20 research outputs found

    Monitoring von Hangbewegungen mit InSAR Techniken im Gebiet Ciloto, Indonesien

    Get PDF
    In this doctoral thesis, the InSAR techniques are applied to detect the ground movement phenomenon and to assess the InSAR result geometrically in the Ciloto area, Indonesia. Mainly, one of those techniques, the SB-SDFP algorithm, overcomes the limitations of conventional InSAR in monitoring rural and agricultural areas and can observe extremely slow landslides. The InSAR strategy is positively known as a promising option to detect and quantify the kinematics of active landslides on a large areal scale. To minimize the bias of the InSAR displacement result, the correction of the tropospheric phase delay was carried out in a first step. This procedure is demonstrated in experiments both in the small study area in Ciloto and in a larger area. The latter is an area located in Northern Baja California, Mexico and is dominated by tectonic activity as well as groundwater-induced subsidence. A detailed investigation of the slope movement's behavior in the Ciloto district was conducted utilizing multi-temporal and multi-band SAR data from ERS1/2 (1996-1999), ALOS PALSAR (2007-2009) and Sentinel-1 (2014-2018) satellites. The region was successfully identified as a permanent active landslide prone area, especially in the vicinity of the Puncak Pass and Puncak Highway. The full 3D velocity field and the displacement time series were estimated using the inversion model. The velocity rate was classified from extremely slow to slow movement. To comprehend the landslide's behavior, a further examination of the relationship between InSAR results and physical characteristics of the area was carried out. For the long period of a slow-moving landslide, the relationship between precipitation and displacement trend shows a weak correlation. It is concluded that the extremely slow to slow deformation is not directly influenced by the rainfall intensity, yet it effectuates the subsurface and the groundwater flow. The run-off process with rainfall exceeding a soil's infiltration capacity was suspected as the main driver of the slow ground movement phenomenon. However, when analyzing rapid and extremely rapid landslide events at Puncak Pass, a significant increase in the correlation coefficient between precipitation and displacement rate could be observed.In dieser Doktorarbeit wird die Anwendung von erweiterten Verarbeitungsstrategien von InSAR Daten zur Erkennung und geometrischen Bewertung der Bodenbewegungen im Ciloto - Indonesien dargestellt. Dieser Ansatz überwindet die Beschränkungen konventioneller SAR-Interferometrie und ermöglicht sowohl ein kontinuierliches Monitoring dieses landwirtschaftich geprägten Gebietes als auch die Erfassung extrem langsamer Hangrutschungen. Um eine Verzerrung der InSAR Deformationsergebnisse zu minimieren, wurde zunächst eine Korrektur der troposphärischen Phase durchgeführt. Diese neuartige Strategie wird sowohl im Forschungsgebiet Ciloto als auch an einem größeren Gebiet demonstriert. Bei letzterem handelt es sich um einen Küstenstreifen im nördlichen Niederkalifornien, Mexiko, welcher durch hohe tektonische Aktivität und grundwasserinduzierte Landsetzungen charakterisiert ist. Die detaillierte Untersuchung des Verhaltens von Hangrutschungen im Ciloto erfolgte durch die Verarbeitung multi-temporaler SAR-Daten unter Nutzung verschiedener Frequenzbänder, darunter ESR1/2 (1996-1999), ALOS PALSAR (2007-2009) und Sentinel-1 (2014-2018) Daten. Die Region konnte erfolgreich als permanent aktives Hangrutschungsgebiet identifiziert werden, wobei der Puncak Pass und der Puncak Highway ein erhöhtes Gefahrenpotential aufweisen. Ein 3D- Geschwindig-keitsfeld der Deformation und die zugehörigen Zeitreihen wurden mit dem Inversionsmodell berechnet. Die Geschwindigkeitsrate wurde als langsam bis extrem langsam klassifiziert. Um das dynamische Verhalten der Hangrutschung zu verstehen wurde, in einer weiteren Untersuchung die Beziehung zwischen dem InSAR-Ergebnis und den physikalischen Begebenheiten im Forschungsgebiet analysiert. Es wird der Schluss gezogen, dass die langsame bis extrem langsame Verformung nicht direkt von der Niederschlagsintensität beeinflusst wird, diese sich aber auf den Untergrund und die Grundwasserströmung auswirkt. Es wird vermutet, dass der Oberflächenablauf, welcher die Infiltrationskapazität des Bodens übersteigt, ausschlaggebend für das Phänomen der langsamen Bodenbewegung ist. Für die schnellen und extrem schnellen Hangrutschungen jedoch konnte eine signifikante Erhöhung des Korrelationskoeffizienten zwischen Niederschlag und Verschiebungsrate bei Untersuchungen der Hangrutschung am Puncak-Pass nachgewiesen werden

    A clustering approach for the analysis of InSAR Time Series: application to the Bandung Basin (Indonesia)

