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Abstract 

In the last few years, the number of systems and devices that use voice based interaction has grown significantly. For a continued 

use of these systems, the interface must be reliable and pleasant in order to provide an optimal user experience. However there are 

currently very few studies that try to evaluate how pleasant is a voice from a perceptual point of view when the final application 

is a speech based interface. In this paper we present an objective definition for voice pleasantness based on the composition of a 

representative feature subset and a new automatic voice pleasantness classification and intensity estimation system. Our study is 

based on a database composed by European Portuguese female voices but the methodology can be extended to male voices or to 

other languages. In the objective performance evaluation the system achieved a 9.1% error rate for voice pleasantness classification 

and a 15.7% error rate for voice pleasantness intensity estimation. 
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1. Introduction 

 
Text-to-Speech (TTS) technology has dramatically improved in the last few years and the inclusion of this mature 

technology in our daily lives is now a reality. We can easily find examples such as GPSs, smartphones, reading 

assistants, interactive voice response (IVR) and automotive applications that assist us in several tasks. Intelligibility 

is fully required for any commercial system and several systems are becoming progressively more natural. However 

there are users that don’t feel fully satisfied with their products and often say that the voice is boring, that the style is 

not very friendly or even that they dislike the sound of the voice, among others. To try to answer to these complaints, 

we decided to study the concept of voice pleasantness according to the definitions found in Fellbaum (1998) in which 

“Pleasantness is the feeling caused by agreeable stimuli”, and in Oxford Dictionary (2009) where pleasantness is what 
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gives “a sense of happy satisfaction or enjoyment”. This is distinct from the concept of attractiveness (“appealing to 

the senses”, “sexually alluring” Oxford Dictionary, 2009) which was also evaluated but is out of the scope of this work. 

The concept of voice pleasantness and the suitability of a given voice to be used on a given communicative situation 

are barely touched by scientific literature (Schröder, 2009). Recently, Campbell (2008) integrated the concept in the 

area of expressive/affective speech as a form of subtle emotion where it appears as a desired feature in TTS systems 

while the interaction between speaker and listener is shifted from a typical “read speech towards a more conversational 

style of speech”. To characterize expressive speech we often find references to voice quality and prosody parameters 

and Montero et al. (1999) and Audibert et al. (2006) showed that these can be combined with distinct weights to 

convey a given expression. Additionally, voice pleasantness can be seen as a more permanent attribute than the intense 

and time limited emotions often found in the expressive speech literature. This characteristic allows to envision an 

integration on a speaker identification framework. From these studies and distinct perspectives we start to see that voice 

pleasantness is indeed a complex concept that encompasses several dimensions and, in this way, its analysis can benefit 

from areas such as voice quality, speaker identification and emotion recognition. Based on our theoretical framework 

we will mainly rely on the later but always with support from the first two. 

We have previously explored correlations between subjective ratings and objective features in Braga et al. (2007b) 

and the creation of the database on which we relied is described in Braga et al. (2007a). A first study on voice 

pleasantness classification, using a small multilingual corpus, was published in Coelho et al. (2011). 

In this work the main goals and novelties are (a) the presentation of an objective definition for voice pleasantness 

based on the composition of a representative feature subset and (b) the optimization of a voice pleasantness evaluation 

pipeline that allows to automatically identify occurrences of the concept as well as estimating its intensity. 

We have specifically focused on European Portuguese (EP) since we had a very homogeneous database with an 

extensive base of subjective evaluations. The multi-lingual problem will be analysed in a future work. 

 
1.1. Background 

 
From the listener’s point of view, when evaluating the impact of the message as stimuli, there are very few studies but 

the topic is gaining importance. In first reported studies the authors mainly explore correlations between subjective and 

objective data and the supporting databases are often small and not specific for the analysis of the voice pleasantness 

topic. For example, Syrdal et al. (1998) conducted a study in order to check the suitability of a speakers’ voice to 

develop a TTS system, based on the assumption that the perceived quality of a natural voice does not necessarily mean 

synthesized voice quality. The authors have explored the correlation between acoustic characteristics and the subjective 

attributes of synthetic speech quality (intelligibility, naturalness and pleasantness). The speakers’ selection process is 

said to have been made empirically although all the candidates (6 females and 9 males) were professional speakers. 

Another example is the work of Yabuoka et al. (2000) who evaluated psychometric scales and correlated the results 

with an objective evaluation of the acoustic signal. The analysis was mainly directed to investigate the behaviour of the 

scales and not to the objective definition of the psychometric scales. The authors showed that the objective variables 

can be grouped into two factors: one related to “clarity” and the other one related to “sensation”. However, concerning 

the type and structure of the subjective test, very little details were given. 

From an emotion perception point of view, Gobl and Chasasaide (2003) and Yanushevskaya et al. (2008) showed 

that it can be highly influenced by voice quality parameters and Lugger and Yang (2008) have used the same parameters 

to identify happy, bored, neutral, sad, angry and anxious states with very good results for a set of 10 speakers. However 

there is still a lack of agreement in existent literature on the definition of the optimal features for characterizing emotions 

(Schuller, 2010). 

