2,030 research outputs found

    Optimizing expected word error rate via sampling for speech recognition

    Full text link
    State-level minimum Bayes risk (sMBR) training has become the de facto standard for sequence-level training of speech recognition acoustic models. It has an elegant formulation using the expectation semiring, and gives large improvements in word error rate (WER) over models trained solely using cross-entropy (CE) or connectionist temporal classification (CTC). sMBR training optimizes the expected number of frames at which the reference and hypothesized acoustic states differ. It may be preferable to optimize the expected WER, but WER does not interact well with the expectation semiring, and previous approaches based on computing expected WER exactly involve expanding the lattices used during training. In this paper we show how to perform optimization of the expected WER by sampling paths from the lattices used during conventional sMBR training. The gradient of the expected WER is itself an expectation, and so may be approximated using Monte Carlo sampling. We show experimentally that optimizing WER during acoustic model training gives 5% relative improvement in WER over a well-tuned sMBR baseline on a 2-channel query recognition task (Google Home)

    Semi-Supervised Radio Signal Identification

    Full text link
    Radio emitter recognition in dense multi-user environments is an important tool for optimizing spectrum utilization, identifying and minimizing interference, and enforcing spectrum policy. Radio data is readily available and easy to obtain from an antenna, but labeled and curated data is often scarce making supervised learning strategies difficult and time consuming in practice. We demonstrate that semi-supervised learning techniques can be used to scale learning beyond supervised datasets, allowing for discerning and recalling new radio signals by using sparse signal representations based on both unsupervised and supervised methods for nonlinear feature learning and clustering methods

    Soft margin estimation for automatic speech recognition

    Get PDF
    In this study, a new discriminative learning framework, called soft margin estimation (SME), is proposed for estimating the parameters of continuous density hidden Markov models (HMMs). The proposed method makes direct use of the successful ideas of margin in support vector machines to improve generalization capability and decision feedback learning in discriminative training to enhance model separation in classifier design. SME directly maximizes the separation of competing models to enhance the testing samples to approach a correct decision if the deviation from training samples is within a safe margin. Frame and utterance selections are integrated into a unified framework to select the training utterances and frames critical for discriminating competing models. SME offers a flexible and rigorous framework to facilitate the incorporation of new margin-based optimization criteria into HMMs training. The choice of various loss functions is illustrated and different kinds of separation measures are defined under a unified SME framework. SME is also shown to be able to jointly optimize feature extraction and HMMs. Both the generalized probabilistic descent algorithm and the Extended Baum-Welch algorithm are applied to solve SME. SME has demonstrated its great advantage over other discriminative training methods in several speech recognition tasks. Tested on the TIDIGITS digit recognition task, the proposed SME approach achieves a string accuracy of 99.61%, the best result ever reported in literature. On the 5k-word Wall Street Journal task, SME reduced the word error rate (WER) from 5.06% of MLE models to 3.81%, with relative 25% WER reduction. This is the first attempt to show the effectiveness of margin-based acoustic modeling for large vocabulary continuous speech recognition in a HMMs framework. The generalization of SME was also well demonstrated on the Aurora 2 robust speech recognition task, with around 30% relative WER reduction from the clean-trained baseline.Ph.D.Committee Chair: Dr. Chin-Hui Lee; Committee Member: Dr. Anthony Joseph Yezzi; Committee Member: Dr. Biing-Hwang (Fred) Juang; Committee Member: Dr. Mark Clements; Committee Member: Dr. Ming Yua

    Soft Margin Estimation with Various Separation Levels for LVCSR

    Get PDF
    ABSTRACT We continue our previous work on soft margin estimation (SME) to large vocabulary continuous speech recognition (LVCSR) in two new aspects. The first is to formulate SME with different unit separation. SME methods focusing on string-, word-, and phonelevel separation are defined. The second is to compare SME with all the popular conventional discriminative training (DT) methods, including maximum mutual information estimation (MMIE), minimum classification error (MCE), and minimum word/phone error (MWE/MPE). Tested on the 5k-word Wall Street Journal task, all the SME methods achieves a relative word error rate (WER) reduction from 17% to 25% over our baseline. Among them, phone-level SME obtains the best performance. Its performance is slightly better than that of MPE, and much better than those of other conventional DT methods. With the comprehensive comparison with conventional DT methods, SME demonstrates its success on LVCSR tasks

    On the development of an automatic voice pleasantness classification and intensity estimation system

    Get PDF
    In the last few years, the number of systems and devices that use voice based interaction has grown significantly. For a continued use of these systems, the interface must be reliable and pleasant in order to provide an optimal user experience. However there are currently very few studies that try to evaluate how pleasant is a voice from a perceptual point of view when the final application is a speech based interface. In this paper we present an objective definition for voice pleasantness based on the composition of a representative feature subset and a new automatic voice pleasantness classification and intensity estimation system. Our study is based on a database composed by European Portuguese female voices but the methodology can be extended to male voices or to other languages. In the objective performance evaluation the system achieved a 9.1% error rate for voice pleasantness classification and a 15.7% error rate for voice pleasantness intensity estimation.Work partially supported by ERDF funds, the Spanish Government (TEC2009-14094-C04-04), and Xunta de Galicia (CN2011/019, 2009/062

    A motion-based approach for audio-visual automatic speech recognition

    Get PDF
    The research work presented in this thesis introduces novel approaches for both visual region of interest extraction and visual feature extraction for use in audio-visual automatic speech recognition. In particular, the speaker‘s movement that occurs during speech is used to isolate the mouth region in video sequences and motionbased features obtained from this region are used to provide new visual features for audio-visual automatic speech recognition. The mouth region extraction approach proposed in this work is shown to give superior performance compared with existing colour-based lip segmentation methods. The new features are obtained from three separate representations of motion in the region of interest, namely the difference in luminance between successive images, block matching based motion vectors and optical flow. The new visual features are found to improve visual-only and audiovisual speech recognition performance when compared with the commonly-used appearance feature-based methods. In addition, a novel approach is proposed for visual feature extraction from either the discrete cosine transform or discrete wavelet transform representations of the mouth region of the speaker. In this work, the image transform is explored from a new viewpoint of data discrimination; in contrast to the more conventional data preservation viewpoint. The main findings of this work are that audio-visual automatic speech recognition systems using the new features extracted from the frequency bands selected according to their discriminatory abilities generally outperform those using features designed for data preservation. To establish the noise robustness of the new features proposed in this work, their performance has been studied in presence of a range of different types of noise and at various signal-to-noise ratios. In these experiments, the audio-visual automatic speech recognition systems based on the new approaches were found to give superior performance both to audio-visual systems using appearance based features and to audio-only speech recognition systems
    corecore