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Résumé

Ce mémoire concerne l’étude aéroélastique des oscillations auto-soutenues en pilonnement-

tangage d’une aile portante montée sur des supports élastiques et exposée à un écoulement.

De telles oscillations pourraient être utilisées afin de développer un nouveau type de turbine

hydrocinétique relativement simple d’un point de vue mécanique. Ceci est possible car les os-

cillations qui résultent de l’interaction fluide-structure entre l’écoulement, l’aile et ses supports

élastiques sont entretenues par un transfert d’énergie de l’écoulement vers la structure.

Dans cette étude numérique, le logiciel OpenFOAM-2.1.x est utilisé afin de résoudre le pro-

blème aéroélastique. À l’aide de simulations instationnaires en deux dimensions d’un écoule-

ment visqueux à nombre de Reynolds de 500 000, ce type de turbine est optimisé et amplement

étudié afin de développer une meilleure compréhension de la physique en jeu.

Suite à une optimisation de la turbine à l’aide d’une méthode de type gradients, des efficacités

relativement élevées ont été obtenues. En effet, le cas optimal qui est présenté dans cette étude

a une efficacité qui est de l’ordre de 34%. Cela correspond à une efficacité relativement élevée

lorsqu’elle est comparée à l’efficacité d’une turbine hydrolienne cinématiquement contrainte

qui est de l’ordre de 43%. Il faut noter que la version pleinement passive est mécaniquement

beaucoup plus simple que la version cinématiquement contrainte. Un tel avantage mécanique

peut, en soi, justifier pleinement une efficacité légèrement plus faible. De plus, la solution op-

timisée proposée dans ce mémoire n’est certainement pas unique et ne correspond pas au seul

extremum du vaste espace paramétrique. En fait, d’autres solutions efficaces sont présentées

dans ce mémoire et une optimisation complète autour de ces solutions demeure toujours à

être effectuée. Dans tous les cas, ces résultats démontrent le grand potentiel d’utiliser des ailes

oscillantes pleinement passives en guise d’hydroliennes efficaces.

D’un point de vue physique, ce mémoire met en valeur que le phénomène d’oscillations de

cycle limite auquel l’aile est sujette est le résultat d’un flottement de décrochage. Cela est

ainsi en raison de la forte interaction entre l’aile et les tourbillons largués pendant le grand

décrochage dynamique. En fait, c’est spécifiquement cette interaction entre l’aile et les vortex

qui donne lieu au mouvement de tangage. De plus, deux mécanismes responsables des bonnes

performances de la turbine ont été mis en valeur. Ces mécanismes sont la synchronisation

adéquate entre les deux degrés de liberté, ainsi que le mouvement non sinusöıdal en tangage.
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Abstract

This master’s thesis deals with an aeroelastic problem that consists into self-sustained, pitch-

heave oscillations of an elastically-mounted airfoil. Such oscillations of an airfoil could be

used in order to develop a novel fully-passive flow harvester that is relatively simple from

a mechanical point of view. Indeed, the motion of an airfoil that is elastically mounted

emerges as a result of the fluid-structure interaction between the flow, the airfoil and its

elastic supports, and is sustained through a transfer of energy from the flow to the structure.

In this numerical study, the OpenFOAM-2.1.x CFD toolbox is used for solving the aeroelastic

problem. Through unsteady two-dimensional viscous simulations at a Reynolds number of

500,000, such a fully-passive turbine is optimized and extensively investigated to develop a

better comprehension of the physics at play.

Following a gradient-like optimization of the turbine, relatively high efficiencies have been

obtained. Indeed, the optimal case found in this numerical study has a two-dimensional

efficiency in the range of 34%. This is fairly high when compared to the two-dimensional

efficiency of a kinematically-constrained turbine, which is in the range of 43%. Further, the

fully-passive version of the turbine is far less mechanically complex than its kinematically-

constrained counterpart. Alone, such a mechanical advantage could justify the slightly lower

efficiency of the fully-passive turbine. Nevertheless, the optimized solution suggested within

this thesis is certainly not the only local extrema of the vast parametric space pertaining

to the aeroelastic device. Other efficient cases have been found, and complete optimizations

about these solutions still need to be achieved. Overall, the results demonstrate the great

potential of using fully-passive, flapping airfoils as efficient hydrokinetic turbines.

From a more physical perspective, this thesis highlights the fact that the airfoil is undergoing

limit-cycle oscillations as a result of stall flutter. This is because the interaction between the

airfoil and the vortices shed during the dynamic stall events is large. In fact, it is specifically

this interaction that mostly accounts for the pitching motion of the airfoil. Further, two

fundamental mechanisms have been found to be very beneficial for enhancing the performances

of the turbine. These mechanisms are the adequate synchronization between both degrees-of-

freedom, and the nonsinusoidal shape of the pitching motion.
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afin d’en assurer le succès. De plus, je tiens à remercier l’Université Laval et ses généreux
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Introduction

Context

The fluid-structure interaction of an airfoil with its surrounding fluid is of great interest in

the design process of several devices and structures. In the field of aeroelasticity, much effort

has been directed towards a better understanding of flutter phenomena combined with the

development of effective predictive techniques. Flutter is the result of a positive net exchange

of energy from the fluid to the structure due to the negative aerodynamic damping that may

arise. Sometimes, one is not interested in having an accurate prediction of the total energy

transfered to the solid body, and only seeks an efficient way to determine whether the structure

is stable or not. Various analytical tools have been developed for this specific task, and they

have proven to be very successful at it. In other circumstances, an accurate prediction of this

energy transfer is critical in order to avoid high-amplitude vibrations of a system, a situation

that could cause structural fatigue or failure. In such cases, the solution is to keep the relative

transfer of energy from the fluid to the structure as low as possible when compared to the

damping capacity of the apparatus. Conversely, structures undergoing flutter, such as airfoils,

could be conceived as devices to harvest energy from an incoming fluid, thus transforming

the flapping airfoil into some sort of novel turbine. Unlike the previous case, one would want

the positive flux of energy from the fluid to the structure to be maximized, and, at the same

time, make sure the machine could resist to these high-amplitude, flow-induced oscillations

over long terms.

