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Abstract
We analyze real options investment under asymmetric information on investment 
costs, where decisions not only involve investment timing, but also investment quan-
tity. A principal, the regulator, offers a menu of contracts to the agent (the regu-
lated firm). The regulated firm has better information on costs than the regulator, 
and the optimal regulation trades off distortions in investment decisions and infor-
mational rents left to the firm. In a non-dynamic situation, it is well known that opti-
mal contracts involve downward distortions on investment quantity. In the dynamic, 
real options situation, distortions also occur in investment timing: a high-cost firm’s 
investment will be delayed beyond the optimal time, until revenues reach a higher 
investment threshold. We explore the effect on investment quantity in this real option 
regulation under various assumptions on the stochastic process for revenues. On the 
one hand, the higher investment threshold tends to increase investment quantities, 
whereas screening of high-cost firms would favour reducing their investment quan-
tity. We find a simple sufficient condition for the latter, quantity-reducing, effect to 
dominate, and show that it is satisfied for a wide range of commonly used stochastic 
processes.

Keywords  Investment under uncertainty · Adverse selection · Regulation · Real 
option · Investment timing

JEL Classification  D86 · G31 · L51

1  Introduction

Firm investment decisions are often taken by decision makers who are not the ulti-
mate beneficiaries of those investments. This is clear in regulated environments, 
such as the energy sector, where many of the large investments needed for the 
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energy transition are made by monopolists who get their income from regulated 
access tariffs. And it is also evident in corporate finance situations, where executive 
boards decide on capacity investments on behalf of the owners of the firm. In either 
of those situations, the decision makers will act as agents for a principal, and these 
agents will be responsive to incentives given to them in contracts (be it regulatory 
contracts, or employment and remuneration contracts) through which these princi-
pals have delegated those decision rights.

In the presence of asymmetries of information, these incentives typically result 
in investment decisions that are distorted away from those that maximize the prin-
cipal’s welfare. In the seminal work on regulation under asymmetric information on 
costs by Baron and Myerson (1982), optimal regulation of a monopolist balances 
rents that need to be left to the agent against distortions in quantity. The result is that 
high-cost agents invest in inefficiently low quantities. In a dynamic corporate finance 
application of real option investments by a manager, Grenadier and Wang (2005) 
study distortions in the timing of real-option exercise. They find that, to incentiv-
ize the agent-manager, a principal-owner should excessively delay investments for 
agents of high-cost firms, compared to the optimal investment delay well-known in 
real options from McDonald and Siegel (1986).

In many real-option investment problems, decisions involve both timing of invest-
ment and the size of the investment, and one may expect optimal contracts to involve 
both distortions in timing and in quantity. However, whereas in the static, Baron and 
Myerson (1982) context, the principal reduces quantities in order to screen high-
cost from low-cost agents, the timing delays in real options lead to increased thresh-
old prices. These higher prices upon investment in turn lead to upward pressure on 
quantities for the high-cost agent, compared to first-best levels. The reason is that 
the higher demand, resulting from the postponed investment, warrants higher invest-
ments in capacity by the agent.

In this paper, we explore which effect dominates choice of investment size for the 
principal in a real-option situation when there is asymmetric information on variable 
cost of investment. Does the principal reduce investment quantity for higher cost 
agents in order to reduce informational rents, as in the Baron and Myerson (1982) 
model of investment regulation? Or will quantity increase as a result of the delay 
of investment timing (as in Grenadier and Wang, 2005), and the associated higher 
value of marginal investment because of higher prices at investment?

We explore this question in a real option model of investment under uncertainty, 
where both investment timing and quantity must be chosen. There is asymmetric 
information on variable costs of investment between the agent and a principal. In 
the optimal contract, there will be delays in investment timing, but also distortions 
in investment quantity. We study the effect on quantity under general uncertain 
price processes, making extensive use of a formulation due to Dixit et  al. (1999) 
to express optimality conditions in terms of the elasticity of the expected stochastic 
discount factor, E

(
e−rT

)
 . This allows us to study the problem beyond the usual geo-

metric Brownian motion process that is ubiquitous in the real-options literature.
We find, firstly, that the direction of the distortion in investment quantity depends 

on this elasticity, �(X) , of the discount factor with respect to (stochastic) demand size 
X: as long as this elasticity is non-decreasing in the investment demand size threshold 
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X, the quantity reduction effect as in the static Baron–Myerson model dominates. This 
condition holds for often-used stochastic processes such as geometric Brownian motion 
(which has constant elasticity), arithmetic Brownian motion and various processes with 
mean reversion.

Second, on a methodological note, we explore in some detail the connection between 
elasticity �(X) , the expected discount factor, and stochastic (Ito) processes that exhibit 
those functional forms of elasticities and expected discount factors. We use a generali-
zation of what is known as the ‘fundamental quadratic’ (Dixit and Pindyck, 1994) to 
derive a one-parameter family of stochastic processes that include geometric Brownian 
motion and arithmetic Brownian motion as examples.