On similar fields, we find the work of Biadsy et al. (2008) that explored judgements of charisma in Standard 

American English and Palestinian Arabic speech in a series of perceptual experiments. The authors investigated 

acoustic, prosodic, and lexical clues that could identify charismatic speech. From an objective point of view, using 

acoustic–prosodic features, the authors found, for both cultures, that longer speech segments, with frequent changes in 

f0, a dynamic usage of different speaking rates and variations in intensity across intonational phrases, were perceived 

as being charismatic. 

More recently, we can find studies that encompass an extended set of features and rely on machine learning techniques 

for a deeper analysis. Weiss and Burkhardt (2010) correlated listener’s likability ratings with an acoustic analysis using 

emotionally neutral sentences from emoDB (Burkhardt and Paeschke, 2005). High articulation rate, lower spectral 



  

 

 

 

Fig. 1. System’s development pipeline. 
 

centre of gravity and higher spectral standard deviation and skewness provided some of the highest correlations for 

female speakers. In part, these results are aligned with those obtained by Braga et al. (2007a). The authors have also 

developed a binary classification system that achieved 62.9% accuracy. Burkhardt et al. (2011) have presented results 

for a binary classification of voice pleasantness using the Agender database (Burkhardt et al., 2010). Despite the large 

number of speakers, the evaluations were performed using sentences with a command embedded and not always with 

the same content. The reported accuracy of the system was 67.6%. 

 
1.2. Work overview and document structure 

 
For our purposes we will follow a general machine learning framework. The lack of agreement in existing literature 

on the definition of the optimal features for characterizing emotions and the scarce number of studies that specifically 

cover voice pleasantness are the main motivations for the use of this approach since, in the presence of such conditions, 

it can provide a robust and flexible framework independently of data’s nature and allows the exploration of a large 

number of parameters for system’s fine tuning. Our pipeline is organized on a six stage sequence, as depicted in Fig. 1, 

with function blocks representing the main tasks sets. The specific functions performed on each block will be detailed. 

In the next section, we present a description of the used methodology starting with an overview of the system’s 

architecture which will then be detailed in the ensuing sub-sections. We will thoroughly cover the construction of our 

database and how we analysed the paralinguistic information conveyed in the message in parallel with the psychometric 

variables to measure the reaction of the listener to the provided stimuli. Afterwards, we will describe the extraction 

and selection of features as well as the development of a model that could hold the main variables that describe voice 

pleasantness and how they interact between themselves. Finally, after training and evaluating the system, we will 

present a thorough discussion of the obtained results and the final conclusions followed by some envisioned future 

work. 

 
2. Experimental framework 

 
2.1. Database 

 
The database that supported the development of this work is exclusively composed by female voices. These voices 

belong to professional speakers, with radio, theatre or other vocal experience, and were recorded during voice talent 

selection processes for the development of new TTS systems. The related recording procedure as well as the quality 

requirements that were imposed during the processes have been previously published (Braga et al., 2007b) and for this 

work we will only mention the relevant features. Our database was composed by 77 recordings of distinct speakers, 

around 3 min of speech each, containing phonetically and prosodically rich sentences which allowed the expression 

of emotions. The speakers, with EP as mother tongue, had an age range between 20 and 42 years and were all 

native, speaking the standard dialectal variety (since regional varieties can lead to less positive evaluations Eklund 

and Lindström, 2001; van Bezooijen, 2005). All the speakers had their own very personal speaking style which 

allowed to obtain a good diversity for each parameter. 

 
2.2. Subjective evaluation 

 
To evaluate the recorded speech we conducted a survey, using a web application, where each utterance was rated 

according to pleasantness (and other factors) using a 5 points scale. The exact statement to be rated was “This voice is 

the most pleasant, has the right melody and is not monotonous at all”. The utterances were presented in random order 

and the listeners were asked to use headphones during the evaluation. The survey received 112 responses, from male 

and female listeners, native and non-native speakers, in an age range from 23 to 60 years old. The inter-rater agreement 



  

 

was analysed using the Kendal’s (Kendall and Smith, 1939) coefficient of concordance. The obtained value was 0.673 

which indicates moderate to substantial agreement among listeners. 

The subjective evaluation raised several issues related to potential biasing factors. Sex, age, expertise or native/non- 

native speaker, factors that go beyond the simple selection of parameters, can possibly bias the listeners’ judgement 

analysis. One major concern was the level of expertise on speech processing, since the listeners had distinct backgrounds. 

A similar problem is addressed by Kreiman et al. (1990) that concludes “that perceptual strategies between more and 

less experienced listeners are not different, but rather that these listeners adopt different baselines during perceptual 

tasks”. To reduce the group variance the listeners were asked to rate the voices more emotionally rather than using any 

of their previous experience on the subject. 