Following the pioneering work of McKinney and DeLaurier (1980) in the field of flapping-wing

turbines, significant research on the subject has been performed by several groups in the last

decade with a general goal of optimizing the concept. The increasing amount of publications

on this matter is indicative of the rapidly growing interest towards the concept, which is

justified by several advantages over the more conventional flow harvesters (see Xiao and Zhu

(2014)). To state only a few of them, these bio-inspired turbines are not subject to the high

centrifugal stresses associated to the rotating blades found in most turbines. This makes the

oscillating-foils devices structurally robust. Further, the oscillating foils sweep a rectangular

flow window, which can be relatively wide and shallow. This is particularly interesting for

the purpose of harvesting rivers, especially those that are not very deep.
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The promising potential of flapping foils as wind or hydrokinetic turbines has been confirmed

both numerically (see Kinsey and Dumas (2006, 2008, 2012a,b,c, 2014)) and experimentally

(see Kinsey et al. (2011)) by the Laboratoire de Mécanique des Fluides Numérique (LMFN)

at Laval University over the past decade. Several other groups also confirmed its potential,

and the reader may refer to a recent review paper by Young et al. (2014) for an overview of

the various concepts suggested and studied. Another recent review paper by Xiao and Zhu

(2014) draws a clear portrait of the current state-of-the art, and the main findings of several

studies are gathered within this publication. In several of the concepts suggested, the rigid

wing is mounted on a clever mechanical system in which the cyclic shape of the motion and

the relation (phase lag) between the pitching, which is the angular motion, and the heaving,

which is the translational motion, were enforced in such a way as to significantly increase

the efficiency of the turbine, and the total energy it harvests from the flow (see Kinsey et al.

(2011)). Among these systems, some involved a well-designed mechanical coupling between

both motions, and this reduced the device to a single degree-of-freedom mechanism. Whether

it has one or two degrees-of-freedom, optimization of the energy harvester has typically been

achieved through a direct implicit or explicit control on the shape, frequency and phase lag

of the airfoil’s motions in pitch and in heave. Energy harvesting efficiencies as high as 43%

have been reported by Kinsey and Dumas (2014). Nevertheless, the mechanical components

required to achieve this implicit or explicit control may add some mechanical complexity to the

device, and this, in turns, may impair its mechanical efficiency, which should not be confused

with the energy harvesting efficiency. A concept not making use of such a mechanical coupling

could therefore be greatly beneficial.

Recently, some research groups reported promising results concerning a simplified, semi-

passive version of the flapping-foil flow harvester. In these semi-passive systems, the pitching

motion of the foil is prescribed while the heave results naturally through the interaction of the

foil with the flow and the supporting mechanism (see Shimizu et al. (2008); Zhu et al. (2009)

and Zhu and Peng (2009)). Energy harvesting efficiencies as high as 25% have been reported

following numerical studies, thus confirming the interesting potential of this simplified mech-

anism. An experimental study has also been conducted on such a semi-passive device in a

water tunnel, and efficiencies around 24% have been reported by Huxham et al. (2012).

According to Zhu et al. (2009) and to Kinsey and Dumas (2008), flapping-airfoil devices

essentially harvest the flow through the heaving motion. This means that the pitching motion

produces or incurs only modest input or output of energy in the mean, which suggests the

concept of a further simplified, fully-passive system (see Zhu (2011)). This idea that the

pitching motion could be fully autonomous in an energetic sense has been experimentally (see

Poirel et al. (2008)) and numerically (see Lapointe and Dumas (2011)) validated by observing

self-sustained, pitching-only motion of a wing at transitional Reynolds numbers.

2



In a simplified fully-passive system, both the heaving and the pitching motions are entirely

determined through the fluid-structure interaction between the foil, the flow and the elastic

supports. Large-amplitude, self-sustained oscillations have been experimentally observed for

such a system (see Dimitriadis and Li (2009); Mendes et al. (2011); Poirel and Mendes (2011)

and Razak et al. (2011)). The relatively new idea of using a fully-passive system to harvest

energy from a flow offers significant mechanical advantages over the preceding mechanisms

at the cost of having no direct control over the motion of the foil. For a foil mounted on a

rotational spring and a linear damper undergoing large-amplitude, cyclic oscillations, Peng

and Zhu (2009) reported energy harvesting efficiencies up to 20%. Although the 2D numerical

study was conducted at fairly low Reynolds number (Re = 1,000), it revealed the potential

of this new kind of turbine, and further optimization of this passive system is probably at

reach. However, as mentioned by the authors of the aforementioned paper, the response of

the airfoil to the flow excitation might be significantly different for high Reynolds numbers

that are more representative of real turbine applications, and this remains to be investigated.