Finally, we explore, as a (counter)example, the investment model under a stochastic 
process that is designed to have decreasing elasticity, and where asymmetric informa-
tion may actually increase investment quantity relative to the symmetric information 
situation. The scope for this decrease in elasticity is limited by the model having to 
satisfy the second-order conditions on the investment threshold X, to make sure that 
delaying investment in response to asymmetric information is indeed optimal.

Real options involving not only investment timing but also investment size have 
been studied since Bar-Ilan and Strange (1999) and Dangl (1999), and more recently 
in works such as Hagspiel et al. (2016) (who focus on the effects of flexible use of the 
invested capacity), All these papers exclusively focus on geometrical Brownian motion. 
Our focus, using the elasticity approach of the discount factor following Dixit et  al. 
(1999), allows us to explore the robustness of results to this assumption on the stochas-
tic process.

Earlier studies on asymmetric information in a real-option framework, following 
Grenadier and Wang (2005), include Shibata (2009), Morellec and Schürhoff (2011), 
Grenadier and Malenko (2011) in various corporate finance contexts. Real options in 
(price-cap) regulation have been studied by Dobbs (2004), Guthrie (2006), Moretto 
et  al. (2008), and Evans and Guthrie (2012) where the latter authors also focus on 
effects of investment size. An approach focussing on optimal contracting under asym-
metric information in a regulation context was taken by Broer and Zwart (2013), who 
focus on timing distortions only. Willems and Zwart (2018) study the problem in an 
environment of continuous expansion of size. A recent related paper to ours is Cui 
and Shibata (2017), who look at timing and quantity in a situation where information 
asymmetry is on fixed costs, rather than marginal investment costs as in our model. In 
their model, under geometric Brownian motion, the information asymmetry leads to 
expansion of size in response to the asymmetric information, in line with the differ-
ence between asymmetric information on marginal versus fixed costs in static models 
of regulation (Armstrong and Sappington, 2007). In this paper, we explore the effect of 
asymmetric information on variable costs, and moreover verify how that effect may be 
sensitive to the choice of stochastic process.
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2 � The Model

We consider an investment project of variable scale, q, that will be undertaken by 
an agent on behalf of a principal. The principal’s pay-off of the investment will be 
dependent on the investment quantity q according to a constant elasticity demand 
curve,

and is modeled as a one-off benefit to the principal at the moment of investment. 
Here P(q) = xq−� is the principal’s benefit (‘price’) per unit, 0 < 𝛾 < 1 is the inverse 
elasticity of demand, and x is a stochastic quantity measuring demand intensity. x 
will satisfy an autonomous stochastic (Ito) process of the form

with dz a Wiener increment. (For �(x), �(x) constants, this would be geometrical 
Brownian motion, but we allow for more general well-behaved processes.)

The principal will discount its pay-off by a constant discount rate, r, so that the 
present value of its pay-off will be E

(
e−rTP(q)q

)
 . We will consider stopping times 

that can be described as the time when demand intensity x for the first time exceeds 
a threshold, X, so that x(T) = X.

The agent will be the party carrying out the investment. The agent’s cost of 
investing has a fixed component F, and variable costs, cq. The agent’s present value 
of investing an amount q at time T then is −E

(
e−rT (cq + F)

)
 . The fixed cost, F, is 

common knowledge among principal and agent. On the other hand, the variable cost 
parameter, c, is not. c can be either low, c , or high, c̄ . While the agent knows his 
cost c, the principal only knows c is low with probability � , or high with probability 
1 − � . It is this asymmetry of information that will be at the root of the inefficiency 
in this investment problem.

The principal now contracts with the agent on investment time, T (defined in 
terms of the observable x crossing the threshold X), and investment quantity q. This 
contract will specify a remuneration w, to be paid by the principal to the agent at 
time T, in return for the specified investment q at time T. For a given set of w, X and 
q, the principal’s total net present value will be

with D(x,X) = E
(
e−rT

)
 the expected discount factor, given current demand intensity 

x and threshold X.1

pay-off = P(q)q = xq1−�

dx

x
= �(x)dt + �(x)dz

NPV = E
(
e−rT

)(
Xq1−� − w

) ≡ D(x,X)
(
Xq1−� − w

)

1  Since X and q are set in the contract, the second factor, the value at investment time T is no longer sto-
chastic.
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2.1 � Optimal Contracting with Asymmetric Information

In response to the asymmetric information, the principal will optimally offer a menu 
of two contracts, which is designed to make sure that each type of agent (low-cost or 
high-cost) self-selects, out of this menu, the contract intended for its type (the incen-
tive compatibility constraint), provided the agent will at least get its cost reimbursed 
under that contract (the participation constraint). In our model, such a contract con-
sists of the offer of the agent’s remuneration w upon investment, the intended invest-
ment threshold, X, and the investment quantity, q, one such triple for each type.