 
2.3. Protocol 

 
Using the listeners’ voice pleasantness ratings (1–5) we divided the database records into two major classes: pleasant 

(P) and not pleasant (NP). The first class contained the voices ratted in the two highest scale positions (35 voices) while 

the second was composed by the voices ranked in the remaining positions (42 voices). The voice pleasantness ratings 

were used to train the voice pleasantness intensity model while the classes were used to train the classification module. 

We have used a 10-fold cross validation methodology and on every group we have tried to keep a similar P/NP ratio. 

 
3. Feature extraction and selection 

 
The construction of an optimal feature vector is always a major concern in machine learning problems. On one hand, 

because it is very difficult, in the presence on a new problem, to identify, from an extremely large set of possibilities, 

what features will better describe our classes and lead to the best results. On the other hand, because the complexity 

of most methodologies grows exponentially when the number of features increases, having a reduced feature set can 

help to significantly reduce the computational requirements. 

 
3.1. Feature extraction 

 
For the study of speech we mainly found two approaches: one, where a small set of descriptors is carefully selected 

based on the authors expertise and another where a huge number of features is extracted and processed in a posterior 

stage. In the latest years, with the appearance of several feature extraction tools, such as OpenEAR (Eyben et al., 

2009), and with the improvement of feature selection algorithms, we have assisted to an increase on the number of 

features allowing to explore additional dimensions. For these reasons the second approach is becoming more popular. 

In our case, since we were working with a small database, we had an extra concern because most machine learning 

algorithms methods require a sufficient number of records in relation to the number of features in order to provide 

robust and meaningful results. We decided to use a mixed approach where we first selected a set of features, based 

on the experience of other authors in this area and in adjacent areas, and second we used a feature selection stage to 

obtain an optimized subset. 

Hence we started with features from the clinical and voice quality areas. The GRBAS (grade, roughness, breathiness, 

asteny and strain) scale (Pinho and Pontes, 2002) is a typical subjective scale in the clinical field although some objective 

features are also used. Fundamental frequency and associated dynamics, as well as shimmer, jitter, Harmonic to Noise 

Ratio (HNR) (Lopes et al., 2008) and Normalized Amplitude Coefficient (NAQ) (Alku et al., 2002), are popular features. 

From an intelligibility perspective we see that its assessment is highly dependent on the proper articulation of the 

language sounds according to its standard and that it can vary significantly when dialectal variations are involved, even 

among speakers of the same language. However Amano-Kusumoto and Hosom (2009) and later Coelho et al. (2010) 

showed that parameters such as formant trajectories in vowels and segmental durations have paramount importance 

in speech intelligibility. From the naturalness point of view we have found references to measures of artefacts or 

discontinuities (Mayo et al., 2011). From the speaker identification point of view we mainly find acoustic features or 

spectral models which are combined into a speaker model that can be seen as a unique voice signature (Campbell, 

1997; Kinnunen and Li, 2010). Finally, from the emotional point of view, there is still a lack of agreement concerning 

the features that lead to optimal identification results (Schuller, 2010) while the task complexity has enlarged with the 

high increase on the number of involved features over the years. For example, Ververidis et al. (2004) used 87 acoustic 



  

 

features to recognize 5 emotions, Schuller et al. (2006) used 4000 parameters to identify 7 emotions while in Stuhlsatz 

et al. (2011) a 6552 dimensional vector was used. Such a large number of features requires very large databases in 

order to achieve sufficient model robustness and only cross-corpora studies can lead to more general solutions (Schuller 

et al., 2010; Stuhlsatz et al., 2011). 

On the voice pleasantness area there are small differences from the emotion analysis in terms of extracted features. 

In the work of Syrdal et al. (1998), RMS energy, breathiness, long-term spectra, f0, formants and their bandwidths, 

speaking rate, and TTS concatenation and target costs are used for TTS voice pleasantness evaluation. On the other 

hand, Yabuoka et al. (2000) showed that the objective variables, such as cepstrum distance, amplitude distortion, and 

waveform distortion, can provide a sensation of “clarity” while phase distortion and differential spectrum distortion 

can be related to “sensation”. Chattopadhyay et al. (2003) used speech rate, pausing and pitch to identify a positive 

attitude towards voices advertisement. Also in a persuasion related study, Weiss and Burkhardt (2010) used 988 features 

for correlating voice likability with subjective ratings for classification purposes. Burkhardt et al. (2011) used 4368 

features comprising groups of low-level descriptors and a set of functionals for each group. Auditory spectral features 

provided the best contribution for reliable binary voice likability classification estimates. 

Nevertheless and as in Schuller et al. (2007), for most cases a combination of prosody, voice quality and spectral 

parameters and their dynamics always seem to provide the best results. Hence, our prototype vector encompassed a 

broad range of signal aspects, covering intra- and inter-period characteristics, time and frequency domains contents 

and several statistics that could complement the raw information. It was organized in four groups: (a) acoustic features, 

(b) signal features, (c) periodicity features and (d) phonation speed features. 

