features. The following sections will discuss
a solution to estimate the HR features from this equation.

Stage 3: Estimating HR features
In Bayes statistics, a maximum a posteriori probability

estimate can be used to estimate an unobserved quantity on
the basis of empirical data. Using Bayes maximum a poste-
riori probability estimation, a HR feature can be estimated
as,

G̃ = argmaxgp(g
(1), . . . , g(M)|G)p(G). (10)

The estimated HR feature, G̃, is the value that max-
imises the product of the conditional probability
p(g(1), . . . , g(M)|G) and the priori probability p(G).

Stage 4: Incorporating iris/face model information
To solve the above estimation problem, specific informa-

tion relating to iris/face models can be incorporated in the
form of prior knowledge of the prior probability and noise.
We proposed to incorporate the following two constraints:

• 1. Prior probability is jointly Gaussian,

p(G) =
1

Z
exp(−(G− µG)TΛ−1(G− µG)). (11)

• 2. Noise v(i) is an Independent Identically Distributed
(IID) Gaussian with a diagonal covariance matrix,

p(v(i)) =
1

Z
exp(−(v(i) − µ(i)

v )TK−1(v(i) − µ(i)
v )).

(12)

From Equation (9), the individual conditional probability
can be estimated as,

p(g(i)|G) =
1

Z
exp(−(g(i) −D(i)B(i)W (i)G− µ(i)

v )T ×

K−1(g(i) −D(i)B(i)W (i)G− µ(i)
v )). (13)

From (9), g(i)−D(i)B(i)W (i)G is IID as a consequence
of the fact that v(i) is IID, thus,

p(g(1), . . . , g(M)|G) =
∏
i

p(g(i)|G) =

1

Z
exp(−

M∑
i=1

(g(i) −D(i)B(i)W (i)G− µ(i)
v )TK−1(g(i) −

D(i)B(i)W (i)G− µ(i)
v )).

The estimation problem can then be rewritten as,

G̃ = argmaxG
(
p(g(1), . . . , g(M)|G)p(G)

)
= argmaxG

1

Z
exp(−

M∑
i=1

(g(i) −D(i)B(i)W (i)G−

µ(i)
v )TK−1(g(i) −D(i)B(i)W (i)G− µ(i)

v ))×
1

Z
exp(−(G− µG)TΛ−1(G− µG)) =

argminG(

M∑
i=1

(g(i)−D(i)B(i)W (i)G−µ(i)
v )TK−1(g(i)−

D(i)B(i)W (i)G− µ(i)
v ) + (G− µG)TΛ−1(G− µG)).

Stage 5: Estimating the solution
The estimation in Stage 4 is an unconstrained optimi-

sation problem. This optimisation can be solved by both
iterative steepest descent and iterative conjugate gradients
[20]. With a proper choice of the step size and the maximum
number of steps, the iterative steepest descent method is ca-
pable of converging to the local minimum sharply. How-
ever, iterative steepest descent may never reach the true
minimum [20]. Instead of employing steepest gradient di-
rections for iterative updating, a conjugate gradients method
utilises conjugate directions, which enables the method to
converge more accurately in at most n steps, where n is the
size of the matrix of the system [20]. Given this, we solve
the optimisation problem in Stage 4 by iterative conjugate
gradients. Let the cost function, E(g), be defined as,

E(G) =

M∑
i=1

(g(i) −D(i)B(i)W (i)G− µ(i)
v )TK−1(g(i) −

D(i)B(i)W (i)G− µ(i)
v ) + (G− µG)TΛ−1(G− µG).

The solution for optimisation can be estimated iteratively as
follows,

G̃n+1 = G̃n + αnΓG̃n, (14)

where ΓG̃n is defined as,
ΓG̃n = 4G̃n + βnΓG̃n−1, (15)

where4G̃n = −∇GE(G̃n) and βn = max(0, βPRn ), and

βPRn =
4G̃Tn (4G̃n −4G̃n−1)

4G̃Tn−14G̃n−1

. (16)

αn is the parameter to minimise E(G̃n +αnΓG̃n) through
a line search. Hence, with an initial estimation G̃0, the itera-
tive conjugate gradients estimation G̃n will converge to the
true high-resolution G which minimises the cost function
E(G).