The incentive compatibility conditions now become

for the high, c̄ , and the low, c , cost types, respectively. From the first condition, IC , 
the high type will prefer accepting its contract (payment w̄ for investing at threshold 
X̄ a quantity q̄ ) rather than pretending to be low cost, but having to invest the amount 
q (at threshold X ) at its (privately known) cost level c̄ . And conversely, a low-cost 
agent will opt for w,X, q , instead of getting remuneration intended for the high-cost 
type at the intended timing and quantity for the high-cost type.

Participation constraints in turn make sure that neither type of firm makes nega-
tive profit when it accepts its intended contract:

The principal will now design its contract offers, (w̄, X̄, q̄) and (w,X, q) , to maximize 
its expected pay-off:

subject to the four constraints.
The analysis of this optimization leads, as is standard (Laffont and Martimort, 

see e.g. 2002), to the conclusion that there will be two binding constraints, PC and 
IC (with the other two being slack)2: high-cost types make zero profits (while low-
cost ones will end up earning an informational rent), and it will be those with low 

D(x, X̄)(w̄ − c̄q̄ − F) ≥ D(x,X)
(
w − c̄q − F

)
(IC)

D(x,X)
(
w − cq − F

) ≥ D(x, X̄)
(
w̄ − cq̄ − F

)
(IC)

D(x, X̄)(w̄ − c̄q̄ − F) ≥ 0 (PC)

D(x,X)
(
w − cq − F

) ≥ 0 (PC)

W = 𝜙D(x,X)
(
Xq1−𝛾 − w

)
+ (1 − 𝜙)D(x, X̄)

(
X̄q̄1−𝛾 − w̄

)
,

2  An intuitive way of understanding this is to substitute the first-best values, in particular, w = cq + F , 
for each type. With this substitution, the IC constraint, 0 ≥ D(x, X̄)(c̄ − c)q̄ , is then violated: low types 
prefer to mimic high types. The cheapest way, for the principal, to meet the constraint is to increase the 
left-hand side, by increasing w , while at the same time distorting high types’ investment, reducing the 
right-hand side to reduce the associated rents left to the low types.
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cost c who will have to be dissuaded from accepting the high-cost contract (which 
promises to remunerate the high investment costs to high-cost agents). Using those 
two constraints that hold with equality to substitute for w̄ and w leads to a rewritten 
optimization problem

where c̃ equals

In other words, the effect of asymmetric information is that, optimally, the principal 
chooses timing X and quantity q consistent with total surplus optimization, but as if 
actual costs for the high-cost agent is inflated to the higher virtual cost level c̃.

2.2 � The Static, Baron–Myerson, Case

In case initial price parameter x is large, it will be optimal to invest immediately, and 
there is no option value in delaying, D(x,X) = 1 . In that situation, we are in a static 
principal-agent situation that was analyzed by Baron and Myerson (1982), where 
only a distortion in quantity q is used to distinguish the low and the high cost types. 
The optimum contracts then allow an efficient, low-cost firm, to invest first-best 
quantities and earn an informational rent over and above its investment cost. A high-
cost firm, instead, will get a contract that only remunerates its costs, w̄ = c̄q̄ + F , 
but will be required to invest a quantity q̄ that lies below its first-best level, so as to 
reduce the rents that need to be paid to low-cost agents in order to dissuade them 
from pretending to be high-cost.

Quantities in this Baron–Myerson case optimize virtual surplus

leading to

(where q̄BM is below its efficient level, because c̃ > c̄).
The intuition for the effect is that low-cost, c , agents, are tempted to take con-

tracts offered to high-cost agents and pocket the higher remuneration of costs w̄ . 
Reducing quantity q̄ lowers that remuneration and hence makes it cheaper for the 
principal to keep low-cost agents from posing as high-cost ones.

In the static case, only this downward distortion in quantity q̄ is used to screen 
agents. In contrast, when demand x is low, and there is option value in waiting before 
investing, there is an additional tool: the principal can also distort investment timing, 
delaying investment for the high-cost agents to occur at a higher demand size X. As 

W = 𝜙D(x,X)
(
Xq1−𝛾 − cq − F

)
+ (1 − 𝜙)D(x, X̄)

(
X̄q̄1−𝛾 − c̃q̄ − F

)
,

c̃ = c̄ +
𝜙

1 − 𝜙
Δc.

WBM = 𝜙

(
xq1−𝛾 − cq − F

)
+ (1 − 𝜙)

(
xq̄1−𝛾 − c̃q̄ − F

)
,

(q
BM

)𝛾 = (1 − 𝛾)
x

c
, (q̄BM)

𝛾 = (1 − 𝛾)
x

c̃
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a result of the additional discounting, this reduces the benefit for low-cost agents to 
taking high-costs’ contracts.

