1,064 research outputs found

    Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    Get PDF
    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls

    Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Get PDF
    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambda\u3c2, blades operate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study.;Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil.;The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying Re, k, and +/-alpha to match a typical VAWT operating environment. A range of reduced jet frequencies (0.25≤St≤4) were analyzed with varying Cmu, based on effective ranges from prior flow control airfoil studies. Airfoil pitch was found to increase the baseline lift-to-drag ratio (L/D) by up to 50% due to dynamic stall effects. The influence of dynamic stall on steady CC airfoil performance was greater for Cmu=0.05, increasing L/D by 115% for positive angle-of-attack. Pulsed actuation was shown to match, or improve, steady jet lift performance while reducing required mass flow by up to 35%. From numerical flow visualization, pulsed actuation was shown to reduce the size and strength of wake vorticity during DS, resulting in lower profile drag relative to baseline and steady actuation cases. A database of pitching airfoil test data, including overshoot and hysteresis of aerodynamic coefficients (Cl, Cd), was compiled for improved analytical model inputs to update CCVAWT performance predictions, where the aforementioned L/D improvements will be directly reflected.;Relative to a conventional VAWT with annual power output of 1 MW, previous work at WVU proved that the addition of steady jet CC could improve total output to 1.25 MW. However, the pumping cost to generate the continuous jet reduced yearly CCVAWT net gains to 1.15 MW. The current study has shown that pulsed CC jets can recover 4% of the pumping demands due to reduced mass flow requirements, increasing annual CCVAWT net power production to 1.19 MW, a 19% improvement relative to the conventional turbine

    Investigation of Transition and Vortex Systems of a Dynamically Pitching Airfoil Under the Free-stream Turbulence Conditions

    Get PDF
    abstract: The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake turbulence, a more realistic scenario for airfoils in operation, is generated using a small solid cylinder placed upstream, the vortices shed from which interact with the pitching airfoil affecting dynamic stall behavior. A recently developed moving overlapping grid approach is used using a high-order Spectral Element Method (SEM) for spatial discretization combined with a dynamic time-stepping procedure allowing for up to third order temporal discretization. Two cases of reduced frequency (k = 0:16 and 0:25) for airfoil oscillation are investigated and the change in dynamic stall behavior with change in reduced frequency is studied and documented using flow-fields and aerodynamic coefficients (Drag, Lift and Pitching Moment) with a focus on understanding vortex system dynamics (including formation of secondary vortices) for different reduced frequencies and it’s affect on airfoil aerodynamic characteristics and fatigue life. Transition of the flow over the surface of an airfoil for both undisturbed and disturbed flow cases will also be discussed using Pressure coefficient and Skin Friction coefficient data for a given cycle combined with a wavelet analysis using Morse wavelets in MATLAB.Dissertation/ThesisMasters Thesis Mechanical Engineering 201

    Effect of blade cambering on dynamic stall in view of designing vertical axis turbines

    Get PDF
    This paper presents large-eddy simulations of symmetric and asymmetric (cambered) airfoils forced to undergo deep dynamic stall due to a prescribed pitching motion. Experimental data in terms of lift, drag, and moment coefficients are available for the symmetric NACA 0012 airfoil and these are used to validate the large-eddy simulations. Good agreement between computed and experimentally observed coefficients is found confirming the accuracy of the method. The influence of foil asymmetry on the aerodynamic coefficients is analysed by subjecting a NACA 4412 airfoil to the same flow and pitching motion conditions. Flow visualisations and analysis of aerodynamic forces allow an understanding and quantification of dynamic stall on both straight and cambered foils. The results confirm that cambered airfoils provide an increased lift-to-drag ratio and a decreased force hysteresis cycle in comparison to their symmetric counterpart. This may translate into increased performance and lower fatigue loads when using cambered airfoils in the design of vertical axis turbines operating at low tip-speed ratios

