3 research outputs found

    Investigations into the behaviours of Coriolis flowmeters under air-water two-phase flow conditions on an optimized experimental platform

    Get PDF
    Gas-liquid two-phase flow is commonly encountered in many industrial processes due to production requirement or inevitable gas entrainment from various sources. Accurate liquid phase measurement under two-phase conditions is challenging but important as it is the key factor to reduce cost, improve safety or meet legal requirements. Coriolis flowmeters, owing to their high accuracy in metering single-phase flow, direct mass flow measurement and multivariable sensing nature, are widely used in industry. Recently developed Coriolis flowmeters can work under multiphase conditions, making it possible to achieve accurate multiphase flow measurement through model based error compensation or training based soft computing correction. This paper assesses the behaviours of Coriolis flowmeters under various two-phase conditions for modelling and soft computing algorithm improvement, including previously investigated factors (flowrate, gas volume fraction, flow tube geometry, flow converter, and process pressure) and new factors (flow regimes in terms of bubble size and distribution). Experimental work was conducted on 25 mm and 50 mm bore air-water two-phase flow rigs for liquid mass flowrates between 2500 kg/h and 35000 kg/h with gas volume fraction of 0-60%. With the influence of each factor identified through univariate analysis, comparisons between existing modelling theories and experimental error curves are established. In the meantime, the rig design and control are optimized to provide efficient and automated data acquisition in order to supply ample and high-quality data for the training of soft computing models as well as enhancing the understanding in theoretical modelling

    Early Detection of the Wear of Coriolis Flowmeters through In Situ Stiffness Diagnosis

    Get PDF
    Coriolis flowmeters have been widely employed in a variety of industrial applications. There is a potential that the measuring tube of a Coriolis flowmeter may be eroded when it is used to measure abrasive fluid such as slurry flow. However, it is challenging to verify the structural health of the flowmeter without process interruptions or using on-site calibration devices such as meter provers. This paper presents an in-situ structural health monitoring technique through stiffness diagnosis to identify the potential wear occurring on the measuring tube. To measure the frequency response of a Coriolis flowmeter which strongly depends on the structural characteristics of the tube, the tube is not only excited at a resonant frequency but also at two additional off-resonant frequencies. Through digital processing of the drive and sensor signals, the frequency response is obtained and a stiffness related diagnostic parameter (SRDP) is extracted from a Coriolis flowmeter. The proposed stiffness diagnosis technique was experimentally evaluated on a commercial bent-tube Coriolis flowmeter with dilute sand-water slurry flow. The results illustrate that the slight tube erosion is successfully identified when a relative change in SRDP reaches −1%, showing a good capability for an early detection of tube wear. In addition, the outcomes from recalibration with water suggest that, after the erosion occurs, the flowmeter overestimates the mass flowrate and underestimates the flow density

    Investigations into the behaviours of Coriolis flowmeters under air-water two-phase flow conditions on an optimized experimental platform

    Get PDF
    Gas-liquid two-phase flow is commonly encountered in many industrial processes due to production requirement or inevitable gas entrainment from various sources. Accurate liquid phase measurement under two-phase conditions is challenging but important as it is the key factor to reduce cost, improve safety or meet legal requirements. Coriolis flowmeters, owing to their high accuracy in metering single-phase flow, direct mass flow measurement and multivariable sensing nature, are widely used in industry. Recently developed Coriolis flowmeters can work under multiphase conditions, making it possible to achieve accurate multiphase flow measurement through model based error compensation or training based soft computing correction. This paper assesses the behaviours of Coriolis flowmeters under various two-phase conditions for modelling and soft computing algorithm improvement, including previously investigated factors (flowrate, gas volume fraction, flow tube geometry, flow converter, and process pressure) and new factors (flow regimes in terms of bubble size and distribution). Experimental work was conducted on 25 mm and 50 mm bore air-water two-phase flow rigs for liquid mass flowrates between 2500 kg/h and 35000 kg/h with gas volume fraction of 0-60%. With the influence of each factor identified through univariate analysis, comparisons between existing modelling theories and experimental error curves are established. In the meantime, the rig design and control are optimized to provide efficient and automated data acquisition in order to supply ample and high-quality data for the training of soft computing models as well as enhancing the understanding in theoretical modelling
    corecore