7 research outputs found

    Distortions in Investment Timing and Quantity in Real Options with Asymmetric Information

    Get PDF
    We analyze real options investment under asymmetric information on investment costs, where decisions not only involve investment timing, but also investment quantity. A principal, the regulator, offers a menu of contracts to the agent (the regulated firm). The regulated firm has better information on costs than the regulator, and the optimal regulation trades off distortions in investment decisions and informational rents left to the firm. In a non-dynamic situation, it is well known that optimal contracts involve downward distortions on investment quantity. In the dynamic, real options situation, distortions also occur in investment timing: a high-cost firm’s investment will be delayed beyond the optimal time, until revenues reach a higher investment threshold. We explore the effect on investment quantity in this real option regulation under various assumptions on the stochastic process for revenues. On the one hand, the higher investment threshold tends to increase investment quantities, whereas screening of high-cost firms would favour reducing their investment quantity. We find a simple sufficient condition for the latter, quantity-reducing, effect to dominate, and show that it is satisfied for a wide range of commonly used stochastic processes

    Four essays on quantitative economics applications to volatility analysis in Emerging Markets and renewable energy projects

    Get PDF
    [ES]Las decisiones financieras se pueden dividir en decisiones de inversión y decisiones de financiación. En lo que respecta a las decisiones de inversión, la incertidumbre acerca de la dinámica futura de las variables económicas y de las financieras tiene un rol fundamental. Eso, se explica porque los retornos esperados por las empresas y por los inversionistas se pueden ver afectados por los movimientos adversos en los mercados financieros y por los altos niveles de volatilidad. Como consecuencia, resulta crucial realizar un adecuado análisis y modelación de la volatilidad para el proceso de toma de decisiones financieras, por parte de las empresas y el diseño de estrategias de inversión y cobertura por parte de los inversionistas. En este sentido, el estudio de la volatilidad se ha convertido en uno de los temas más interesantes de la investigación en finanzas. Lo anterior ha cobrado mayor relevancia en los últimos años, teniendo en cuenta el escenario de alta volatilidad e incertidumbre que afrontan los mercados a nivel global. Este documento tiene como objetivo abordar cuatro cuestiones centrales, las cuales están relacionadas con la volatilidad financiera como campo de investigación. Esas cuestiones son, la transmisión y spillovers de volatilidad en mercados emergentes, la calibración de la superficie de volatilidad para proyectos de energía renovable y el pronóstico de los rendimientos de activos energéticos y spillovers de volatilidad a través de técnicas de machine learning. En el primer capítulo del documento, se examinan los efectos de transmisión de volatilidad entre un índice de energía y un índice financiero para los Mercados Emergentes. En consecuencia, mediante el uso de un modelo DCC, se muestra que los efectos de transmisión de volatilidad entre los índices empleados para la crisis subprime y la crisis del COVID-19 fueron diferentes. Lo anteriormente dicho, considerando que la primera crisis se originó en el sector financiero y luego se extendió al resto de la economía, mientras que la segunda se originó en el sector real y posteriormente afectó al resto de la economía. Teniendo en cuenta que la relación entre la volatilidad de los mercados es cambiante en el tiempo, en el segundo capítulo se llevó a cabo un análisis dinámico de los spillovers de volatilidad entre materias primas, Bitcoin y un índice de Mercados Emergentes. Así, empleando la metodología propuesta por Diebold y Yilmaz (2012), se concluyó que los efectos de los spillovers de volatilidad entre los activos analizados no son constantes en dirección e intensidad a través del tiempo. En particular, para períodos de crisis como el de la pandemia del COVID-19, hay reversiones en la dirección de los spillovers de volatilidad debido al sector en el que se originó la crisis. Además, en este capítulo se explota la naturaleza dinámica de los spillovers de volatilidad. Por lo tanto, se planteó que el índice de spillovers de volatilidad propuesto por Diebold y Yilmaz puede ser usado como una medida para pronosticar periodos de alta turbulencia. Lo anterior se desarrolló a través de modelos econométricos tradicionales y de técnicas de machine learning. En el tercer capítulo del documento, se propone un modelo que predice los retornos de los precios del carbono y del petróleo. En este sentido, se desarrolló un modelo híbrido, el cual combina las proyecciones