The optimization of the fully-passive, flapping airfoil must be achieved by adjusting parame-

ters of the apparatus having only an indirect effect on the motion of the foil, thus implying

that a thorough understanding of the physical mechanisms through which each parameter

influences the motion is critical. Note here that for the purpose of turbine applications, only

cases for which limit-cycle oscillations (LCO) emerge are of interest. For such cases, the wing

oscillates in a nonchaotic way with a single frequency for both motions (pitching and heav-

ing), and the amplitudes of motion are relatively constant. This well-behaved motion of the

airfoil, as explained later, is possible due to the nonlinearity of the aerodynamic forces, which

is associated to the periodic dynamic stalling of the streamlined solid body (see Dowell et al.

(2005)).

Before moving on to the objectives of this work, the reader should note that there remains

some confusion in the literature on what a fully-passive, flapping-airfoil turbine really is.

This is because some research groups consider that a device is fully-passive as soon as the

motion is induced by the flow. Nevertheless, this is not strictly correct. This is because some

devices make use of a mechanical linkage between both degrees-of-freedom, thus imposing

some constraints on the motion of the foils. However, actuators are not necessarily used in such

cases, which means that the oscillations are entirely flow-induced. Indeed, categorizing such

devices as being fully-passive would certainly be misleading. In this work, the adjective fully-

passive is exclusively reserved for devices where no actuators are present, and no mechanical

linkage or coupling between both degrees-of-freedom are used. The reader should refer to

Kinsey and Dumas (2014) for a clarification on the terminology to be adopted.
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Objectives and structure

In this context of using a fully-passive, flapping airfoil as a wind or hydrokinetic turbine,

Lapointe (2012), a former student from the author’s group, initiated a numerical study dealing

with transitional flows. The current master’s thesis is a continuation of this interesting work,

and the specific objectives are :

• To introduce some theoretical concepts pertaining to the field of aeroelasticity.

• To formally introduce the aeroelastic problem along with its modeling.

• To introduce the fluid-structure interaction (FSI) solver used for the task of predicting

the LCO of an elastically-mounted, rigid airfoil at high Reynolds numbers (Re = 500,000).

• To optimize the fully-passive, flapping-airfoil turbine through a vast numerical cam-

paign, and suggest an optimal and realistic case that appears well-suited for the purpose

of efficiently harvesting energy from a flow.

• To perform a sensitivity study of the device in order to determine the effect of each key

parameter on the performances of the turbine at harvesting a flow, and to gain physical

insight into the mechanisms at play.

In order to fulfill these objectives, the master’s thesis is organized as follows. Chapter 1

includes a presentation of a non-passive, kinematically-constrained, flapping-airfoil turbine

which has been developed and studied at the LMFN. Because the main underlying objective

of this study is to simplify this device by getting rid of the mechanical linkage between both

degrees-of-freedom, it is important to introduce this apparatus. Further, a fully-passive,

flapping airfoil experimentally studied at the Royal Military College (RMC) is presented.

The results from this experiment conducted in the transitional range of Reynolds numbers

will reveal to be very useful for the task of validating the numerical solver of this study.

Then, a discussion on classical flutter, stall flutter and limit-cycle oscillations is presented.

There are several types of flutter, and a single structure may be subject to one or many of

them. The physical processes involved depend on the type of flutter encountered, and, as a

result, the means of affecting the level of energy transfered from the fluid to the structure may

vary significantly. In addition, some flutter phenomena may lead to a well-behaved motion of

fairly constant amplitude known as limit-cycle oscillations (LCO). This type of motion, and

the physical characteristics associated to it, are also discussed.

Chapter 2 deals with the methodology used to solve the aeroelastic problem. Before intro-

ducing the computational methodology, the aeroelastic problem of the elastically-mounted

airfoil is formally introduced and discussed. Then, the fluid-structure interaction (FSI) solver

that has been implemented within the open-source CFD toolbox OpenFOAM-2.1.x is de-
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scribed, with some emphasis on the methodology used for coupling the structural and the

fluid solvers. This reveals to be significant as there are inherent limitations pertaining to all

types of fluid-structure coupling schemes, and this can limit the use of a specific solver.

Chapter 3 focuses on the validation of the FSI solver presented in Chapter 2. The first section

aims at assessing the independence of the results from the numerics, as much as assessing its

ability at accurately predicting the motion of a solid body which is elastically supported in a

freestream flow. This is where the experiment from the RMC, which is discussed in Chapter 1,

becomes relevant. These results allow a validation of the FSI solver, but they are also used

to validate the choice of a specific turbulence model in the last section. To end, the vortex

induced vibrations (VIV) of a round cylinder oscillating transversally to a flow are considered.

This is a well-known benchmark case that is well documented in the literature (see Bearman

(2011); Dimitriadis and Li (2009); Durgin et al. (1980); Leontini et al. (2006); Morissette

(2009); Williamson and Govardhan (2004) and Yang et al. (2008)), thus making it well-suited

for validating the current solver.

Chapter 4 is really at the heart of this thesis as it deals with the optimization of the fully-

passive, flapping-airfoil turbine. The first part of this chapter is used to introduce a tool

developed by the author in order to facilitate and speed-up the optimization process. Next, a

more general presentation of the methodology used to optimize the device is presented. The

results of the optimization process are then presented extensively, analyzed, and discussed.

Further, a sensitivity study that has been carried about an optimal case is presented in order

to assess the physical influence of each structural parameter of the apparatus, followed by a

presentation of an oscillating-foil device where no structural springs are present.