    Get PDF
    Interferometric Synthetic Aperture (InSAR) time series measurements are widely used to monitor a variety of processes including subsidence, landslides, and volcanic activity. However, interpreting large InSAR datasets can be difficult due to the volume of data generated, requiring sophisticated signal-processing techniques to extract meaningful information. We propose a novel framework for interpreting the large number of ground displacement measurements derived from InSAR time series techniques using a three-step process: (1) dimensionality reduction of the displacement time series from an InSAR data stack; (2) clustering of the reduced dataset; and (3) detecting and quantifying accelerations and decelerations of deforming areas using a change detection method. The displacement rates, spatial variation, and the spatio-temporal nature of displacement accelerations and decelerations are used to investigate the physical behaviour of the deforming ground by linking the timing and location of changes in displacement rates to potential causal and triggering factors. We tested the method over the Bandung Basin in Indonesia using Sentinel-1 data processed with the small baseline subset InSAR time series technique. The results showed widespread subsidence in the central basin with rates up to 18.7 cm/yr. We identified 12 main clusters of subsidence, of which three covering a total area of 22 km2 show accelerating subsidence, four clusters over 52 km2 show a linear trend, and five show decelerating subsidence over an area of 22 km2. This approach provides an objective way to monitor and interpret ground movements, and is a valuable tool for understanding the physical behaviour of large deforming areas

    InSAR reveals land deformation at Guangzhou and Foshan, China between 2011 and 2017 with COSMO-SkyMed data

    Get PDF
    Subsidence from groundwater extraction and underground tunnel excavation has been known for more than a decade in Guangzhou and Foshan, but past studies have only monitored the subsidence patterns as far as 2011 using InSAR. In this study, the deformation occurring during the most recent time-period between 2011 and 2017 has been measured using COSMO-SkyMed (CSK) to understand if changes in temporal and spatial patterns of subsidence rates occurred. Using InSAR time-series analysis (TS-InSAR), we found that significant surface displacement rates occurred in the study area varying from -35 mm/year (subsidence) to 10 mm/year (uplift). The 2011-2017 TS-InSAR results were compared to two separate TS-InSAR analyses (2011-2013, and 2013-2017). Our CSK TS-InSAR results are in broad agreement with previous ENVISAT results and levelling data, strengthening our conclusion that localised subsidence phenomena occurs at different locations in Guangzhou and Foshan. A comparison between temporal and spatial patterns of deformations from our TS-InSAR measurements and different land use types in Guangzhou shows that there is no clear relationship between them. Many local scale deformation zones have been identified related to different phenomena. The majority of deformations is related to excessive groundwater extraction for agricultural and industrial purposes but subsidence in areas of subway construction also occurred. Furthermore, a detailed analysis on the sinkhole collapse in early 2018 has been conducted, suggesting that surface loading may be a controlling factor of the subsidence, especially along the road and highway. Roads and highways with similar subsidence phenomenon are identified. Continuous monitoring of the deforming areas identified by our analysis is important to measure the magnitude and spatial pattern of the evolving deformations in order to minimise the risk and hazards of land subsidence

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Multi-source Satellite Remote Sensing Techniques for Landslide Monitoring and Characterization

    Full text link
    Landslides are natural geological hazards that pose significant threats, resulting in economic losses and casualties worldwide. Effective monitoring and characterization of landslides are crucial for understanding their evolution mechanisms and preventing catastrophic failures. While conventional field surveying methods provide accurate measurements of surface deformation, they are limited by high costs in terms of labor and time and uncertainties of arrangement for the ground-based equipment. The Satellite Interferometric Synthetic Aperture Radar (InSAR) technique has proven its application in landslide monitoring, offering advantages such as all-weather operations, wide spatial coverage, high spatial resolution, and high accuracy. InSAR can measure subtle changes along the SAR line-of-sight (LOS) direction but is not sensitive to movements along the north-south direction. Additionally, rapid movements during the failure stage can cause high decorrelation. On the other hand, satellite optical remote sensing data, combined with pixel offset tracking (POT) techniques, can measure large displacements in the horizontal plane. Moreover, multi-spectral analysis of optical images can offer insights into the spatial evolution of landslides. Therefore, the joint use of satellite InSAR and optical remote sensing techniques is complementary in landslide monitoring and characterization. However, the joint utilization of these techniques for capturing the long-term evolutions of landslides, particularly at their different stages using multi-source data, remains relatively unexplored. This dissertation aims to optimize and demonstrate the approaches for the joint use of satellite SAR and optical data in landslide monitoring and characterization across three distinct stages: pre-failure, failure, and post-failure. Three major landslides were studied in this dissertation. Firstly, the surface deformation of the 2017 Maoxian landslide during the pre-failure stage was captured using time series InSAR, while pre-failure slope features were detected from optical images. Secondly, the joint utilization of time series InSAR observations and optical analysis facilitated the monitoring of the pre-failure, failure, and post-failure stages of the 2020 Aniangzhai landslide. Lastly, the long-term post-failure deformation of the Huangtupo landslide in the Three Gorges Reservoir region was mapped using multi-source satellite SAR data, while the multi-temporal optical images were employed to investigate the long-term evolution of surface covers over the slope