obtenidas a partir de diferentes técnicas de machine learning y modelos econométricos tradicionales, obteniéndose resultados los cuales muestran las ventajas de emplear modelos híbridos que incorporan técnicas de machine learning, exclusivamente, para pronosticar variables financieras. Finalmente, en el capítulo cuatro, se presenta una metodología para la estimación de la volatilidad en la valoración de proyectos de energías renovables mediante opciones reales. En esta metodología, la cual es una extensión del enfoque de volatilidad implícita empleada para las opciones financieras, la volatilidad de un proyecto es la volatilidad implícita obtenida a partir de la superficie de la volatilidad de empresas comparables, según una determinada fecha de valoración y dada la relación deuda-capital de un proyecto de energía renovable. En este análisis, se utilizó el modelo estocástico 'alfa-beta-rho' para calibrar la superficie de la volatilidad para la valoración mediante opciones reales. Por último, al final del documento se presentan las conclusiones derivadas de los capítulos mencionados, así como algunas recomendaciones para las futuras investigaciones. [EN]Financial decisions can be divided in investment and financing decisions. Concerning investment decisions, the uncertainty about the future dynamics of financial and economic variables has a central role, considering that the returns expected by firms and investors can be affected by the adverse movements in financial markets and their high volatility. In consequence, the adequate volatility analysis and modeling is crucial for the firm’s financial decision-making process and the design of investing and hedging strategies by investors. In this regard, the study of volatility has become one of the most interesting topics in finance research. The foregoing has become more relevant in recent years considering the scenario of high volatility and uncertainty faced by markets globally. This document aims to address four central issues related to financial volatility as a research area. These are, volatility transmission and spillovers in Emerging Markets, the calibration of the volatility surface for renewable energy projects and the forecast of energy assets returns and volatility spillovers through machine learning techniques. In the first chapter of the document, the volatility transmission effects between an energy index and a financial index for Emerging Markets are examined. Then, by using a DCC model, it is shown that the volatility transmission effects between the employed indices for the subprime crisis and the COVID-19 pandemic were different. This, considering that the former crisis originated in the financial sector and spread to the rest of the economy, while the second originated in the real sector and trasmitted to the rest of the economy posteriorly. Considering that the relationship between markets volatility is time-varying, in the second chapter, a dynamic analysis of volatility spillovers between commodities, Bitcoin and an Emerging Markets index is developed. Employing the methodology proposed by Diebold and Yilmaz (2012), it is concluded that the volatility spillovers effects between the analyzed assets is not constant in direction and intensity over time. In particular, for periods of crisis such as the COVID-19 pandemics, there are reversals in the direction of volatility spillovers due to the sector in which the crises originate. In addition, in this chapter the dynamic nature of volatility spillovers is exploited. Hence, the volatility spillover index proposed by Diebold and Yilmaz is forecasted to be used as a measure to anticipate high turbulence periods. This, through both traditional econometric models and machine learning techniques. In the third chapter, a model for the prediction of carbon and oil prices is proposed. In this sense, a hybrid model that ensembles the forecasts obtained from different machine learning techniques and traditional econometric models is developed, obtaining results that show the advantages of employing hybrid models which combine machine learning techniques, exclusively, to forecast financial variables. In Chapter four, a methodology for the estimation of volatility in renewable energy projects valuation through real options is presented. In this methodology, which is an extension of the implied volatility approach employed for financial options, the volatility of the project is the implied volatility obtained from the volatility surface of comparable firms for a certain valuation date and given debt-to-equity relation of a renewable energy project. In this analysis, the stochastic ‘alpha-beta-rho’ model is utilized to calibrate the volatility surface for real option valuation purposes. Finally, the conclusions derived from the mentioned chapters are presented at the end of the document as well as some recommendations for future research
    corecore