Then, Chapter 5 discusses the feasibility of the concept. The effect of dry friction is considered,

and the modeling of the generator is discussed. Next, the optimized case found in Chapter 4

is dimensionally scaled for an experiment in both air and water. This is to determine how

easy or how difficult it would be to pursue the research on this device through experimental

work, as this could be seriously considered following this study. The chapter ends with a brief

opening on other numerical results that should be further investigated in the very near future.

To end, a conclusion that summarizes the main findings of this thesis is presented. Also, a dis-

cussion on the recommended steps to be achieved following this numerical study is presented.

This is an opening on the remaining work, and it is provided as a guideline for those who

would like to carry-on with the interesting research on fully-passive, flapping-airfoil turbines.
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Chapter 1

Preliminary concepts

The purpose of this first chapter is essentially to review some literature of interest concerned

with subjects that are key to the work presented in this master’s thesis. In the first section, the

extensive work performed at the Laboratoire de Mécanique des Fluides Numérique (LMFN)

located at Laval University on a kinematically-constrained (i.e., non-passive), flapping-airfoil

turbine is introduced. This brief review specifically focuses on a description of the device,

along with pertinent numerical results concerning its efficiency at harvesting kinetic energy

from a flow. The second section deals with the experimental work conducted at the Royal Mil-

itary College (RMC) located in Kingston, Ontario, on a fully-passive, flapping-airfoil device.

Although the objective of the work performed there was to develop a better comprehen-

sion of the physical mechanisms involved in the low-amplitude, self-sustained motion of an

airfoil, some results have also been published concerning the large-amplitude motion of the

elastically-mounted airfoil. These results prove to be very useful for the current study as the

experiment has been performed with a device very similar to the one treated in this master’s

thesis. Last but not least, a section introduces the main theoretical concepts of flutter. To

achieve this, the section is divided in three subsections where each one corresponds to a spe-

cific physical mechanism more or less involved in the aeroelastic problem of this thesis. They

are respectively classical flutter, stall flutter and limit-cycle oscillations (LCO).

1.1 Kinematically-constrained turbine

A kinematically-constrained, flapping-airfoil turbine may consist of one or multiple tandem-

mounted foils oscillating with a constrained motion in both pitch and heave. Notwithstanding

this fact, the current review section is only concerned with the single-foil version of the device

studied at the Laboratoire de Mécanique des Fluides Numérique (LMFN). For such an appara-

tus, the shape of both motions is constrained to be sinusoidal, and the phase lag between both

degrees-of-freedom, namely pitch and heave, is enforced through a clever mechanical linkage.

As a result of this coupling between both motions, the device, in fact, only has one degree-of-
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freedom. This turns out to be an efficient way to maximize the energy harvesting efficiency

(η). As previously mentioned in the introduction of this thesis, the LMFN at Laval University

has been conducting extensive numerical (see Kinsey and Dumas (2006, 2008, 2012a, 2014))

and experimental (see Kinsey et al. (2011)) research on this matter, and relatively high energy

harvesting efficiencies (η) in the range of 43% have been reported.

Contrary to this kinematically-constrained device, the fully-passive, flapping-airfoil concepts

of turbine, such as the one considered in this master’s thesis, would certainly not make use of

a mechanical linkage between both degrees-of-freedom. It is therefore impossible to directly

enforce an efficient kinematics. If this was doable, the same efficient kinematics as the one

used with the kinematically-constrained device could be used, and the problem would already

be solved. Instead, this efficient kinematics must emerge by itself through the interaction of

the foil with the flow and its elastic supports. Nevertheless, it appears conceivable to indi-

rectly control the kinematics of the device through its numerous structural parameters to be

introduced, and the ultimate objective would certainly be to achieve the same efficiencies as

those obtained with the kinematically-constrained device. In these circumstances, the result-

ing fully-passive turbine would be significantly less complex, in a mechanical sense, and would

still be as energetically efficient. Since the performances of the kinematically-constrained tur-

bine are the ideal aiming point of the optimized, fully-passive turbine, it appears relevant,

not to say inevitable, to acquaint the reader with the work performed at the LMFN on a

kinematically-constrained device, along with some numerical results regarding its efficiency

at harvesting energy from a flow.

To begin with, an extensive two-dimensional (2D) Unsteady Reynolds-Averaged Navier-Stokes

(URANS) study has been performed by Kinsey and Dumas (2014) at a Reynolds number of

500,000. In this numerical study, the constrained motion of a rigid, symmetrical NACA 0015

airfoil is sinusoidal in both pitch and heave, and a phase lag (φ) of 90 ◦ between pitching

and heaving is used. The pitching (θ(t)) and the heaving (y(t)) motions can therefore be

mathematically represented as:

θ(t) = θ0 sin(γt) , (1.1)

y(t) = y0 sin(γt+ φ) , (1.2)

where θ0 and y0 are the prescribed pitching and heaving amplitudes, and γ is the prescribed

angular frequency of oscillation (2πf). With such a motion (see Figure 1.1), whenever the

airfoil reaches an extrema in heave, the geometric angle θ is null. Further, the airfoil of chord

length c is oscillating about a pivot (i.e., pitching axis) located one third of a chord length (c/3)

behind its leading edge. A parametric study of such a device has been performed by varying

the reduced frequency of oscillation (f∗ = fc/U∞) and the amplitudes of motion (θ0 and y0).

