841 research outputs found

    Long-Term IoT-Based Maternal Monitoring: System Design and Evaluation

    Get PDF
    Pregnancy is a unique time when many mothers gain awareness of their lifestyle and its impacts on the fetus. High-quality care during pregnancy is needed to identify possible complications early and ensure the mother's and her unborn baby's health and well-being. Different studies have thus far proposed maternal health monitoring systems. However, they are designed for a specific health problem or are limited to questionnaires and short-term data collection methods. Moreover, the requirements and challenges have not been evaluated in long-term studies. Maternal health necessitates a comprehensive framework enabling continuous monitoring of pregnant women. In this paper, we present an Internet-of-Things (IoT)-based system to provide ubiquitous maternal health monitoring during pregnancy and postpartum. The system consists of various data collectors to track the mother's condition, including stress, sleep, and physical activity. We carried out the full system implementation and conducted a real human subject study on pregnant women in Southwestern Finland. We then evaluated the system's feasibility, energy efficiency, and data reliability. Our results show that the implemented system is feasible in terms of system usage during nine months. We also indicate the smartwatch, used in our study, has acceptable energy efficiency in long-term monitoring and is able to collect reliable photoplethysmography data. Finally, we discuss the integration of the presented system with the current healthcare system

    Personalized data analytics for internet-of-things-based health monitoring

    Get PDF
    The Internet-of-Things (IoT) has great potential to fundamentally alter the delivery of modern healthcare, enabling healthcare solutions outside the limits of conventional clinical settings. It can offer ubiquitous monitoring to at-risk population groups and allow diagnostic care, preventive care, and early intervention in everyday life. These services can have profound impacts on many aspects of health and well-being. However, this field is still at an infancy stage, and the use of IoT-based systems in real-world healthcare applications introduces new challenges. Healthcare applications necessitate satisfactory quality attributes such as reliability and accuracy due to their mission-critical nature, while at the same time, IoT-based systems mostly operate over constrained shared sensing, communication, and computing resources. There is a need to investigate this synergy between the IoT technologies and healthcare applications from a user-centered perspective. Such a study should examine the role and requirements of IoT-based systems in real-world health monitoring applications. Moreover, conventional computing architecture and data analytic approaches introduced for IoT systems are insufficient when used to target health and well-being purposes, as they are unable to overcome the limitations of IoT systems while fulfilling the needs of healthcare applications. This thesis aims to address these issues by proposing an intelligent use of data and computing resources in IoT-based systems, which can lead to a high-level performance and satisfy the stringent requirements. For this purpose, this thesis first delves into the state-of-the-art IoT-enabled healthcare systems proposed for in-home and in-hospital monitoring. The findings are analyzed and categorized into different domains from a user-centered perspective. The selection of home-based applications is focused on the monitoring of the elderly who require more remote care and support compared to other groups of people. In contrast, the hospital-based applications include the role of existing IoT in patient monitoring and hospital management systems. Then, the objectives and requirements of each domain are investigated and discussed. This thesis proposes personalized data analytic approaches to fulfill the requirements and meet the objectives of IoT-based healthcare systems. In this regard, a new computing architecture is introduced, using computing resources in different layers of IoT to provide a high level of availability and accuracy for healthcare services. This architecture allows the hierarchical partitioning of machine learning algorithms in these systems and enables an adaptive system behavior with respect to the user's condition. In addition, personalized data fusion and modeling techniques are presented, exploiting multivariate and longitudinal data in IoT systems to improve the quality attributes of healthcare applications. First, a real-time missing data resilient decision-making technique is proposed for health monitoring systems. The technique tailors various data resources in IoT systems to accurately estimate health decisions despite missing data in the monitoring. Second, a personalized model is presented, enabling variations and event detection in long-term monitoring systems. The model evaluates the sleep quality of users according to their own historical data. Finally, the performance of the computing architecture and the techniques are evaluated in this thesis using two case studies. The first case study consists of real-time arrhythmia detection in electrocardiography signals collected from patients suffering from cardiovascular diseases. The second case study is continuous maternal health monitoring during pregnancy and postpartum. It includes a real human subject trial carried out with twenty pregnant women for seven months