For the creation of the prototype feature vector we also took into account the recommendations of Wolf (1972) who 

advocates that the used features should occur naturally and frequently in normal speech, be easily measurable, have 

high variability between speakers, be consistent for each speaker, not change over time or be affected by the speaker’s 

health and not be affected by reasonable background noise. In the first group (a), we considered the fundamental 

frequency (f0) envelope and its first (8,.f0) and second derivatives (8,.8,.f0). From these we calculated four first order 

statistics, namely average (Av), standard deviation (Std), skewness (Sk) and kurtosis (Kt), and extracted the maximum 

(Max) and minimum (Min) values of the envelope (minimum was obtained excluding zeros). For four vowels, namely 

/a/, /6/, /i/ and /u/ (using IPA-SAMPA representation) which are the most frequent for EP (Teixeira et al., 2001), we 

have extracted the first four formants and their related bandwidth ([V]i represents the frequency of formant i for vowel 

[V]) and also calculated the six above-mentioned functionals. The second group (b) included the instantaneous power 

(P) obtained by following a similar procedure to the one described for f0. A possible voice quality factor is the stability 

and cross period coherence of the signal in voiced sounds. This information was included in the third group (c) where 

we have considered jitter (J), shimmer (S) and harmonic-to-noise ratio (HNR). For each parameter we considered 

several varieties since they could provide non-redundant information. For jitter we have considered local jitter (Jloc) 

we have also included other similar metrics (that can provide non-redundant information): absolute jitter (Jabs), relative 

average perturbation (Jrap), period perturbation quotient and periodic difference (Jddp). We accounted for six varieties 

of shimmer: local (Sloc), local in dB (SdB), periodic difference (Sddp) and three amplitude perturbation quotients 

computed for distinct neighbourhoods using 3, 5 and 11 points. We also used harmonic to noise ratio (HNR) and 

the same value in dB (HNRdb). All jitter, shimmer and harmonicity parameters were calculated according to Praat’s 

(Boersma, 2001) description. Finally, the last feature group (d) composed of phonation speed metrics, includes the 

word rate (WR), as words per second, speaking rate (SR), as phonemes per second, and pause rate (PR), as the relation 

between pause time and total speaking time. The final prototype vector composition is shown in Table 1. 

Besides the described parameters we also have considered a speaker model based on 16 MFCCs extracted from 

20 ms windows with 5 ms overlaps, considering 4 Gaussian mixtures. This model, based on perceptually weighted 

parameters, can provide useful information on speaker identification systems that can share several similarities with 

the voice pleasantness evaluation problem. Since this model can only be considered as a whole we treated it separately 

and no MFCC features were used during the feature selection stage. 

 
3.2. Multi-criteria feature selection 

 
The prototype feature vector described in the previous section is composed by 179 dimensions. This number brings 

an increased complexity for the development of the classifier and some of the components may provide little or 

redundant information for the task. Additionally, from a machine learning point of view, it is necessary to have a 



  

 
Table 1 

Composition of prototype feature vector for voice pleasantness analysis. 
 

Group Feat. Stat. # 

Acoustic f0, 8,.f0, 8,.8,.f0 Av, Std, Kt, Sk, Min, Max 18 

 4 × Vow.: 4Fmt Av, Std, Kt, Sk, Min, Max 64 

 4 × Vow.: 4Bw Av, Std, Kt, Sk, Min, Max 64 

Signal P, 8,.P, 8,.8,.P Av, Std, Kt, Sk, Min, Max 18 

Periodicity Jitter – 4 

 Shimmer – 6 

 HNR, HNRdb – 2 

Phonation speed WR, SR, PR – 3 

 

 

sufficiently large database to ensure an adequate generalization performance of the involved models. This is usually 

not the case. Since the increase in the number of records may not be easy, it is common to use two distinct categories 

of algorithms to reduce the size of the feature vector: one operates by transforming the feature space and the other 

one is a goal oriented search in order to find an optimized feature subset space. In both cases the aim is to maximize 

the class discriminative power and to reduce information redundancy (Theodoridis and Koutroumbas, 2006). In the 

first category we can find linear methods, such as Principal Components Analysis or Multidimensional Scaling (Borg 

and Groenen, 2005), and non-linear methods, like Self Organizing Maps (Kohonen, 2000) or ISOMap (Tenenbaum 

et al., 2000). van der Maaten and Hinton (2008) and van der Maaten and van den Herik (2009) have compared 32 

popular dimensionality reduction techniques and have concluded that “nonlinear techniques are often not capable of 

outperforming traditional techniques such as PCA”. In the second category there is a wide variety of methodologies and 

the large amount of published articles, often contradictory, makes it difficult to clearly select the option that will best 

suit a given problem or dataset. Zhao et al. (2009) performed a comparison of twelve commonly used feature selection 

methodologies using several distinct datasets and showed that simple methodologies, such as the t-test, can perform 

as good as other modern and more complex approaches, like the Kruskal–Wallis methodology (Cover and Thomas, 