    Urban development induced subsidence in deltaic environments: a case study in Hanoi, Vietnam

    Get PDF
    Hanoi has experienced rapid urbanisation over the last few decades, putting intense pressure on its natural resources, such as groundwater, but also on the local authorities to meet demand for infrastructure, housing and public amenities. Recent studies using Interferometric Synthetic Aperture Radar (InSAR) measured rates of subsidence in Hanoi documenting the evolution of the subsiding areas. These studies have primally attributed the high rates of subsidence to the increased extraction of groundwater. In this study we use Sentinel 1 InSAR data for six years between July 2015 and January 2021 to examine subsidence patterns across Hanoi and link them to the development of urban areas. We find that although groundwater extraction undoubtedly plays a significant role, there is a clear spatial and temporal link between new development and the areas of subsidence. The use of historical optical satellite imagery allows the evolution of the development to be linked to the InSAR ground motion time series. A correlation exists between subsidence and the reclamation of agricultural land, often flooded rice fields, for building via the dumping of aggregate to create dry, raised areas on which to build. We illustrate our findings with examples where newly developed areas are co-incident with areas of subsidence, we show the relationships between the stages of the ground loading and the rate of the resulting subsidence. Ultimately, we extract rates of motion for each year following ground loading. The collected rates of subsidence for over 40 locations of new development allows us to determine the rates of subsidence due to the consolidation process. This relationship enables an understanding of subsidence rate with time which has clear applications in the planning of future developments on thick superficial geological deposits

    The applications of InSAR time series analysis for monitoring long-term surface change in peatlands

    Get PDF
    In the past three decades, peatlands all over the world such as upland bogs, tropical fens, have been undergoing significant and rapid degradations. These degradations cause carbon loss and CO2 emissions, and also fuel climate change. In this research, I present three case studies on how space geodetic tools, especially Radar Interferometry (InSAR), can be used to monitor and to advance our understanding of the long-term surface changes in peatlands. First, I investigate the eroding extent and severity of upland UK peatlands using InSAR. Both short wavelength C-band and long wavelength L-band data are explored in this study. I detect a long-term peat subsidence rate of about 0.3 cm/yr, and 2 cm of decrease in peat height between 2002 and 2010. I also examine the coherence performance of C- and L-band over upland bogs. I find L-band data provides better coherence than C-band in upland bogs. Second, I use InSAR time series generated by L-band images to map the spatial and temporal subsidence of drained tropical peatlands in Sumatra, Indonesia. And based on InSAR-derived subsidence rate data, I estimate carbon loss or CO2 emission. Third, I assess the effectiveness of peatland restoration work in in Central Kalimantan, Indonesia using InSAR (L-band images). Restoration effects and impact factors are investigated by the spatial and temporal changes of peat height, which also provide useful information for guiding future restoration activities in this region. Overall, this research suggests that InSAR time series is feasible to monitor long-term peat height change in peatlands, provides new insights into the dynamic surface changes in peatlands, and helps to study the carbon loss and CO2 emissions from peatlands, and understand restoration effects

    Urban Hydrogeology Studies

    Get PDF
    Urbanization worldwide is a pervasive phenomenon of our time, and sustainable urban development is one of the greatest challenges faced by the contemporary world. The subsurface plays a range of roles in such developments through the complex processes of urbanization, including building development, constructing roads, and providing water supplies, drainage, sanitation, and even solid waste disposal.Urban groundwater problems are usually predictable; however, they are not predicted early enough. During recent decades, progressive advances in the scientific understanding of urban hydrogeological processes and the groundwater regimes of a substantial number of cities have been documented. This extensive array of subsurface challenges that cities have to contend with lies at the core of the sustainability of the urban water cycle. This is threatened by the increasing scale and downward extent of urban subsurface construction, including utilities (cables, sewage, and drainage), transportation (tunnels, passages), and storage (cellars, parking lots, and thermal energy). The cumulative impact of this subsurface congestion on the surrounding geology, and especially on the groundwater system, has to be constantly studied and addressed.In this volume, key connections amongst urban hydrogeology activities are identified as being consistent with scientific results and good practices in their relationship to subsurface data and knowledge on subsurface systems. The volume supports a useful dialogue between the providers and consumers of urban groundwater data and knowledge, offering new perspectives on the existing research themes

    Remote Sensing in Mangroves

    Get PDF
    The book highlights recent advancements in the mapping and monitoring of mangrove forests using earth observation satellite data. New and historical satellite data and aerial photographs have been used to map the extent, change and bio-physical parameters, such as phenology and biomass. Research was conducted in different parts of the world. Knowledge and understanding gained from this book can be used for the sustainable management of mangrove forests of the worl

    Applications of Satellite Earth Observations section - NEODAAS: Providing satellite data for efficient research

    Get PDF
    The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data
    corecore