Since, all else equal, price P(q) = xq−� is proportional to x, such a longer delay 
increases price P(q) at which investment takes place for the high-cost agent. This 
price increase makes quantity q̄ more profitable, driving up that quantity, and thus 
working against the Baron–Myerson reduction in quantity to screen high-cost 
agents. We next analyze whether the resulting effect can be an increase in quantity q̄.

3 � Real‑Option Analysis

We now turn to the real-option analysis where waiting to invest is valuable. We con-
sider the Ito process governing the demand-level, x,

This stochastic process enters the analysis through the expected discount factor, 
D(x,X) = E(e−rT ) for demand-level x’s first crossing of the threshold price level X. 
As an example, for geometric Brownian motion, which has �(x) = � and �(x) = � 
constant, we have the well-known expression

(as long as x < X ). Here, � is the positive root of the characteristic quadratic 
equation

As we have seen, the principal chooses contracts involving X and q for each cost 
type to maximize, for each type of agent separately, the virtual surplus W, which in 
our two-type case is computed with cost c = c̃ instead of c̄ for the high-cost type, 
and with actual cost c = c for the low cost type:

For quantity, q, in this optimum we retain the relation

Substituting the optimal q, we obtain an expression in terms of X. It turns out help-
ful to use notation

dx

x
= �(x)dt + �(x)dz.

D(x,X) =
(
x

X

)�

(1)r = �� +
1

2
�2�(� − 1).

W(X, q) = D(x,X)
(
Xq1−� − cq − F

)
.

q� = (1 − �)
X

c
.

(2)�(X) = max
q

(
Xq1−� − cq

)
= �(1 − �)

1

�
−1
c

(
X

c

) 1

�
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for the X-dependent benefits of investing F with the optimal quantity q. Also, what 
will play a crucial role in the analysis is the elasticity of the expected discount factor 
(see Dixit, Pindyck and Sødal, 1999)3

For the familiar example of geometric Brownian motion (GBM), we have �(X) = � , 
the constant, positive root of the characteristic quadratic equation as highlighted 
above. In this sense, one may view GBM as the constant elasticity version of sto-
chastic processes. For alternative processes, �(X) will vary with X, and the way in 
which it does will turn out important for our question. We will look at the relation 
between �(X) and various stochastic processes in more detail later.

In terms of �(X) and �(X) , optimal investment can be described as follows.4

Proposition 1  Optimal investment for an agent of virtual costs c takes place at 
threshold level for demand-size X satisfying

where �(X) is the elasticity of the expected discount factor. Second-order conditions 
require that

The formulation in terms of variable profits � and elasticity �(X) makes clear the 
relation with well-known real option results in simpler contexts. In its simplest form, 
for geometric Brownian motion ( �(X) = � ) and without any quantity effects so that 
pay-off is equal to (or directly proportional to) the stochastic variable X (i.e., � = 1 ), 
we would have a first-order condition

as in the standard McDonald and Siegel (1986) situation. For � ∼ X1∕� , one replaces 
� by �� (see e.g. Dobbs, 2004, for an example of that involving continuous, gradual 
capacity expansion). Proposition 1 demonstrates that those well-known expressions 
can be extended for more general stochastic processes in terms of the X-dependent 
elasticity �(X).5

�(X) = −
� logD(x,X)

� logX
.

(FOC)�(X) =
��(X)

��(X) − 1
F,

(SOC)X��(X) ≥ −
1

�2

�(X)F

(�(X) − F)2
.

�(X) =
�

� − 1
F,

4  See “Appendix” for proofs.
5  Expanding the analysis to other, non-constant-elasticity, demand functions would amount to introduc-
ing non-constant �(X) in these expressions. Our assumption of constant � therefore allows us to focus on 
the dependence on stochastic processes in a cleaner fashion.

3  This elasticity does not depend on current demand level x ≤ X , as can be observed from noting that 
D(x1,X) = D(x1, x2)D(x2,X) for any x1 ≤ x2 ≤ X (by the tower property of conditional expectations), and 
taking logarithmic derivatives with respect to X on both sides.
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Provided there is a solution of the first-order condition with 𝛾𝛽(X) > 1 , this first-
order condition demonstrates that there is option value in waiting: variable benefits 
� , at the moment of investing T, are strictly larger than the fixed costs of investing F. 
The difference reflects the well-known opportunity costs of exercising the option to 
wait; these opportunity costs need to be added to actual fixed costs F to determine 
optimal investment.

As we saw before, in the presence of information asymmetry on variable costs c, 
the optimal contract that the principal writes with the agent will require maximizing 
virtual surplus, which involves a marginal cost parameter c that has been increased 
to reflect asymmetric information for all but the most efficient agents. For answering 
the question how the principal optimally distorts investment timing and quantities, 
we then need to consider how both X and q change as c is increased from its real 
value for a high-cost agent, c̄ , to its virtual value c̃ > c̄ . This can again be conveni-
ently phrased in terms of the elasticity �(X) , and its derivative ��(X) , as the follow-
ing proposition shows.