    Statistical Review of Health Monitoring Models for Real-Time Hospital Scenarios

    Get PDF
    Health Monitoring System Models (HMSMs) need speed, efficiency, and security to work. Cascading components ensure data collection, storage, communication, retrieval, and privacy in these models. Researchers propose many methods to design such models, varying in scalability, multidomain efficiency, flexibility, usage and deployment, computational complexity, cost of deployment, security level, feature usability, and other performance metrics. Thus, HMSM designers struggle to find the best models for their application-specific deployments. They must test and validate different models, which increases design time and cost, affecting deployment feasibility. This article discusses secure HMSMs' application-specific advantages, feature-specific limitations, context-specific nuances, and deployment-specific future research scopes to reduce model selection ambiguity. The models based on the Internet of Things (IoT), Machine Learning Models (MLMs), Blockchain Models, Hashing Methods, Encryption Methods, Distributed Computing Configurations, and Bioinspired Models have better Quality of Service (QoS) and security than their counterparts. Researchers can find application-specific models. This article compares the above models in deployment cost, attack mitigation performance, scalability, computational complexity, and monitoring applicability. This comparative analysis helps readers choose HMSMs for context-specific application deployments. This article also devises performance measuring metrics called Health Monitoring Model Metrics (HM3) to compare the performance of various models based on accuracy, precision, delay, scalability, computational complexity, energy consumption, and security

    The Design and Implementation of Intelligent Labor Contraction Monitoring System based on Wearable Internet of Things

    Get PDF
    In current clinical practice, pregnant women who have entered 37 weeks cannot correctly judge whether they are in labor based on their subjective feelings. Wrong judgment of labor contraction can lead to adverse pregnancy outcomes and endanger the safety of mothers and babies. It will also increase the healthcare pressure in the hospital and the healthcare efficiency is reduced. Therefore, it is very meaningful to be able to design a system for monitoring labor contraction based on objective data to assist pregnant women who have entered 37 weeks in deciding the suitable time to go to hospital. For the above requirements, this thesis designs and implements an intelligent labor contraction monitoring system based on wearable Internet of Things. The system combines the Internet of Things technology, wearable technology and machine learning technology to collect contraction data through wearable sensing device. It uses the Long Short-Term Memory (LSTM) neural network to classify and identify the collected contraction data and realize real-time processing. It improves the accuracy of model recognition to 93.75%. And the recognition results are fed back to the WeChat applet so that pregnant women can view them in real time. The prototype of the wearable sensing device has been integrated by 3D printing and the proof-of-concept system has been demonstrated. Pregnant women can use this system to detect the contraction status and view the contractions in real time through the WeChat applet results. They can judge whether it is suitable for labor, and this system assists in making decisions about the best time to go to hospital

    A Smart Remote Monitoring System for Prenatal Care in Rural Areas

    Get PDF
    The complications in maternity especially the women lives in rural sector can be reduced through regular monitoring of their vitals like blood pressure, SpO2 and fetal growth. The internet of things (IoT) is the modern technology bridges the gap between the traditional clinical setting with its consumers as well promotes the telemedicine industry into great levels of accessing proactive healthcare facilities. The predominant aim of this work is to bring a remote monitoring device which assesses the significant health indicators of the pregnant women and their fetus status cost effectively. In order to build such kit, the biosensors like heart rate, SpO2, pressure, temperature and load cell which gives the weight of the fetus are integrated into Arudino board. The sensor readings are processed through ThingSpeak. The timely medical attention is proposed upon observing abnormal physiological vitals of the women which is implemented through a buzzer system in this device. Like such devices in realism help to predict the pregnancy risk and decrease the mortality rate

    Pragmatic Evaluation of Health Monitoring & Analysis Models from an Empirical Perspective