Following this fairly large numerical campaign, a mapping of efficiency (Figure 1.2) has been
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Figure 1.1: Schematic of the kinematically-constrained turbine’s motion with key variables
used to characterize this motion. Adapted from Kinsey et al. (2011).

produced for both the energy harvesting efficiency (η) and the cycle-averaged power coefficient

(CP
∗
). Before going any further, these two parameters used to quantify the performances of

the device shall be defined. First, the energy harvesting efficiency:

η =
1

T

T∫
0

P
1
2 ρU

3
∞ bd

dt , (1.3)

where P is the instantaneous power harvested from the flow, d is the overall vertical dis-

placement of the airfoil, T is the period of oscillation (T = 1/f), and b is the span of the

airfoil. By considering Figure 1.1, one can convince oneself that the maximum displacement

of the airfoil (d), also known as the flow window, is not necessarily equal to twice the heaving

amplitude (2y0). Indeed, the heaving amplitude (y0) corresponds to the vertical displacement

of the pivot (i.e., pitching axis), while the flow window (d) per unit span corresponds to the

difference between the highest and the lowest heights reached by any point on the foil. Fur-

ther, the instantaneous power harvested from the flow can be decomposed into the sum of a

heaving and a pitching contribution:

P = Lẏ︸︷︷︸
heaving

+ Meaθ̇︸ ︷︷ ︸
pitching

, (1.4)
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Figure 1.2: Mapping of the energy harvesting efficiency η (a), and the cycle-averaged power
coefficient CP

∗
(b) of the kinematically-constrained, flapping-airfoil turbine for various am-

plitudes of motion in pitch (θ0) and in heave (y0), and for various reduced frequencies (f∗).
Values predicted through 2D URANS simulations. Adapted from Kinsey and Dumas (2014).
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where L is the lift (i.e., vertical force), Mea is the moment about the pitching axis, ẏ is the

heaving velocity, and θ̇ is the pitching rate. However, the contribution from the pitching

motion is found to be essentially null in the mean with the extraction of energy being mainly

done through the heaving motion (see Kinsey and Dumas (2008)). Physically, the efficiency

η corresponds to the cycle-averaged power harvested by the turbine over the total power

available through the flow window. This is an aerodynamic efficiency that does not account

for the possible mechanical losses, and there exists a well-known theoretical limit to this

efficiency. It is known as the Betz’s limit, and that takes a value of 59.3% for a single-foil

device. This theoretical limit has been obtained through the inviscid analysis of an actuator

disk positioned in a stream tube, and it has first been presented by Betz and Prandtl (1919).

Second, the cycle-averaged power coefficient CP
∗

is defined as:

CP
∗

=
1

T

T∫
0

P
1
2 ρU

3
∞ 2 y0b

dt . (1.5)

This time, the cycle-averaged power harvested from the flow is normalized with the power

available in a flow window of height equal to twice the vertical displacement of the pitching axis

(2y0). It is also possible to define another cycle-averaged power coefficient CP which allows

an even easier, more direct comparison between cases showing different heaving amplitudes.

It is defined as:

CP =
1

T

T∫
0

P
1
2 ρU

3
∞ bc

dt . (1.6)

Computed this way, CP is a measure of the cycle-averaged power harvested from the flow

normalized with the power available through a flow window of height equal to one chord length.

As a result, all cases sharing the same chord length are normalized with the same unique value

of power, independently of their amplitude of motion. This makes the comparison of cases

exhibiting different amplitudes of motion very straightforward. It is worth mentioning that

η and CP turn out to be useful metrics used throughout this master’s thesis, and the reader

should make sure to fully understand their physical meaning.

Returning to the results of Kinsey and Dumas (2014) shown in Figure 1.2, the reader may

observe that a measure of CP is not readily available. In fact, it can be obtained by simply

multiplying the value of CP
∗

by 2y0/c. Figure 1.2 reveals that a maximum energy harvesting

efficiency (η) of approximately 43% has been predicted through 2D simulations. Such a high

efficiency, when compared to the Betz’s limit of 59.3%, has been predicted for an airfoil
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flapping at a reduced frequency (f∗) of 0.18 with a pitching amplitude (θ0) of 80◦ and with

a normalized heaving amplitude (y0/c) of 1. The corresponding value of CP
∗

is slightly over

0.55, which translates into CP = 1.13. These 2D numerical results are considered to be

representative of the optimal performances of the kinematically-constrained, flapping-airfoil

turbine throughout the current thesis, and they will later be used to compare and qualify the

predicted performances of the fully-passive, flapping-airfoil turbine.

Numerical three-dimensional (3D) URANS simulations have also been performed at the

LMFN (see Kinsey and Dumas (2012a)), along with an experimental study (see Kinsey et al.

(2011)) of the kinematically-constrained turbine. The 2D, 3D and experimental results have

been compared altogether by Kinsey and Dumas (2012a), and they are here reproduced in

Figure 1.3. Although the 3D simulations have predicted a lower efficiency (maximum η of

33%) compared to what has been predicted through 2D simulations (maximum η of 43%),

both trends agree fairly well. This provides a strong, valuable argument in favor of conducting

a 2D numerical study of the flapping-airfoil turbine. This, of course, turns out to be far less

computationally demanding than its 3D counterpart. Indeed, the results suggest that a 2D

numerical study can first be performed, followed by only a few 3D computationally demand-

ing simulations to refine the numerical predictions. For this reason, the same strategy is to

be used in the current study. Lastly, it is observed that 3D simulations agree very well with

the experimentally measured efficiencies not only in the trends, but also in numerical values

(maximum η of 30%). This provides great confidence in the numerical methodology used at

the LMFN. Also, due to the great similarities between the problem previously considered at

the LMFN and the current aeroelastic problem, it provides assurance that this methodology

can safely be applied in the current study.