Proposition 2  In the equilibrium, we have comparative statics

and, secondly, the sign of the derivative of investment quantity q with respect to 
marginal cost c is given by the sign of

A sufficient condition for quantity q to decrease with increasing c is that ��(X) ≥ 0.

The first comparative static, the effect of increasing costs c on X, the investment 
threshold, is always positive. This means that for any stochastic process, introducing 
asymmetric information will result in a delay of investment for the high-cost agent, 
as virtual costs will exceed actual costs for this type. The intuition for this is that, 
whatever the stochastic process, delay will make it less attractive for low-cost agents 
to grab the benefits of the larger remuneration handed out to the (genuinely) high-
cost agent: this higher remuneration will be paid out later, and hence will have lower 
present value.

The second result relates to our main question. From the former result, the invest-
ment threshold X (and hence the value to the principal of increased quantity, P(q)) 
increase for the high-cost agent as a result of asymmetric information. This effect 
gives upward pressure on the optimal quantity q for this type. On the other hand, 
the higher virtual costs also make producing this higher q less attractive: this is 

𝜕 logX

𝜕 log c
=

(1 − 𝛾)
𝜋(X)F

𝛾2(𝜋(X)−F)2

X𝛽�(X) +
𝜋(X)F

𝛾2(𝜋(X)−F)2

> 0

d log q

d log c
=

1

�

�
� logX

� log c
− 1

�

=
1

�

⎛⎜⎜⎝

(1 − �)
�(X)F

�2(�(X)−F)2

X��(X) +
�(X)F

�2(�(X)−F)2

− 1

⎞⎟⎟⎠
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the Baron–Myerson effect, which encapsulates the loss in principal’s welfare from 
low-cost types extracting informational rents. Which of these two effects dominates 
depends on the sign of the second expression. As long as ��(X) ≥ 0 , we see that it is 
the Baron–Myerson effect that is the most important, and q̄ shrinks as informational 
asymmetries increase. (And for sufficiently small negatively sloped � , that remains 
the case.)

As we will see presently, �(X) is indeed non-decreasing for a class of well-known 
stochastic processes, including geometrical Brownian motion (which has constant 
elasticity � ) and arithmetic Brownian motion. In those cases, the Baron–Myerson 
effect, a downward distortion in quantities in response to asymmetric information, 
therefore dominates the increased threshold price at which investment takes place in 
the real option context.

As Proposition 2 also shows, there is some scope for quantities increasing with 
costs c. That would imply that asymmetric information causes the invested quan-
tities to increase, rather than decrease: the larger marginal value of quantity from 
waiting longer (higher threshold X) in that case outweighs the Baron–Myerson effect 
that favours quantity reductions. In this case elasticity � must be negatively sloped. 
The extent to which that is possible is limited by the second-order condition, which 
requires the denominator in the comparative statics expression in proposition 1 to 
be positive. We will present an example of such a process later. But first, we will 
study �(X) , its relation with the stochastic process, and its form in some often-used 
stochastic processes.

4 � The Relation Between Elasticity ˇ(X) and the Stochastic Process

It is clear that, if we know the stochastic process, characterized by drift �(x) and 
volatility �(x) , we can compute, in principle, the discount rate D(x, X), and hence its 
elasticity �(X) . As remarked before, for example, for GBM, this discount rate equals 
(x∕X)�1 , leading to constant elasticity �1 , with �1 the positive root of the characteris-
tic quadratic equation (1).

Likewise, we can compute elasticity for other often used processes (Dixit et al., 
1999), such as arithmetical Brownian motion, dx = �dt + �dz , which has

(where � is the positive solution of r = �� +
1

2
�2�2 ), for which clearly elasticity 

�(X) is increasing in X.6
It is also instructive to work in the reverse direction and derive a stochastic pro-

cess from the elasticity, �(X) . To do so, note that, by the definition

D(x,X) = e−�(X−x), and �(X) = �X,

6  Another example from Dixit et  al. (1999) involves mean-reversion of the form 
dx = 𝜂(x̄ − x)xdt + 𝜎xdz , D(x, X) can be solved in terms of a particular kind of hypergeometric function; 
also here, elasticity is increasing in X.
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and the fact that D(X,X) = 1 , we can integrate to

Moreover, note that D(x, X) should satisfy the Hamilton-Jacobi-Bellman equation,

which in terms of the elasticity now reduces to the condition

This equation,  CQ, generalizes the characteristic quadratic (1) from geometrical 
Brownian motion, which corresponds to the special case where �(X) = � is constant, 
and �(x) = � and �(x) = � . Similarly, one can substitute �(X) = �X and recover that 
arithmetic Brownian motion, with �(x) = �∕x and �(x) = �∕x , is one solution to this 
case.

