2,189 research outputs found

    Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors

    Full text link
    The development of highly-sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response and efficient light controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core-cladding materials, as a result, evanescent field can be enhanced significantly which is the main component of the PCF based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF based gas/ chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber based gas/ chemical sensors, (4) study the effects of different core-cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF based gas/ chemical sensors and possible solutions

    Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications

    Get PDF
    This paper presents a theoretical investigation of a novel holey fiber (Photonic Crystal Fiber (PCF)) multi-channel biosensor based on surface plasmon resonance (SPR). The large gold coated micro fluidic channels and elliptical air hole design of our proposed biosensor aided by a high refractive index over layer in two channels enables operation in two modes; multi analyte sensing and self-referencing mode. Loss spectra, dispersion and detection capability of our proposed biosensor for the two fundamental modes (HE x 11 and HE y 11 ) have been elucidated using a Finite Element Method (FEM) and Perfectly Matching Layers (PML)

    Photonic crystal fiber with a hybrid honeycomb cladding

    Full text link
    We consider an air-silica honeycomb lattice and demonstrate a new approach to the formation of a core defect. Typically, a high or low-index core is formed by adding a high-index region or an additional air-hole (or other low-index material) to the lattice, but here we discuss how a core defect can be formed by manipulating the cladding region rather than the core region itself. Germanium-doping of the honeycomb lattice has recently been suggested for the formation of a photonic band-gap guiding silica-core and here we experimentally demonstrate how an index-guiding silica-core can be formed by fluorine-doping of the honeycomb lattice.Comment: 5 pages including 3 figures. Accepted for Optics Expres

    Investigations towards the development of a novel multimodal fibre optic sensor for oil and gas applications.

    Get PDF
    Oil and gas (O&G) explorations are moving into deeper zones of earth, causing serious safety concerns. Hence, sensing of critical multiple parameters like high pressure, high temperature (HPHT), chemicals, etc., are required at longer distances. Traditional electrical sensors operate less effectively under these extreme environmental conditions and are susceptible to electromagnetic interference (EMI). Compared to electrical sensors, fibre optic sensors offer several advantages like immunity to EMI, electrical isolation, ability to operate in harsh environmental conditions and freedom from corrosion. Existing fibre optical sensors in the O&G industry, based on step index single mode fibres (SMF), offer limited performance, as they operate within a narrow wavelength window. A novel multimodal sensor configuration, based on photonic crystal fibre (PCF) and utilising a multiwavelength approach, is proposed for the first time for O&G applications. This thesis reports computational and experimental investigations into the new multimodal sensing methodology, integrating both optical phase-change and spectral-change based approaches, needed for multi-parameter sensing. It includes investigations to improve the signal-to-noise ratio (SNR) by enhancing the signal intensity attained through structural, material and positional optimisations of the sensors. Waveguide related, computational investigations on PCF were carried out on different fibre optic core-cladding structures, material infiltrations and material doping to improve the signal intensity from the multimodal sensors for better SNR. COMSOL Multiphysics simulations indicated that structural and material modifications of the PCF have significant effects on light propagation characteristics. The propagation characteristics of the PCF were improved by modifying the geometrical parameters, and microstructuring the fibre core and cladding. Studies carried out on liquid crystal PCF (LCPCF) identified its enhanced mode confinement characteristics and wavelength tenability features (from visible to near infrared), which can be utilised for multi-wavelength applications. Enhancing core refractive index of the PCF improved the electric field confinements and thereby the signal intensity. Doping rare earth elements into the PCF core increases its refractive index and also provides additional spectroscopic features (photoluminescence and Raman), leading to a scope for multi-point, multimodal sensors. Investigations were carried out on PCF-FBG (Fibre Bragg grating) hybrid configuration, analysing their capabilities for optical phase-change based, multipoint, multi-parameter sensing. Computational investigations were carried out using MATLAB software, to study the effect of various fibre grating parameters. These studies helped in improving understanding of the FBG reflectivity-bandwidth characteristics, for tuning the number of sensors that can be accommodated within the same sensing fibre and enhancing the reflected signal for improved SNR. A new approach of FBG sensor positioning has been experimentally evaluated, to improve its strain sensitivity for structural health monitoring (SHM) of O&G structures. Further, experimental investigations were carried out on FBGs for sensing multiple parameters like temperature, strain (both tensile and compressive) and acoustic signals. Various spectroscopic investigations were carried out to identify the scope of rare earth doping within the PCF for photoluminescence and Raman spectroscopy based multimodal sensors. Rare earth doped glasses (Tb, Dy, Yb, Er, Ce and Ho) were developed using melt-quench approach and excitation- photoluminescence emission studies were carried out. The studies identified that photoluminescence signal intensity increases with rare earth concentration up to an optimum value and it can be further improved by tuning the excitation source characteristics. Photoluminescence based temperature studies were carried out using the rare earth doped glasses to identify their suitability for O&G high temperature conditions. Raman spectroscopic investigations were carried out on rare earth (Tb) doped glasses, developed using both melt-quench and sol-gel based approaches. Effect of 785 nm laser excitation on Raman signatures and suitability of rare earth doped materials for fibre-based Raman distributed temperature sensing (DTS) were also studied. Finally, a novel multimodal fibre optic sensor configuration is proposed for the O&G applications, consisting of rare earth doped photonic crystal fibre integrating Bragg gratings and operating in multiple wavelength regimes in a multiplexed fashion. The integrated sensor combination is expected to overcome the limitations of existing sensors with regards to SNR, sensing range and multimodal sensing capability

    Asymmetrical D-channel photonic crystal fiber-based plasmonic sensor using the wavelength interrogation and lower birefringence peak method

    Get PDF
    Funding Information: This work was supported in part by Independent University, Bangladesh ( IUB ), and in part by Sejong university through its faculty research program ( 20192021 ). This paper was also supported by research funds of Jeonbuk National University in 2020.Peer reviewedPublisher PD

    Long-pulse Supercontinuum Light Sources

    Get PDF
    corecore