1991). In the emotion recognition arena, Luengo (2010) has developed a system centred in the basic Ekman’s big six 

(Ekman et al., 1969), that achieved good results using the mRMR feature selection methodology (Peng et al., 2005) 

(also included in the study performed by Zhao et al. (2009)). The use of Sequential Forward Selection (Ververidis et al., 

2004) and related algorithms, such as Sequential Forward Floating Selection (Pudil et al., 1994; Hassan and Damper, 

2009; Lugger and Yang, 2008), is also popular but it can lead to sub-optimal solutions. 

In our case we wanted to obtain an optimal subset that could only be guaranteed by an exhaustive search. However, 

with such a large number of features, the direct application of this approach would be computationally unfeasible. 

This way we had to apply a multi-criteria methodology for feature pre-processing that we designated by multi-criteria 

feature selection (MCFS). Our pipeline was composed by four stages: feature normalization, feature pre-selection, 

composite feature selection and exhaustive search selection. Hence, considering that the values on each dimension 

followed a Gaussian distribution, we normalized the feature components by calculating their Z-values. This procedure 

centred the points in the origin and equalized the range of values preventing the domination of attributes that vary 

in higher numeric ranges. We then defined as outliers all the points that exceed in value two standard deviations, in 

any vector dimension, and removed them (this allows to keep around 95% of the values around the mean value). A 

variation of the Kolmogorov–Smirnov test (Lilliefors, 1967) was used to verify the initial assumption that the values 

on each dimension followed a normal distribution. Then a t-test, with a 90% confidence interval, was used to analyse 

if a given feature could be useful to discriminate between two classes. The features that have not passed these tests 

where discarded. Then we started the composite feature selection by first creating a feature list sorted according with 

the feature’s class-discriminatory power. Adding into account the inter-feature correlation we have iteratively created a 

new list where each feature was selected by having the highest class-discriminatory and the lowest correlation with the 

previously selected features. From this list we have selected the 12 highest ranked features and performed an exhaustive 

search for combinations of n features using scatter matrices (Fukunaga, 1990). As cost function for class separability 

measurement we used the J3 criteria defined as: 

  



 

where Sw is the intraclass scatter matrix and Sb is the interclass scatter matrix. For each n we retained the highest 

scored subset. This process allows obtaining a feature list where the best ranked features maximize the discriminative 

power and minimize the redundancy. To evaluate the performance of our approach we compared the results with the 

ones obtained using PCA and ISOMap, two popular methodologies. 

 
4. Classification and intensity estimation 

 
Voice pleasantness classification is a specific pattern recognition problem under the machine learning topic. In this 

case, the general task of assigning a label or value to a given input pattern appears in the form of defining if a voice 

is pleasant or not using a set of objective features extracted from a given input audio stream. The voice pleasantness 

intensity measurement task involves measuring the degree of pleasantness when a voice is classified as being pleasant 

or not pleasant. 

 
4.1. Classification 

 
From the emotion recognition area, that has similarities with our problem, we often find, for classification purposes, 

methodologies based on Artificial Neural Networks (ANN) (Unluturk et al., 2009) or Support Vector Machines (SVM) 

(Shaukat and Chen, 2008), with the later being more popular. In fact, Shami and Verhelst (2007) and Casale et al. 

(2008) performed a comparison of several classification techniques and obtained the best results using SVMs. More 

recently, new methodologies, such as LogitBoost Alternating Decision Trees (Weiss and Burkhardt, 2010) or ensembles 

of REPTrees (Burkhardt et al., 2011), released as plug-ins for the WEKA toolkit (Witten and Frank, 2005), are also 

becoming popular. However the performance of the new approaches may be highly conditioned by the data distribution 

while ANN and SVM often offer a more consistent good performance across databases (Schuller et al., 2010). On the 

other hand, Hassan and Damper (2009) reported to beat the best reported classification results on the Berlin and DES 

emotion databases using a strategy based on a simple classifier (k-nearest neighbour). In our case we considered the 

ANN and SVM approaches, due to their robustness and flexible models, and compared their performance. 

Since voice pleasantness can be a more permanent characteristic and, assuming that it is not manipulated or affected 

by an ill state, it can also be understood as being intrinsic to the speaker. In this sense we also evaluated the suitability 

of a speaker identification model where the speaker’s acoustic signature is used to represent voice pleasantness identity. 

For this we used a Bayesian classifier and a speaker model based on Gaussian mixtures (GMM), which can lead to 

good results (Beigi, 2011). The implementation was inspired on Reynolds et al. (2000). 