Looking at this generalized characteristic quadratic CQ, we may get more intuition 
for our result that increasing �(X) matters for determining effects on investment size 
q as costs increase. If ��(X) is negative, then CQ tells us that the drift rate �(x) must 
grow faster as x grows: the larger x becomes, the larger x’s growth rate, all else equal. 
If this effect is large enough, the expected growth in prices as a result of higher invest-
ment threshold will then, at some point, overtake the reduction in quantities through the 
Baron–Myerson effect.

Apart from the pure cases of arithmetic and geometric Brownian motion, this for-
mulation suggests considering a one-parameter family of stochastic processes, with 
�(X) = �X� ( � ≥ 0 ), that incorporates geometric and arithmetic Brownian motions 
as special cases. By substituting this �(X) into the generalized characteristic quadratic 
(CQ), we find that a simple stochastic process leading to this elasticity �(X) is

(with the constant � again satisfying r = �� +
1

2
�2�2 ). The discount functions asso-

ciated to this one-parameter family can be evaluated by (3) to

for 𝛼 > 0 , and D(x,X) =
(

x

X

)�

 for � = 0.
For � = 0 and � = 1 we recover the geometric and arithmetic Brownian motions, as 

mentioned. Also noteworthy is the case � =
1

2
 , with

�(X) = −
� logD

� logX
,

(3)D(x,X) = e
− ∫ X

x
�(s)

ds

s .

rD = �(x)xDx +
1

2
�2(x)x2Dxx,

(CQ)r = �(x)�(x) +
1

2
�2(x)

(
�(x)2 − �(x) + x��(x)

)
.

dx = (�x1−� + (1 − �)
1

2
�2x1−2�)dt + �x1−�dz

D(x,X) = e
−

�

�
(X�−x� )

dx = �(
√
x +

�2

4�
)dt + �

√
xdz,
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which for negative � is a mean reverting process, tending to a mean x̄ = 𝜎4

16𝜇2
 . By 

construction, all these processes have increasing elasticity �(X).
In the following, we will use this procedure of reverse engineering—if we are given 

the elasticity �(X) , what is the expected discount factor—to construct a stochastic 
process that will serve as a counterexample. The counterexample will be designed to 
feature a stochastic process where, in response to asymmetric information on variable 
costs c, investment will optimally be delayed for high-cost firms (as always), but invest-
ment quantity q for these firms will be higher, rather than lower, for these firms.

5 � A Counter example

Recall the line of argument: if we introduce asymmetric information into variable 
investment costs c, then real option investment timing and quantity will optimally be 
distorted away from first-best timing and quantity. The optimal distortion will involve 
contracts that look like those occurring in a model without asymmetric information 
where all costs c have been replaced with their virtual counterparts c̃ . For high-cost 
agents, these virtual costs are higher than their real costs.

As Proposition 2 demonstrated, replacing costs c with higher virtual costs c̃ always 
leads to delay in investment timing (first part of Proposition 2) compared to non-dis-
torted costs. This will be true for any process for x. The situation is different, however, 
for investment quantity q. As the second part of Proposition 2 showed, quantity q often 
goes down (compared to its symmetric information counterpart) in response the rise in 
cost levels from actual to virtual. The exception is when the elasticity of the expected 
discount rate, �(X) is sufficiently negatively sloped at its investment level.

To construct a (counter)example that illustrates this exception, and where quantity 
indeed increases in response to the introduction of asymmetric information, we now 
use the insights from the previous section. We will construct a suitable, negatively-
sloped, elasticity �(X) , and reverse-engineer a stochastic process that indeed results in 
an expected discount rate that features quantity expansion, rather than contraction, in 
response to the introduction of asymmetric information. The rise in price (created by 
the higher threshold X) upon investment is then sufficiently large to outweigh the reduc-
ing effect on quantity created by the increase in costs from c̄ to c̃.

To illustrate increasing quantity q, note that by Proposition 2, for such a increase to 
occur we need

to hold for all relevant c. Note, from equation (2) that the expressions defining those 

bounds depend on c through �(X) ∼ c

(
X

c

) 1

� . The first inequality is necessary for the 
second-order condition, making sure that there is real option value in delaying 
investment, while the second makes sure that ��(X) is sufficiently negative to create 
an expansion of quantity q in response to increasing the high-cost agent’s marginal 
cost c from its actual level c̄ to its virtual level c̃.

−
𝜋(X)F

𝛾2(𝜋(X) − F)2
< X𝛽�(X) < −𝛾

𝜋(X)F

𝛾2(𝜋(X) − F)2
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As an example of a function �(X) that satisfies both these bounds, we consider 
the case

for some parameter � satisfying 𝛾 < 𝛼 < 1 , and where 𝜋̄(X) equals �(X) evaluated at 
c = c̄,

This automatically ensures that ��(X) is within these bounds at c = c̄,X = X̄ , and by 
continuity extends to all c ≤ c ≤ c̃ provided neither Δc nor �

1−�
 is too large. By inte-

grating this expression for ��(X) , we then have

Proposition 3  An example for which investment quantity q increases as a result of 
asymmetric information is when �(X) satisfies

and

where 𝛾 < 𝛼 < 1 , 𝜋̄(X) equals �(X) evaluated at c̄ , and with integration constant 
𝛽 >

1

𝛾
.