Partial conclusion

To summarize, the kinematically-constrained device has proven to be a relatively efficient

way of harvesting energy from an incoming flow with energy harvesting efficiencies ranging

from 30% to 43%. Such efficiencies are considerably high when compared to the Betz’s limit

of 59.3%. Some complexity still resides in the presence of a mechanical linkage between

both degrees-of-freedom. The mechanical components required to constrain the motion could

increase the production cost and the maintenance cost of the device, and it could impair

its mechanical efficiency. For these reasons, a fully-passive, flapping-airfoil turbine, even

if it had an energy harvesting efficiency slightly lower than what has been obtained with

the kinematically-constrained device, would most probably have significant mechanical and

financial advantages over the non-passive system. Further, the 2D and 3D URANS modeling

used at the LMFN for the extensive numerical study proved to be adequate for the task of

predicting the aerodynamic forces on an foil oscillating in a freestream flow.
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Figure 1.3: Comparison of the energy harvesting efficiencies η predicted through 2D and 3D
URANS simulations, along with the experimentally measured efficiency. Reproduced from
Kinsey and Dumas (2012a) with permission.

1.2 Fully-passive device - experimental

A research group at the Royal Military College (RMC) located in Kingston, Ontario, con-

ducted an experimental study on an airfoil that was elastically-mounted in both pitch and

heave as depicted in Figure 1.4. The study was conducted in a closed-circuit wind tunnel

in the transitional range of Reynolds number (Re = [50,000 to 120,000]) (see Mendes et al.

(2011) and Poirel and Mendes (2011)). Although this remains far from the range of Reynolds

numbers representative of a turbine application, these results turn out to be very useful for

the purpose of validating the fluid-structure interaction (FSI) solver which has yet to be in-

troduced. It should be mentioned that both low-amplitude and high-amplitude oscillations

of the airfoil have been observed in this experiment. However, the research conducted at the

RMC did not focus on a turbine application of the flapping foil, nor on the large-amplitude

oscillations that were observed. The study was rather concerned with the small-amplitude

oscillations caused by a laminar separation bubble (LSB), and aimed at investigating the

physics at play. Because it was not a consideration in the experiment, no energy harvesting

efficiencies or power coefficients are available in the literature for this specific setup. Nonethe-

less, the main features of the motion (i.e., the amplitudes of motion in pitch and in heave and

the frequency of oscillation) are available (see Mendes et al. (2011) and Poirel and Mendes

(2011)), and this constitutes enough information to validate the FSI numerical solver. The

reader may also refer to Chapter 4 of this document for an overview of the efficiencies asso-

ciated to the large-amplitude, aeroelastic oscillations of the RMC experiment. Indeed, it has
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Figure 1.4: Schematic of the symmetrical, rigid, elastically-mounted airfoil used in the wind-
tunnel experiment of the Royal Military College (RMC) in the transitional range of Reynolds
numbers. Reproduced from Poirel et al. (2006).

been possible to use the FSI solver of the current master’s thesis to predict the corresponding

efficiencies. All that deserves to be mentioned for now is that the predicted efficiencies of the

experimental device appear to be very modest (η ≈ 5%), and they do not compete at all with

the high efficiencies achieved with the kinematically-constrained turbine (η = 43%).

As mentioned earlier, the experiment has been conducted with the setup shown in Figure 1.4.

Figure 1.5 is a simplified schematic of the elastically-mounted airfoil with symbolic represen-

tation of the key structural parameters. In the experiment, the elastically-mounted airfoil is

free to pitch around the z -axis and heave along the y-axis. The motion is not possible in

any other directions, nor about any other axis. The two degree-of-freedom system consists of

a symmetrical, rigid NACA 0012 airfoil mounted on a pivot, referred to as the elastic axis,

about which the pitching motion (θ) is possible. Further, the pivot is mounted on a sliding

mechanism, thus allowing the heaving motion (y). There is absolutely no mechanical linkage

between the pitching and the heaving motions: instantaneous aerodynamics as well as inertial

effects are the only possible couplings. As a matter of fact, this apparatus falls into the cate-

gory of fully-passive, oscillating wings, just as much as the aeroelastic problem considered in

this master’s thesis. This reveals to be one of the main reasons why the RMC experiment con-

stitutes an adequate case for validating purposes. The various structural parameters involved

in the experiment are the following:
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• c, the chord length of the airfoil;

• kh, the heave spring stiffness coefficient;

• kθ, the pitch spring stiffness coefficient;

• Dh, the heave structural damping coefficient;

• Dθ, the pitch structural damping coefficient;

• Iθ, the moment of inertia about the elastic axis;

• xea, the distance between the leading edge and the elastic axis;

• xθ, the distance between the center of mass of the pitching components and the elastic

axis (positive when the center of mass is behind the elastic axis);

• mp, the mass of all components involved in the pitching motion;

• mh, the mass of all components involved in the heaving motion.

At first, the fact that two masses (mp and mh) are required to characterize the device might be

striking and counterintuitive. One can convince oneself that such a discretization of the masses

is indeed accurate by considering Figure 1.4. Clearly, the mass of the sliding mechanism is not

involved with the pitching of the airfoil. Further, in most cases one combines the parameters

xθ and mp to form what is known, in the field of aeroelasticity, as the static imbalance:

S = mpxθ. The rationale of this simplification shall become clear when the equations of

motion of the fully-passive, oscillating airfoil will be worked out in Chapter 2.