4. Estimating the statistics of prior probabili-
ties of the features and noise

The estimation solution as explained in Section 3 re-
quires the statistics of noise and the prior probability of HR
features to be estimated before hand. This section describes



this prerequisite estimation performed on a training set (de-
tails of the training set used in this work are presented in
Section 5).

4.1. The statistics of prior probability of HR fea-
tures

Prior probability of the HR features has been assumed to
have a Gaussian form with mean vectors µg and covariance
matrix Λ given by,

µg =
1

M

M∑
i=1

G(i), (17)

Λ =
1

M

M∑
i=1

(G(i) − µg)(G(i) − µg)T , (18)

where G(i) is the HR features vectors of the ith training
image, M is the total number of training images.

4.2. The statistics of noise

From Equation 9, 2D Gabor complex features of noise in
the observation equation can be estimated as,

v(i) = g(i) −D(i)B(i)W (i)G.

The statistics of noise in the form of a mean vector µv and
a covariance matrix K can be estimated as,

µv =
1

M

M∑
i=1

(g(i) −D(i)B(i)W (i)G), (19)

K =
1

M

M∑
i=1

{
(g(i) −D(i)B(i)W (i)G− µv)×

(g(i) −D(i)B(i)W (i)G− µv)T
}
. (20)

The statistics of noise and prior probability estimated
here are used to bolster the estimation process described in
Section 5.

5. Evaluation of the proposed framework
Experiments on face and iris verification are conducted

on the MBGC dataset [19] to evaluate the validity of the
proposed framework.

For iris, 628 NIR iris portal video of 129 individuals are
employed to verify the identity against 8589 NIR high qual-
ity still iris images. The resolution of the still iris images is
high with approximately 220 pixels across the diameter of
the iris boundary circle, while the resolution of the iris in the
portal videos is significantly lower with less than 90 pixels
across the diameter of the iris. There are variety of degra-
dation factors which reduce the quality of portal iris images
as shown in Figure 5.

The dataset is divided into two subsets for training and
testing. For training, 5 still images and 1 video sequence

Figure 5. Examples of low quality iris images with a) Out of fo-
cus, b) Closed eye, c) Severely occluded by eyelids, d) Glass and
reflection, e) Eye not in frame, f) Dark and poor contrast.

Figure 6. Examples of face images in the MBGC visible dataset.

per identity are used to estimate the statistics of noise and
prior probability of HR features. Parameters of the statistics
are estimated as described in Section 4. For testing, the 4
remaining video sequences for each identity are matched
against the HR still images. For each video sequence,
all frames are evaluated for quality. The quality metrics
proposed in [17] are employed to evaluate the quality of
each frame. Individual quality factors including focus, off-
angle appearance, illumination variation, and motion blur
are fused using Dempster-Shafer theory to produce an over-
all quality score for each frame. Nguyen et al. [17] have
shown the optimal performance is achieved by fusing the 5
best quality frames for each video. As [17] also used the
MBGC portal dataset, we also select the best five frames
for super resolution. However it should be noted that as ob-
served by [17], the optimal number of frames may vary for
a different database.

For face, the portal videos in the MBGC dataset focus on
capturing eyes for iris recognition, hence the faces in these
portal videos rarely contain images of the whole face. While
it would be ideal to use actual low resolution imagery, the
limitations of existing databases make this difficult and so
in this research we use a subset of the MBGC visible dataset
to generate synthetic low resolution video sequences for our



(a) Iris (b) Face

Figure 7. Linear vs. Nonlinear features in the feature-domain SR approach: Two linear features (LDA,PCA as in [16, 1]) have been
employed to compare with the proposed approach using the nonlinear 2D Gabor phase-quadrant features for iris (a), and Local 2D Gabor
Binary Pattern Histogram Sequence (LGBPHS) for face (b).

experiments on face super-resolution. The synthetic data
has also been employed in other face super-resolution work,
such as in [7, 13]. This data has 3482 high resolution images
for 129 individuals. The visible face images are captured at
high quality with a size of 2616×3904. One high quality
visible face image for each identity is used as the gallery
image, while five other high quality visible face images for
each identity are degraded with warping, Gaussian blurring,
and downsampled to a size of 40×40, forming five synthetic
low resolution sequences of 16 frames. Two out of five low
resolution sequences are used for training, to estimate the
statistics of noise and prior probability of the HR features.
The remaining three sequences are used for testing. All 16
frames in each sequence are used for super-resolution.