The integration constant is chosen such that at first-best investment for a firm 
with marginal costs c̄ , elasticity at investment equals 𝛽  . As discussed earlier, we 
need 𝛾𝛽 > 1 at investment.

The discount function expression in proposition 3 has been constructed so as 
to lead to the phenomenon of demand growth X near the investment threshold 
to ‘out-speed’ contraction by the increase of investment costs, from c̄ to c̃ , as a 
reflection of the information asymmetry.

To get further insight into the characteristic that makes demand growth outstrip 
the need to reduce quantity in this constructed example, it is instructive to look 
at the process that governs the evolution of x in this construction, and compare 
it with the benchmark of geometric brownian motion. To do so, we need to rec-
ognize that a given �(x) (or equivalently, an expected discount function D(x, X)) 
is not associated with a unique stochastic process. For instance, for GBM, there 
is a family of �, � pairs that all lead to the same �1 , and hence the same discount 
function. All that is needed is that drift � and volatility � satisfy the characteristic 
quadratic, r = ��1 +

1

2
�2�1(�1 − 1).

X𝛽�(X) = −𝛼
𝜋̄(X)F

𝛾2(𝜋̄(X) − F)2

𝜋̄(X) = 𝛾(1 − 𝛾)
1

𝛾
−1
c̄

(
X

c̄

) 1

𝛾

.

𝛽(X) = 𝛼
F

𝛾(𝜋̄(X) − F)
+ (1 − 𝛼)𝛽 + 𝛼∕𝛾 ,

D(x,X) =

(
𝜋̄(x) − F

𝜋̄(X) − F

)𝛼(
𝜋̄(x)

𝜋̄(X)

)𝛾𝛽(1−𝛼)
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Similar logic applies to other stochastic processes: given �(x) , for any choice 
of volatility �(x) we can back out a drift function �(x) that solves the generalized 
characteristic quadratic CQ. In our case, one example might be taking �(x) = � 
constant (as in the standard GBM model). In that concrete example, we are look-
ing at a stochastic process

with

where �(x) is given by proposition 3, and

To give an impression of how these processes compare to GBM, Fig. 1 illustrates 
the path of demand x(t) in the deterministic variant, where � = 0 , alongside a simi-
lar path for geometric Brownian motion. Clearly, in the constructed counter-exam-
ple process, demand growth becomes progressively faster than the exponential 
growth exhibited by the regular GBM process. This faster demand expansion is then 
reflected in an expansion in invested capacity q as investment is delayed.

dx = �(x)xdt + �xdz,

�(x) =
r −

1

2
�2
(
�(x)2 − �(x) + x��(x)

)

�(x)

x𝛽�(x) = −𝛼
𝜋̄(x)F

𝛾2(𝜋̄(x) − F)2
.

Fig. 1   Exponential growth (Geometrical Brownian Motion with zero volatility) compared with demand 
growth for the counter-example process in its deterministic limit
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6 � Conclusion

In this paper, we explore the nature of investment distortions that result from infor-
mation asymmetries between providers of capital and management of firms in a real 
option setting. One may think of regulatory investment problems, where for example 
an energy network firm needs to sink capital, on behalf of a regulator, into network 
expansion or into new, green technology. Or of an industrial firm that invests in new 
production capacity on behalf of outside capital providers, such as shareholders or 
banks.

We focus here on those investments that have real option characteristics: pay-offs 
are stochastic, investments are irreversible. As is well known (Dixit and Pindyck, 
1994), in that context investment timing is non-trivial, as there may be option value 
to delaying the investment. We further assume that there is information asymme-
try on the marginal costs of those investments: the firm knows its marginal costs, 
the principal (regulator, shareholder) does not. In typical principal-agent models of 
this kind, investment sizes tend to be reduced compared to first-best size (Baron and 
Myerson, 1982). The reason is that the agent tends to overstate its costs, hoping to 
get a better deal. By reducing quantities, the principal diminishes the incentive for 
such cost exaggeration.

The main message of this paper is that there is a counterveiling effect to that 
quantity reduction if we also take into account investment timing. Postponing invest-
ments is another well-known strategy to induce truthful cost revelation. Since that 
strategy leads to higher demand for investment to occur, quantities may actually 
increase relative to the first-best. We characterize stochastic demand processes for 
which this effect outweighs the standard Baron–Myerson effect. As a by-product, 
we adapt a methodology for dealing with less standard stochastic processes in real-
option analysis due to Dixit et al. (1999).