    Get PDF
    Implementing and deploying several linked modules that can conduct real-time analysis and recommendation of patient datasets is necessary for designing health monitoring and analysis models. These databases include, but are not limited to, blood test results, computer tomography (CT) scans, MRI scans, PET scans, and other imaging tests. A combination of signal processing and image processing methods are used to process them. These methods include data collection, pre-processing, feature extraction and selection, classification, and context-specific post-processing. Researchers have put forward a variety of machine learning (ML) and deep learning (DL) techniques to carry out these tasks, which help with the high-accuracy categorization of these datasets. However, the internal operational features and the quantitative and qualitative performance indicators of each of these models differ. These models also demonstrate various functional subtleties, contextual benefits, application-specific constraints, and deployment-specific future research directions. It is difficult for researchers to pinpoint models that perform well for their application-specific use cases because of the vast range of performance. In order to reduce this uncertainty, this paper discusses a review of several Health Monitoring & Analysis Models in terms of their internal operational features & performance measurements. Readers will be able to recognise models that are appropriate for their application-specific use cases based on this discussion. When compared to other models, it was shown that Convolutional Neural Networks (CNNs), Masked Region CNN (MRCNN), Recurrent NN (RNN), Q-Learning, and Reinforcement learning models had greater analytical performance. They are hence suitable for clinical use cases. These models' worse scaling performance is a result of their increased complexity and higher implementation costs. This paper compares evaluated models in terms of accuracy, computational latency, deployment complexity, scalability, and deployment cost metrics to analyse such scenarios. This comparison will help users choose the best models for their performance-specific use cases. In this article, a new Health Monitoring Metric (HMM), which integrates many performance indicators to identify the best-performing models under various real-time patient settings, is reviewed to make the process of model selection even easier for real-time scenarios

    Sensing and Artificial Intelligent Maternal-Infant Health Care Systems: A Review

    Get PDF
    Currently, information and communication technology (ICT) allows health institutions to reach disadvantaged groups in rural areas using sensing and artificial intelligence (AI) technologies. Applications of these technologies are even more essential for maternal and infant health, since maternal and infant health is vital for a healthy society. Over the last few years, researchers have delved into sensing and artificially intelligent healthcare systems for maternal and infant health. Sensors are exploited to gauge health parameters, and machine learning techniques are investigated to predict the health conditions of patients to assist medical practitioners. Since these healthcare systems deal with large amounts of data, significant development is also noted in the computing platforms. The relevant literature reports the potential impact of ICT-enabled systems for improving maternal and infant health. This article reviews wearable sensors and AI algorithms based on existing systems designed to predict the risk factors during and after pregnancy for both mothers and infants. This review covers sensors and AI algorithms used in these systems and analyzes each approach with its features, outcomes, and novel aspects in chronological order. It also includes discussion on datasets used and extends challenges as well as future work directions for researchers