The ANN and GMM based approaches were implemented using Matlab scripts. The ANN had a feed-forward 

structure with 2 hidden layers and 14 neurons each (this configuration was obtained by optimizing the cost function). 

The size of the input layer was equal to the dimension of the input vector (which was one of the varied parameters). 

For output we had a single neuron, with a sigmoid activation function, where 0 and 1 represented not pleasant and 

pleasant, respectively. The back-propagation algorithm was used for training. The GMM model was built as described 

in the features section and the Expectation Maximization (EM) (Dempster et al., 1977) algorithm was used for training. 

The SVM approach was based on the implementation provided by the LibSVM (Chang and Lin, 2011) toolkit using 

a C-SVC SVM model and radial basis functions with a gamma value equal to 8 and a cost parameter of 2 (these 

parameters were adjusted by minimizing classification error with a grid search methodology). 

The classifiers’ training/testing processes was performed using a 10-fold cross validation that allowed to obtain 

statistically meaningful results. A late fusion based on a weighted voting scheme, adjusted by calculating the relative 

number of true positives for each classifier against the total number of true positives, allowed to reach a hybrid model 

for category estimation. 

 
4.2. Voice pleasantness intensity estimation 

 
Besides identifying voice pleasantness it was also our goal to measure its intensity. This is different from the concept 

of “ranking”, that often appears in the machine learning literature, where the probability associated with the binary 

classification decision is used to provide additional information concerning its trustfulness. This can be viewed as an 

“intensity estimation” for the class but for our case this is of limited use. For example, when a given point is located 

very far from the decision boundary and right inside the class, it will have associated a high probability but it  might 



 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

Fig. 2.  System architecture. 

 

 
not represent an optimal location in terms of voice pleasantness. The feature selection process tested features for 

normality thus making the data Gaussian compatible. Hence, for voice pleasantness intensity estimation we have used 

a multivariate Gaussian distribution whose parameters were trained with voice judgement data from the two classes 

and using the optimized feature vector previously devised. Each class has its own model that is chosen after having 

the voice pleasantness class estimation. This approach allowed to use a nonlinear class discrimination scheme that will 

first divide the feature space and then will use a class dependent model, based on a multivariate Gaussian distribution, 

to reach a final voice pleasantness intensity estimation. 

As an alternative scenario we have used only the first two best features/components calculated in accordance with 

the presented methods. For each parameter pair (p1, p2) we associated a pleasantness ranking as a dependent function 

r = f(p1, p2). Then using a uniform bicubic B-spline surface S(x, y), we started with a plane that was successively 

deformed in order to approximate the true ranking value for the given points (Barsky, 1982). For each class we have 

a distinct surface that was adjusted to the related points. This approach can provide good results though it poses some 

limitations due to its non-parametric nature. 

 
 

5. Evaluation and results 

 
The best results were obtained using the configuration depicted in Fig. 2. This optimized pipeline allowed to achieve 

a final voice classification error rate of 9.1± 2.1 % and a voice pleasantness intensity estimation absolute error rate of 

15.7 ± 2.5, both for a 90% confidence interval. 



Table 2 

List of the first 84 features in the ranked list. 
 

 0 12 24 36 48 60 72 84 

1 Jrap f0Min VoB4Sk VeF1Sk VaB1Kt VeF1Kt NHR ViF2Max 

2 SR 8,.8,.PSk VeB1Av f0Max VeB3Max VeB3Min ViF1Max VaF3Max 

3 VaB1Av VaF2Kt VaF1Std VoB4Av VaB1Max VoB4Max VoF2Kt VaB3Kt 

4 APAv VoB3Std VeF3Max VoF3Min VoB4Std ViF3Std ViB2Max ViF2Sk 

5 Af0Sk 8,.PMin VoB3Av VoB1Av VaB2Std VeF4Min ViF2Min VeB1Sk 

6 f0SD VoB3Sk 8,.PSD 8,.8,.f0SD ViF4Min VeB4Min VoF4Sk VeF3Min 

7 Sapq3 8,.8,.PMax PR VoB1Min VeF4Sk ViF3Min VoF2Sk Sdda 

8 HNR (dB) VaB4Min HAC VaB2Max ViF1Av VeF2Std VeB3Sk Jddp 

9 f0Av VeB4Kt f0K VaF4Kt ViB2Av VoB3Min VeF3Av VoF4Max 

10 8,.f0Av JLAbs VeB2Kt 8,.8,.PAv PAv 8,.f0Min VoF4Min VaB3Max 

11 PKt VeB3Std JLAbs2 VoB2Sk ViF2Kt VoF1Std VeF2Sk VaB1Sk 

12 Af0Max 8,.PSK VoF2Std VaF4Sk ViF1Min VoB1Std VaB4Std VoB3Max 

 

 

Table 3 

Reference values for the best ranked features. Values are absolute with a relative variation within a 90% confidence interval. 
 