Throughout the experimental study, several parameters have been held constant. Those

are summarized in Table 1.1. The only structural parameter not held constant was the heave

Figure 1.5: Simplified schematic of the symmetrical, rigid, elastically-mounted airfoil of the
RMC wind tunnel experiment with symbolic representation of key parameters (not showing
the sliding mechanism). Adapted from Lapointe and Dumas (2012).
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Table 1.1: Constant parameters in the experiment of the fully-passive, elastically-mounted
airfoil conducted at the Royal Military College (RMC) (see Mendes et al. (2011); Poirel (2012);
Poirel et al. (2008) and Poirel and Mendes (2011)).

Parameter Value

c 0.156 m

xea 0.186 c

xθ 0.095 c

Iθ 0.00135 kg·m2

kθ 0.3 N·m/rad

Dθ 0.002 N·m·s/rad

mh 2.5 kg

S 0.0114 kg· m

spring stiffness coefficient (kh), which has been varied to take values of 800 N/m and 1484 N/m.

Further, the only flow parameter that varied was the freestream velocity (U∞), thus also

changing the Reynolds number. The amplitudes of motion and the frequency recorded for

the cases where large-amplitude oscillations have been observed are reported in Figure 1.6. It

is an interesting fact that a single frequency is reported while the device has two degrees-of-

freedom. This is because the heaving and the pitching frequencies coalesce together, giving

rise to a single frequency for the entire system. As it can be observed, the amplitude of motion

in pitch reaches values over 60◦, and the amplitude of motion in heave reaches values over 0.4

chord length. For these reasons, the motion is qualified as being of large amplitude. Typically,

small-amplitude oscillations are of only a few degrees in pitch, and only a few percent of the

chord length in heave. Unfortunately, experimental values for the heaving amplitude are not

available for the low heave stiffness case (kh = 800 N/m).

Table 1.1 does not provide any value for the heave structural damping coefficient (Dh). In-

stead, Figure 1.7 displays the heave damping ratio (ξh) as a function of the normalized heaving

amplitude (y0/c). The raw data of a few free decay tests of the elastically-mounted wing have

been obtained from the RMC through a private communication (Poirel (2012)). A calcu-

lation of the instantaneous damping ratio has been performed by the author of this thesis

using the logarithmic decrement method (see Thorby (2008)). Clearly, the damping ratio is

not constant, thus indicating the presence of some nonlinearities in the structural damping of

the device. According to Poirel and Mendes (2011), this is believed to be imputable to some

misalignments of two sliding rods involved in the heaving motion. The linear representation

of the pitch structural damping coefficient (Dθ), as it is pointed out by Poirel et al. (2008),

is also questionable. Indeed, the dissipation of energy is primarily due to dry friction and

spring compression. The nonlinear character of the damping will later reveal to be significant
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(a) Pitching amplitude. (b) Normalized heaving amplitude.

(c) Reduced frequency.

Figure 1.6: Amplitudes of motion (θ0 and y0/c) and reduced frequency (f∗) as a function of the
Reynolds number (Re) for the fully-passive, elastically-mounted, oscillating airfoil experiment
of the Royal Military College (see Mendes et al. (2011); Poirel (2012) and Poirel and Mendes
(2011)). The Reynolds number has been varied by changing the freestream velocity (U∞).
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Figure 1.7: Heave damping ratio (ξh) of the elastically-mounted, oscillating airfoil used at the
Royal Military College (RMC) as a function of the normalized, instantaneous amplitude of
motion in heave (y0/c). Raw data obtained from a private communication (Poirel (2012)).
The damping ratios have been calculated with the logarithmic decrement method (see Thorby
(2008)).

when the validation of the current FSI solver will be assessed. Even if some uncertainties

remain concerning the structural damping of the device, these experimental results are still

very useful for validating the numerical predictions obtained through CFD.

Partial conclusion

To summarize this section, the setup used to conduct the experimental study of an elastically-

mounted airfoil has been introduced. The experiment of the RMC certainly did not focus on

a turbine application of the device, but enough data is available in the literature as to make

this experiment very useful for validating the FSI solver of this thesis due to the profound

similarities between the aeroelastic problems considered. Nevertheless, some experimental un-

certainties remain on the values and on the modeling of some parameters from the experiment.

This will be revisited later in this thesis.
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1.3 Physics of flutter

Several physical phenomena are of interest in the field of dynamic aeroelasticity. This section

does not aim at providing a complete picture of all types of instabilities, but, instead, aims at

introducing classical flutter, stall flutter and limit-cycle oscillations (LCO). These aeroelastic

phenomena reveal to be significant for the fully-passive, flapping-airfoil turbine problem, and

this is the reason why they are here introduced. The reader is referred to Dowell et al.

(2005) and Fung (2008) for a complete, comprehensive discussion on flutter. Unless otherwise

indicated, these two texts constitute the main references for this section.

1.3.1 Classical flutter

Classical flutter 1 is a type of dynamic instability to which some structures are prone. When

this is the case, the amplitude of motion may drastically grow following an external perturba-

tion of some kind. In the case of a streamlined body, such as a wing, this external perturbation

could be any symmetry-breaking mechanism: turbulence, atmospheric wind gust, deflection

of a control surface, etc. The loss of stability is explained with the concept of negative aero-

dynamic damping. As the freestream velocity (U∞) of the flow to which the airfoil is exposed

increases, the aerodynamic damping first increases. In other words, the motion induced by

an external perturbation is damped (i.e., the kinetic and the potential energy is transfered

from the structure to the flow). Further increasing the freestream velocity (U∞) may result

in a rapid decrease of the aerodynamic damping. At the critical flutter velocity (Ucr), the

aerodynamic damping becomes null, and any further increase of the freestream velocity (U∞)

leads to a negative aerodynamic damping. As a result, when this critical velocity is passed

and the airfoil is disturbed from its equilibrium position through a perturbation of any ampli-

tude, the aerodynamic forces are such that the motion is not damped. Instead, the opposite

happens, and the flow provides energy to the structure, resulting in some possibly violent,

exponentially-growing oscillations. Structural failure is very often the outcome to such an

event, which strongly suggests that the typical objective of an aeroelastic study is to avoid

such detrimental instabilities.

