30,471 research outputs found

    Parallel Auditory Filtering By Sustained and Transient Channels Separates Coarticulated Vowels and Consonants

    Full text link
    A neural model of peripheral auditory processing is described and used to separate features of coarticulated vowels and consonants. After preprocessing of speech via a filterbank, the model splits into two parallel channels, a sustained channel and a transient channel. The sustained channel is sensitive to relatively stable parts of the speech waveform, notably synchronous properties of the vocalic portion of the stimulus it extends the dynamic range of eighth nerve filters using coincidence deteectors that combine operations of raising to a power, rectification, delay, multiplication, time averaging, and preemphasis. The transient channel is sensitive to critical features at the onsets and offsets of speech segments. It is built up from fast excitatory neurons that are modulated by slow inhibitory interneurons. These units are combined over high frequency and low frequency ranges using operations of rectification, normalization, multiplicative gating, and opponent processing. Detectors sensitive to frication and to onset or offset of stop consonants and vowels are described. Model properties are characterized by mathematical analysis and computer simulations. Neural analogs of model cells in the cochlear nucleus and inferior colliculus are noted, as are psychophysical data about perception of CV syllables that may be explained by the sustained transient channel hypothesis. The proposed sustained and transient processing seems to be an auditory analog of the sustained and transient processing that is known to occur in vision.Air Force Office of Scientific Research (F49620-92-J-0225); Advanced Research Projects Agency (AFOSR 90-0083, ONR N00014-92-J-4015); Office of Naval Research (N00014-95-I-0409

    Multisensory Integration Sites Identified by Perception of Spatial Wavelet Filtered Visual Speech Gesture Information

    Get PDF
    Perception of speech is improved when presentation of the audio signal is accompanied by concordant visual speech gesture information. This enhancement is most prevalent when the audio signal is degraded. One potential means by which the brain affords perceptual enhancement is thought to be through the integration of concordant information from multiple sensory channels in a common site of convergence, multisensory integration (MSI) sites. Some studies have identified potential sites in the superior temporal gyrus/sulcus (STG/S) that are responsive to multisensory information from the auditory speech signal and visual speech movement. One limitation of these studies is that they do not control for activity resulting from attentional modulation cued by such things as visual information signaling the onsets and offsets of the acoustic speech signal, as well as activity resulting from MSI of properties of the auditory speech signal with aspects of gross visual motion that are not specific to place of articulation information. This fMRI experiment uses spatial wavelet bandpass filtered Japanese sentences presented with background multispeaker audio noise to discern brain activity reflecting MSI induced by auditory and visual correspondence of place of articulation information that controls for activity resulting from the above-mentioned factors. The experiment consists of a low-frequency (LF) filtered condition containing gross visual motion of the lips, jaw, and head without specific place of articulation information, a midfrequency (MF) filtered condition containing place of articulation information, and an unfiltered (UF) condition. Sites of MSI selectively induced by auditory and visual correspondence of place of articulation information were determined by the presence of activity for both the MF and UF conditions relative to the LF condition. Based on these criteria, sites of MSI were found predominantly in the left middle temporal gyrus (MTG), and the left STG/S (including the auditory cortex). By controlling for additional factors that could also induce greater activity resulting from visual motion information, this study identifies potential MSI sites that we believe are involved with improved speech perception intelligibility

    Band-pass filtering of the time sequences of spectral parameters for robust wireless speech recognition

    Get PDF
    In this paper we address the problem of automatic speech recognition when wireless speech communication systems are involved. In this context, three main sources of distortion should be considered: acoustic environment, speech coding and transmission errors. Whilst the first one has already received a lot of attention, the last two deserve further investigation in our opinion. We have found out that band-pass filtering of the recognition features improves ASR performance when distortions due to these particular communication systems are present. Furthermore, we have evaluated two alternative configurations at different bit error rates (BER) typical of these channels: band-pass filtering the LP-MFCC parameters or a modification of the RASTA-PLP using a sharper low-pass section perform consistently better than LP-MFCC and RASTA-PLP, respectively.Publicad

    Fundamental frequency height as a resource for the management of overlap in talk-in-interaction.

    Get PDF
    Overlapping talk is common in talk-in-interaction. Much of the previous research on this topic agrees that speaker overlaps can be either turn competitive or noncompetitive. An investigation of the differences in prosodic design between these two classes of overlaps can offer insight into how speakers use and orient to prosody as a resource for turn competition. In this paper, we investigate the role of fundamental frequency (F0) as a resource for turn competition in overlapping speech. Our methodological approach combines detailed conversation analysis of overlap instances with acoustic measurements of F0 in the overlapping sequence and in its local context. The analyses are based on a collection of overlap instances drawn from the ICSI Meeting corpus. We found that overlappers mark an overlapping incoming as competitive by raising F0 above their norm for turn beginnings, and retaining this higher F0 until the point of overlap resolution. Overlappees may respond to these competitive incomings by returning competition, in which case they raise their F0 too. Our results thus provide instrumental support for earlier claims made on impressionistic evidence, namely that participants in talk-in-interaction systematically manipulate F0 height when competing for the turn

    Ambient Gestures

    No full text
    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be processed by a scripting application and a navigation and selection application that is controlled by the gestures. This system allows us to explore gestures as the primary means of interaction within a multimodal, multimedia environment. In this paper we describe the Ambient Gestures system, define the gestures and the interactions that can be achieved in this environment and present a formative study of the system. We conclude with a discussion of our findings and future applications of Ambient Gestures in ubiquitous computing

    The robustness of speech representations obtained from simulated auditory nerve fibers under different noise conditions

    Get PDF
    Different methods of extracting speech features from an auditory model were systematically investigated in terms of their robustness to different noises. The methods either computed the average firing rate within frequency channels (spectral features) or inter-spike-intervals (timing features) from the simulated auditory nerve response. When used as the front-end for an automatic speech recognizer, timing features outperformed spectral features in Gaussian noise. However, this advantage was lost in babble, because timing features extracted the spectro-temporal structure of babble noise, which is similar to the target speaker. This suggests that different feature extraction methods are optimal depending on the background noise

    Platform Neutrality: Enhancing Freedom of Expression in Spheres of Private Power

    Get PDF
    AbstractTroubling patterns of suppressed speech have emerged on the corporate internet. A large platform may marginalize (or entirely block) potential connections between audiences and speakers. Consumer protection concerns arise, for platforms may be marketing themselves as open, comprehensive, and unbiased, when they are in fact closed, partial, and self-serving. Responding to protests, the accused platform either asserts a right to craft the information environment it desires, or abjures responsibility, claiming to merely reflect the desires and preferences of its user base. Such responses betray an opportunistic commercialism at odds with the platforms’ touted social missions. Large platforms should be developing (and holding themselves to) more ambitious standards for promoting expression online, rather than warring against privacy, competition, and consumer protection laws. These regulations enable a more vibrant public sphere. They also defuse the twin specters of monopolization and total surveillance, which are grave threats to freedom of expression.</jats:p
    • 

    corecore