For both face and iris, the complex-valued 2D Gabor fea-
tures in each image sequence for one identity are extracted
by globally convolving each normalised image in the se-
quence with the Gabor filter. The intermediate Gabor fea-
tures are then combined using the proposed feature-domain
SR approach, to generate a high resolution feature. Sub-
sequently, the super-resolved features are encoded with the
nonlinear techniques (phase-quadrant for iris, and LGBPHS
for face). Note that there are plethora of different nonlin-
ear techniques used for both iris and face, however, in this
paper, we choose to work with phase-quadrant for iris, and
LGBPHS for face due to their popularity. It should be noted
that all other techniques have the same structure of a global
Gabor convolution followed by a nonlinear transformation,
and so are equally applicable.

The final features are compared with the gallery features
using the hamming distance [4] and the histogram inter-

section distance [24] for iris and face recognition respec-
tively. Detection Error Trade-Off (DET) plots are employed
to show the performance of different approaches.

We conduct experiments to compare the performance
of the proposed approach with feature-domain super-
resolution using linear features, and the performance of the
proposed feature-domain SR approach against equivalent
pixel-domain techniques. These experiments are presented
in Sections 5.1 and 5.2 respectively.

5.1. Linear vs. Nonlinear features

Linear features including PCA and LDA have been em-
ployed for feature-domain SR for iris [16, 1] and face [7].
In this section, the advantage of employing the nonlinear
2D Gabor-based features against the linear PCA and LDA
features is demonstrated. Without SR, Gabor-based features
outperform PCA and LDA features in the recognition per-
formance for both face and iris as shown in Figure 7. It
can be seen that feature domain super resolution improves
the performance of all three techniques for both modalities.
However, the superior discriminability of the gabor features
is clearly evident by the fact that the non-SR gabor tech-
niques outperform the SR-PCA and SR-LDA techniques
for both modalities. Applying super resolution to the ga-
bor features results in a further performance improvement,
thus highlighting the benefit of being able to perform super-
resolution on the more discriminative gabor features.

Employing nonlinear 2D Gabor-based features in the
feature-domain SR framework, as proposed in this paper,
capitalises on both the boost in recognition performance ob-
tained through the feature-domain SR approach and the dis-



(a) Iris (b) Face

Figure 8. Recognition performance comparison of the proposed feature-domain SR and other pixel-domain SR. The proposed feature-
domain SR outperforms other pixel-domain SR techniques due to the direct super-resolving in the feature domain and the incorporation of
specific information from iris models (a), and face models (b)

criminant property of the Gabor features.

5.2. Comparison to pixel-domain SR

In this section, the proposed feature-domain SR frame-
work is compared with other pixel-domain SR approaches
including a conventional interpolation SR approach, (bicu-
bic [12]), and a state-of-the-art pixel-domain SR for iris
[17] and face [13]. For all pixel based approaches, features
are encoded with the non-linear Gabor techniques (phase-
quadrant and LBPGHS for iris and face respectively).

Figure 8 shows that the conventional bicubic interpo-
lation approach does not improve the recognition perfor-
mance considerably. The pixel-domain SR approaches in
[17, 13] fuse information from multiple low-resolution im-
ages to generate a high-resolution image from which fea-
tures are extracted, which improves the recognition per-
formance. The proposed framework further improves the
recognition performance with the super-resolution process-
ing performed directly in the feature domain and the in-
corporation of prior knowledge of specific iris/face model.
This illustrates the benefits of super-resolving the informa-
tion that is used for recognition directly as is proposed in
this paper.

6. Conclusion
Feature-domain SR has been shown to improve the

recognition performance of biometric systems in compar-
ison to pixel-domain SR, through direct super-resolution
of the features used for classification, and incorporation
of specific prior biometric model knowledge. This paper

further improves the performance of feature-domain SR
by introducing a new framework to enable feature-domain
SR with nonlinear discriminant features (Gabor-based fea-
tures). By employing nonlinear 2D Gabor-based features,
our framework can boost the recognition performance when
capitalising on both the boost in recognition performance
obtained through the feature-domain SR approach and the
highly discriminant property of the Gabor-based features.
We have demonstrated the proposed framework on two bio-
metrics (face and iris), and demonstrated similar perfor-
mance gains in both modalities. The proposed framework
can also be used for other biometrics and other nonlinear
feature extraction techniques.

In future work, we will examine more nonlinear features
and explore additional biometric modalities within the pro-
posed framework.
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