Feature Jrap 8,.PAv 8,.f0Sk Sapq3 f0Av 8,.f0Max 

Value 0.00946 ± 9.3% 0.0110 ± 12.1% 0.576 ± 4.7% 0.02697 ± 5.9% 196 ± 5.3% 34.24 ± 6.2% 

 
 

The system optimization was performed by individually adjusting each of the parameters on every stage while 

observing the performance improvements in the output. The performance was always measured in terms of classification 

error (sum of false positives and false negatives over the total number of evaluated cases) and a 10-fold cross validation 

allowed to reach the mean error rate as well as the confidence interval. 

We will follow the pipeline from the beginning. After extracting the features, we have applied the proposed MCFS 

methodology. The ranked feature list, after composite feature selection, is presented in Table 2. 

From the ranked feature list we went to investigate the amount of necessary features to provide the best results. 

Using a SVM classifier with a RBF kernel, whose gamma and cost parameter were optimized in each experiment, we 

tested several combinations of n out of the 12 best ranked features in the list. The best results were obtained using a 6 

elements vector composed by the features represented in bold face in the first column of Table 2. The related values are 

presented in Table 3. Additionally we wanted to evaluate if it was possible to obtain better results using dimensionality 

reduction approaches such as PCA or ISOMap. In Fig. 3 we can observe the obtained classification error and the related 

90% confidence interval for the three approaches while varying the number of features or vector components. We can 

see that PCA and ISOMap clearly outperform MCFS when a reduced number of components are considered and that 

the evaluation of a small set of independent features cannot provide a sufficient discriminant power. The performance 

of all methods improves with the size of the feature vector until a certain point with PCA and ISOMap achieving the 

best results with 5 components and MCFS with 6 features and the overall smallest error rate. When considering a larger 

feature vector we can see that the MCFS performance is degraded which may indicate difficulties during classifier 
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Fig. 3. Classification error according with feature vector optimization methodology and number of extracted features, in percentage. 
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Table 4 

Composition of the first PCA component. 
 

Component 1 2 3 4 5 6 

Feature SR Sapq3 8,.f0Av 8,.EMax Jrap VeB3Kt 

Weight 12.2 10.8 8.5 5.5 5.3 3.9 

Acc. weight 12.2 23.0 31.5 37.0 42.3 46.2 

 

Component 7 8 9 10 11 12 

Feature f0SD 8,.8,.ESK VeB1Av HAC 8,.8,.EMax PR 

Weight 3.7 3.0 2.8 2.7 2.5 2.3 

Acc. weight 49.9 52.9 55.7 58.4 60.9 63.2 

 

training when dealing with additional dimensions. On the other hand, PCA and ISOMap, showed to be much more 

robust to vector size. 

Since PCA and ISOMap performed well with small sized description vectors and we wanted to understand the 

features that best represented voice pleasantness we investigated the composition of the first PCA component. In 

Table 4 we see the 12 highest weighted features as well as their accumulated weight. We can observe that most of these 

features are also among the highest ranked in the MCFS feature list (Table 2) which reinforces their importance on the 

definition of voice pleasantness. It is also noticeable that the most important features in both approaches are mainly 

voice quality and prosody parameters. The average f0, the maximum 8,.f0, speaking rate and pause rate, among others, 

are also listed as having a high correlation with voice likability in Braga et al. (2007a), which can bring additional 

confidence in the results. 

In the classification stage, and still thinking in the previous stage, we compared the performance of the SVM and 

ANN approaches while varying the feature vector dimension. The results can be seen in Fig. 4(a) where we observe 

that the SVM classifier still holds the best performance. (The GMM classifier was evaluated separately and we have 

not varied the dimension of the input vector.) 

For classification we evaluated independently three classifiers, ANN, SVM  and  GMM  as  can  be  seen on 

Table 5(a)–(c), respectively. The SVM classifier performed better and to optimally tune the SVM classifier, we evalu- 

ated the system’s performance when varying the type of kernel function and related parameters, as shown in the first 

row of Table 6 (before fusion). We can observe that the RBF kernel performed better but very closely, followed by the 

quadratic polynomial kernel (despite the much longer training time required by the last). 

In Table 5(c) we can observe that the GMM–Bayes classifier showed to have a better performance when identifying 

the not so pleasant voices. To further improve the system we combined the SVM classifier, which achieved the best 

overall performance, with the GMM/Bayes classifier using a weighted voting scheme (performed during training). 

This hybrid approach allowed to improve the overall results, which are shown in the second row of Table 6. For the 

RBF kernel, a relative weight of 30% GMM and 70% SVM was obtained by an error minimization search procedure. 

Additionally we also evaluated in what extent the feature selection process and the inclusion of a second parallel 

classifier (GMM) helped to improve the classification results. In Table 7, we can observe the improvements introduced 
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Fig. 4. Performance evaluation according to feature vector dimension. Horizontal axis indicates the dimension of the feature vector and vertical 

axis shows error in percentage (a) and absolute value (b). 
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Table 5 

Confusion matrices with classification results, in percentage, for distinct approaches. Classes are pleasant (P) or not pleasant (NP). On the left we 

have the real classes (R) and on the first row we have the estimated classes (E). 
 