    Optimization of a Fully-Passive Flapping-Airfoil Turbine

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2014-2015Ce mémoire concerne l'étude aéroélastique des oscillations auto-soutenues en pilonnementtangage d'une aile portante montée sur des supports élastiques et exposée à un écoulement. De telles oscillations pourraient être utilisées afin de développer un nouveau type de turbine hydrocinétique relativement simple d'un point de vue mécanique. Ceci est possible car les oscillations qui résultent de l'interaction fluide-structure entre l'écoulement, l'aile et ses supports élastiques sont entretenues par un transfert d'énergie de l'écoulement vers la structure. Dans cette étude numérique, le logiciel OpenFOAM-2.1.x est utilisé afin de résoudre le problème aéroélastique. À l'aide de simulations instationnaires en deux dimensions d'un écoulement visqueux à nombre de Reynolds de 500 000, ce type de turbine est optimisé et amplement étudié afin de développer une meilleure compréhension de la physique en jeu. Suite à une optimisation de la turbine à l'aide d'une méthode de type gradients, des efficacités relativement élevées ont été obtenues. En effet, le cas optimal qui est présenté dans cette étude a une efficacité qui est de l'ordre de 34%. Cela correspond à une efficacité relativement élevée lorsqu'elle est comparée à l'efficacité d'une turbine hydrolienne cinématiquement contrainte qui est de l'ordre de 43%. Il faut noter que la version pleinement passive est mécaniquement beaucoup plus simple que la version cinématiquement contrainte. Un tel avantage mécanique peut, en soi, justifier pleinement une efficacité légèrement plus faible. De plus, la solution optimisée proposée dans ce mémoire n'est certainement pas unique et ne correspond pas au seul extremum du vaste espace paramétrique. En fait, d'autres solutions efficaces sont présentées dans ce mémoire et une optimisation complète autour de ces solutions demeure toujours à être effectuée. Dans tous les cas, ces réesultats démontrent le grand potentiel d'utiliser des ailes oscillantes pleinement passives en guise d'hydroliennes efficaces. D'un point de vue physique, ce mémoire met en valeur que le phénomène d'oscillations de cycle limite auquel l'aile est sujette est le résultat d'un flottement de décrochage. Cela est ainsi en raison de la forte interaction entre l'aile et les tourbillons largués pendant le grand décrochage dynamique. En fait, c'est spécifiquement cette interaction entre l'aile et les vortex qui donne lieu au mouvement de tangage. De plus, deux mécanismes responsables des bonnes performances de la turbine ont été mis en valeur. Ces mécanismes sont la synchronisation adéquate entre les deux degrés de liberté, ainsi que le mouvement non sinusoïdal en tangage.This master's thesis deals with an aeroelastic problem that consists into self-sustained, pitchheave oscillations of an elastically-mounted airfoil. Such oscillations of an airfoil could be used in order to develop a novel fully-passive flow harvester that is relatively simple from a mechanical point of view. Indeed, the motion of an airfoil that is elastically mounted emerges as a result of the fluid-structure interaction between the flow, the airfoil and its elastic supports, and is sustained through a transfer of energy from the flow to the structure. In this numerical study, the OpenFOAM-2.1.x CFD toolbox is used for solving the aeroelastic problem. Through unsteady two-dimensional viscous simulations at a Reynolds number of 500,000, such a fully-passive turbine is optimized and extensively investigated to develop a better comprehension of the physics at play. Following a gradient-like optimization of the turbine, relatively high efficiencies have been obtained. Indeed, the optimal case found in this numerical study has a two-dimensional efficiency in the range of 34%. This is fairly high when compared to the two-dimensional efficiency of a kinematically-constrained turbine, which is in the range of 43%. Further, the fully-passive version of the turbine is far less mechanically complex than its kinematicallyconstrained counterpart. Alone, such a mechanical advantage could justify the slightly lower efficiency of the fully-passive turbine. Nevertheless, the optimized solution suggested within this thesis is certainly not the only local extrema of the vast parametric space pertaining to the aeroelastic device. Other efficient cases have been found, and complete optimizations about these solutions still need to be achieved. Overall, the results demonstrate the great potential of using fully-passive, flapping airfoils as efficient hydrokinetic turbines. From a more physical perspective, this thesis highlights the fact that the airfoil is undergoing limit-cycle oscillations as a result of stall flutter. This is because the interaction between the airfoil and the vortices shed during the dynamic stall events is large. In fact, it is specifically this interaction that mostly accounts for the pitching motion of the airfoil. Further, two fundamental mechanisms have been found to be very beneficial for enhancing the performances of the turbine. These mechanisms are the adequate synchronization between both degrees-offreedom, and the nonsinusoidal shape of the pitching motion

    Development of iterative techniques for the solution of unsteady compressible viscous flows

    Get PDF
    During the past two decades, there has been significant progress in the field of numerical simulation of unsteady compressible viscous flows. At present, a variety of solution techniques exist such as the transonic small disturbance analyses (TSD), transonic full potential equation-based methods, unsteady Euler solvers, and unsteady Navier-Stokes solvers. These advances have been made possible by developments in three areas: (1) improved numerical algorithms; (2) automation of body-fitted grid generation schemes; and (3) advanced computer architectures with vector processing and massively parallel processing features. In this work, the GMRES scheme has been considered as a candidate for acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D compressible viscous flow calculation; from preliminary calculations, this will provide up to a 65 percent reduction in the computer time requirements over the existing class of explicit and implicit time marching schemes. The proposed method has ben tested on structured grids, but is flexible enough for extension to unstructured grids. The described scheme has been tested only on the current generation of vector processor architecture of the Cray Y/MP class, but should be suitable for adaptation to massively parallel machines

    Dynamic stall experiments on the NACA 0012 airfoil

    Get PDF
    The flow over a NACA 0012 airfoil undergoing large oscillations in pitch was experimentally studied at a Reynolds number of and over a range of frequencies and amplitudes. Hot-wire probes and surface-pressure transducers were used to clarify the role of the laminar separation bubble, to delineate the growth and shedding of the stall vortex, and to quantify the resultant aerodynamic loads. In addition to the pressure distributions and normal force and pitching moment data that have often been obtained in previous investigations, estimates of the unsteady drag force during dynamic stall have been derived from the surface pressure measurements. Special characteristics of the pressure response, which are symptomatic of the occurrence and relative severity of moment stall, have also been examined

    Comparative Study of Pitch-Plunge Airfoil Aerodynamics at Transitional Reynolds Number

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76128/1/AIAA-2008-652-591.pd
    corecore