    Performance Evaluation of Smart Decision Support Systems on Healthcare

    Get PDF
    Medical activity requires responsibility not only from clinical knowledge and skill but also on the management of an enormous amount of information related to patient care. It is through proper treatment of information that experts can consistently build a healthy wellness policy. The primary objective for the development of decision support systems (DSSs) is to provide information to specialists when and where they are needed. These systems provide information, models, and data manipulation tools to help experts make better decisions in a variety of situations. Most of the challenges that smart DSSs face come from the great difficulty of dealing with large volumes of information, which is continuously generated by the most diverse types of devices and equipment, requiring high computational resources. This situation makes this type of system susceptible to not recovering information quickly for the decision making. As a result of this adversity, the information quality and the provision of an infrastructure capable of promoting the integration and articulation among different health information systems (HIS) become promising research topics in the field of electronic health (e-health) and that, for this same reason, are addressed in this research. The work described in this thesis is motivated by the need to propose novel approaches to deal with problems inherent to the acquisition, cleaning, integration, and aggregation of data obtained from different sources in e-health environments, as well as their analysis. To ensure the success of data integration and analysis in e-health environments, it is essential that machine-learning (ML) algorithms ensure system reliability. However, in this type of environment, it is not possible to guarantee a reliable scenario. This scenario makes intelligent SAD susceptible to predictive failures, which severely compromise overall system performance. On the other hand, systems can have their performance compromised due to the overload of information they can support. To solve some of these problems, this thesis presents several proposals and studies on the impact of ML algorithms in the monitoring and management of hypertensive disorders related to pregnancy of risk. The primary goals of the proposals presented in this thesis are to improve the overall performance of health information systems. In particular, ML-based methods are exploited to improve the prediction accuracy and optimize the use of monitoring device resources. It was demonstrated that the use of this type of strategy and methodology contributes to a significant increase in the performance of smart DSSs, not only concerning precision but also in the computational cost reduction used in the classification process. The observed results seek to contribute to the advance of state of the art in methods and strategies based on AI that aim to surpass some challenges that emerge from the integration and performance of the smart DSSs. With the use of algorithms based on AI, it is possible to quickly and automatically analyze a larger volume of complex data and focus on more accurate results, providing high-value predictions for a better decision making in real time and without human intervention.A atividade médica requer responsabilidade não apenas com base no conhecimento e na habilidade clínica, mas também na gestão de uma enorme quantidade de informações relacionadas ao atendimento ao paciente. É através do tratamento adequado das informações que os especialistas podem consistentemente construir uma política saudável de bem-estar. O principal objetivo para o desenvolvimento de sistemas de apoio à decisão (SAD) é fornecer informações aos especialistas onde e quando são necessárias. Esses sistemas fornecem informações, modelos e ferramentas de manipulação de dados para ajudar os especialistas a tomar melhores decisões em diversas situações. A maioria dos desafios que os SAD inteligentes enfrentam advêm da grande dificuldade de lidar com grandes volumes de dados, que é gerada constantemente pelos mais diversos tipos de dispositivos e equipamentos, exigindo elevados recursos computacionais. Essa situação torna este tipo de sistemas suscetível a não recuperar a informação rapidamente para a tomada de decisão. Como resultado dessa adversidade, a qualidade da informação e a provisão de uma infraestrutura capaz de promover a integração e a articulação entre diferentes sistemas de informação em saúde (SIS) tornam-se promissores tópicos de pesquisa no campo da saúde eletrônica (e-saúde) e que, por essa mesma razão, são abordadas nesta investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à aquisição, limpeza, integração e agregação de dados obtidos de diferentes fontes em ambientes de e-saúde, bem como sua análise. Para garantir o sucesso da integração e análise de dados em ambientes e-saúde é importante que os algoritmos baseados em aprendizagem de máquina (AM) garantam a confiabilidade do sistema. No entanto, neste tipo de ambiente, não é possível garantir um cenário totalmente confiável. Esse cenário torna os SAD inteligentes suscetíveis à presença de falhas de predição que comprometem seriamente o desempenho geral do sistema. Por outro lado, os sistemas podem ter seu desempenho comprometido devido à sobrecarga de informações que podem suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de algoritmos de AM na monitoria e gestão de transtornos hipertensivos relacionados com a gravidez (gestação) de risco. O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global de sistemas de informação em saúde. Em particular, os métodos baseados em AM são explorados para melhorar a precisão da predição e otimizar o uso dos recursos dos dispositivos de monitorização. Ficou demonstrado que o uso deste tipo de estratégia e metodologia contribui para um aumento significativo do desempenho dos SAD inteligentes, não só em termos de precisão, mas também na diminuição do custo computacional utilizado no processo de classificação. Os resultados observados buscam contribuir para o avanço do estado da arte em métodos e estratégias baseadas em inteligência artificial que visam ultrapassar alguns desafios que advêm da integração e desempenho dos SAD inteligentes. Como o uso de algoritmos baseados em inteligência artificial é possível analisar de forma rápida e automática um volume maior de dados complexos e focar em resultados mais precisos, fornecendo previsões de alto valor para uma melhor tomada de decisão em tempo real e sem intervenção humana

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure
    corecore