R\E P NP 

(a) ANN 

P 

 
80.5 

 
21.1 

NP 19.5 78.9 

(b) SVM 

P 

 
89.8 

 
12.7 

NP 10.2 87.3 

(c) GMM 

P 

 
68.5 

 
11.4 

NP 31.5 88.6 

 
 

Table 6 

Voice preference classification error for a 90% confidence interval using different kernel types with a SVM based classifier and after fusion with a 

GMM/Bayes classifier. (Two classes outlier free dataset, error within a 90% confidence interval.) 
 

 Linear Quadratic RBF Sigmoid 

SVM alone 

Class. fusion 

23.7 ± 3.7% 

19.3 ± 3.7% 

18.8 ± 3.2% 

14.5 ± 2.1% 

11.5 ± 2.6% 

9.1 ± 2.1% 

24.2 ± 3.9% 

21.9 ± 4.2% 

 

Table 7 

Classification error rate after the introduction of each component. (Error within a 90% confidence interval.) 
 

Non-tuned system Independent feat. sel. Composite feat. sel. Optimized feat. subset Composite classification 

38.5 ± 7.6% 18.9 ± 5.2% 14.4 ± 2.3% 12.3 ± 3.1 9.1 ± 2.1% 

 
by each block of the pipeline using as reference the results obtained with a RBF kernel (since it performed better) and 

considering all the available objective features. 

After obtaining a classification result we performed the voice pleasantness intensity estimation. The performance 

evaluation was based on the mean absolute estimation error, or by other words, the mean absolute difference between 

the true human judged pleasantness rank (on a 1–5 scale) and the value estimated by the system. The results obtained 

for the multivariate Gaussian model approach are depicted in Fig. 4(b) where we can observe that the best results, 

15.7± 2.5 % for a 90% confidence interval, are obtained again for a 6 dimensions vector. The surface based approach 

was implemented using a 20 × 20 patch grid supported on the best two ranked features using the MCFS process and 

the first two components/vectors of the PCA and ISOMap methodologies. The obtained error rates were 27.3± 5.7 %, 

15.8± 3.2 % and 15.6± 3.9 %, respectively, for a 90% confidence interval. A surface mapped from a bidimensional 
reference based on raw features was clearly inappropriate however, the use of PCA or ISOMap, led to successful 

results. Especially the ISOMap based reference provided a residually lower error rate but with a higher variation in the 

confidence interval. For this reason we preferred the parametric approach with better repeatability. 

 
6. Conclusions and future work 

 
In this paper we have presented an optimized pipeline for the automatic evaluation of voice pleasantness. We started 

by defining the pleasantness concept, which has a central role in our work, and showed how it can be related to the 

perception of voice as stimuli. An extensive presentation of the most significant studies in the area was also presented. 

After showing an overview of the processing pipeline, we have detailed the functions of each stage. We provided 

a brief presentation of the database, which was specifically developed for the study of voice pleasantness. Then, we 

thoroughly explained the procedure that was followed to obtain an optimal feature vector for achieving improved results. 

We started by exploring a broad range of dimensions, covering acoustic, signal, periodicity and phonation speed aspects 



 

 

and successively selected the best features by maximizing their class discriminatory power and by reducing the inter- 
feature redundancy. This approach provided the best results for our data after a comparison with other methodologies. 
Our optimized feature vector, mainly composed by prosodic and voice quality parameters, included Jrap (relative 

average perturbation), APAv (derivative of average power), Af0Sk (skewness of fundamental frequency derivative), 

Sapq3 (amplitude perturbation quotient), f0Av and Af0Max. A SVM classifier was successfully combined with a 
GMM/Bayes methodology in a late fusion scheme. This new approach, motivated by the specific nature of voice 

pleasantness analysis, allowed to achieve a final voice pleasantness classification error rate of 9.1± 2.1 %, which is 
better than other reported marks for similar tasks. Finally, for estimating voice pleasantness intensity, we achieved the 

best results using a class dependent multivariate Gaussian model, which provided an error rate of 15.7± 2.5 %. The 
obtained results were obtained using a database that was specifically developed for the study of voice pleasantness. 

The presented system is a powerful objective analysis tool that can support subjective evaluations during voice 

talent selection stage for new voice fonts recording, thus contributing to reduce overall TTS development costs. This 

work also provides an additional insight on the study of pleasantness, one of the key dimensions of expressive speech, 

and can contribute to the enhancement of TTS systems’ voice quality as well as to leverage the introduction of this 

technology in more real life applications. 

As future work we plan to apply a similar methodology to other languages allowing to simultaneously increase 

the available data and to evaluate the cross-language performance. An extension of the work for characterizing male 

voices is also envisioned. 
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