Appendix: Proofs

Proof of proposition 1  We have total profits upon investment equal to �(X) − F , 
where �(X) is the variable part of profits,

with 0 < 𝛾 < 1 . Maximization over q occurs at

(provided 𝜋(X) > F at that value), so that

from which it will be convenient to notice that X ��

�X
=

�

�
.

�(X) = max
q

(
Xq1−� − cq

)
,

(1 − �)Xq−� = c,

�(X) = �(1 − �)
1

�
−1
(
X

c

) 1

�

c
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For the real option problem, we need to maximize

For the first-order conditions, computationally, it is convenient to consider the loga-
rithm of this expression, and take the derivative with respect to logX to find

with �(X) the elasticity of the discount factor,

The first-order condition can be rewritten in the more usual real-option investment 
rule

The second-order condition can straightforwardly be obtained from acting with X d

dX
 

on (4), again using the equality X ��

�X
=

�

�
 . Demanding that our solution is a maxi-

mum then places a lower bound on ��(X):

	�  □
Proof of Proposition 2  We are interested in how both X and, ultimately, q, depend on 
c. From the first-order condition (4), by the implicit function theorem we have

(where the sign follows from the second-order condition).
Since q ∼

(
X

c

)1∕�

 we then have

It is then clear that the sign of dq
dc

 is certainly negative for 𝛽�(X) > 0 , and that the 
lower bound on X��(X) for that sign is

max
X

D(x,X)(�(X) − F).

(4)−�(X) +
�∕�

� − F
= 0

�(X) = −
� logD

� logX
.

�(X) =
��(X)

��(X) − 1
F.

X𝛽�(X) +

𝜋F

𝛾2

(𝜋 − F)2
> 0.

𝜕 logX

𝜕 log c
=

(1 − 𝛾)
𝜋F

𝛾2(𝜋−F)2

X𝛽�(X) +
𝜋F

𝛾2(𝜋−F)2

> 0

d log q

d log c
=

1

�

�
� logX

� log c
− 1

�

=
1

�

⎛⎜⎜⎝

(1 − �)
�F

�2(�−F)2

X��(X) +
�F

�2(�−F)2

− 1

⎞⎟⎟⎠
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Since 𝛾 < 1 , there is a narrow scope for X��(X) to violate this condition while still 
satisfying the second-order condition, which we will exploit in the counterexample. 	
� □

Proof of Proposition 3  For the counterexample in which q rises as a result of asym-
metric information, and the associated increase of high-type cost c̄ to virtual cost 
level c̃ = c̄ +

𝜙

1−𝜙
Δc , we need a sufficiently negatively sloped �(X) in the relevant 

range, satisfying

(satisfied with � evaluated at any c in the relevant range). The left-hand inequality is 
the second-order condition: we want there to be a positive option value of delay; the 
right-hand inequality makes sure that q is going to increase as we increase c from c̄ 
to c̃.

To find a stochastic process, with a discount factor D(x, X), satisfying these con-
ditions, let us pick a � sloped in between those two values, and then integrate to find 
�(X) , and hence D(x, X). We will pick

with 𝛾 < 𝛼 < 1 , with 𝜋̄(X) equal to the profit function �(X) evaluated for c = c̄,

(E.g., � =
√
�  , the geometric mean of 1 and � , would do.) As long as asymmetric 

information is not too large, the relevant bounds will then continue to hold also for 
c = c̃.

We can now integrate ��(X) . It is convenient to change variables from X to 

𝜋̄(X) ∼
(

X

c̄

) 1

𝛾

c̄ , noting that X d�

dX
=

�

�
 . We then have

We will choose the integration constant to set the level �(X) for efficient investment 
at costs c̄ to some 𝛽  that satisfies 𝛾𝛽 > 1 , as is necessary for delay to be optimal. 
That choice then fixes the threshold level X̄ associated with costs c̄ to satisfy the 
first-order condition

X𝛽�(X) > −𝛾
𝜋F

𝛾2(𝜋 − F)2
.

−
𝜋(X)F

𝛾2(𝜋(X) − F)2
< X𝛽�(X) < −𝛾

𝜋(X)F

𝛾2(𝜋(X) − F)2

X𝛽�(X) = −𝛼
𝜋̄(X)F

𝛾2(𝜋̄(X) − F)2

𝜋̄(X) = 𝛾(1 − 𝛾)
1

𝛾
−1
c̄

(
X

c̄

) 1

𝛾

.

𝛽(X) = 𝛼
F

𝛾(𝜋̄(X) − F)
+ constant.

𝜋̄(X̄) =
𝛾𝛽

𝛾𝛽 − 1
F, or 𝛾𝛽 =

𝜋̄(X̄)

𝜋̄(X̄) − F
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In order to achieve that, we need to choose the constant to equal

Next, integrating once again, we can find the discount function D(x, X):

which then leads to

or

	�  □
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