The use of the term classical flutter is normally restricted to an oscillatory instability observed

in a potential flow (this assumes the flow to be irrotational and thus inviscid). This implies

that nonlinearities are absent from the flow (i.e., neither separations nor shocks are present)

or, at least, are not involved in the physical mechanisms through which the instability occurs.

Although one-degree-of-freedom, classical flutter has been observed, the linear dynamic insta-

bility is generally the result of a well-defined coupling between the various degrees-of-freedom

of the structure, with the phase shift between motions being a key parameter.

1. In the literature, classical flutter is often simply referred to as flutter.
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In order to understand better classical flutter, it is very useful to consider a simplified aeroelas-

tic problem. For this purpose, a steady flow aerodynamic model along with a typical section

model are used. The typical section consists of a rigid, streamlined body mounted on a spring

in heave, and on a torsional spring in pitch. This setup is identical to that of Figure 1.5,

except that no structural damping is present, and the streamlined body may be of a different

shape. The equations of the linear, steady flow aerodynamic modeling are:

L = qbc
∂CL
∂θ

θ , (1.7)

Mea = eL . (1.8)

The nomenclature used here is consistent with the previously introduced symbols. The lift

slope (∂CL/∂θ) of the airfoil is often assumed to be 2π rad−1 according to the thin airfoil

theory. Further, e is the distance between the aerodynamic center and the elastic axis (positive

when the aerodynamic center is aft of the elastic axis), and q is the dynamic pressure (1
2ρU

2
∞)

associated to the undisturbed incoming flow. Assuming an angular motion of small amplitude

(θ � 1), the linearized equations of motion are:

mhÿ + Sθ̈ + khy + qbc
∂CL
∂θ

θ = 0 , (1.9)

Iθθ̈ + Sÿ + kθθ − e

(
qbc

∂CL
∂θ

θ

)
= 0 . (1.10)

The objective here is to investigate the stability of the system, and thus to understand better

the fundamentals of classical flutter. The stability analysis can be achieved by assuming

solutions of the following form:

y = yept , (1.11)

θ = θept . (1.12)

The mathematical problem turns out to be one of finding the values of p, which can indeed be

complex. If the real part of p is positive, the amplitude of motion grows exponentially with

time, and the device is said to be unstable (i.e., flutter occurs). In order to find the values of

p, the problem may be conveniently rearranged in matrix form:

 mhp
2 + kh Sp2 + qbc∂CL

∂θ

Sp2 Iθp
2 + kθ − e

(
qbc∂CL

∂θ

) [ yept

θept

]
=

[
0

0

]
(1.13)

Nontrivial solutions exist only and only if the determinant of the coefficient matrix is null.

This condition leads to the following equation:
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Ap4 + Bp2 + C = 0 , (1.14)

where

A ≡ mhIθ − S2 , (1.15)

B ≡ mh

[
kθ − e

(
qbc

∂CL
∂θ

)]
+ khIθ − S

(
qbc

∂CL
∂θ

)
, (1.16)

C ≡ kh

[
kθ − e

(
qbc

∂CL
∂θ

)]
. (1.17)

Solving for p yields:

p =

√
−B ±

[
B2 − 4AC

]1/2
2A

. (1.18)

For any mass distribution, A must be positive in order to be representative of a physical

reality. Further, C is positive when the dynamic pressure q is less than its physical divergence

value:

qdiv =
kθ

ebc∂CL
∂θ

. (1.19)

The phenomenon of divergence is a static instability which happens when the torsional restor-

ing moment is not sufficiently large to counteract the aerodynamic moment exerted by the

flow on the structure. This is mathematically expressed as:

kθ − e

(
qdivbc

∂CL
∂θ

)
= 0 . (1.20)

When such a situation occurs, the initial response of the body is not to undergo an oscillatory

motion. Instead it strictly diverges from its equilibrium position. For this reason, divergence

is sometimes referred to as a form of flutter with null frequency. Structural failure is generally

the outcome to such an instability. More details on this matter can be found in Dowell et al.

(2005).

Coming back to the current analysis of classical flutter, C must therefore remain positive: the

dynamic pressure must be such that the solid did not reach divergence yet. As a result, only

four cases have to be considered in order to analyze the stability of the typical section:
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I B > 0 and B2 − 4AC > 0

II B > 0 and B2 − 4AC < 0

III B < 0 and B2 − 4AC > 0

IV B < 0 and B2 − 4AC < 0

In the first case (I), the values of p are purely imaginary, a situation associated to a neutrally

stable system. For the second case (II), at least one solution of p has a positive real part.

This indicates that the solid body is dynamically unstable, and flutter may occur following

an external disturbance. As a result, (B2 − 4AC = 0) provides what is known as the flutter

boundary.

A deeper analysis of this criterion reveals that the static imbalance (S) must be positive or

null for flutter to occur. Conceptually, this indicates that the center of gravity of the solid

body must either be positioned behind the elastic axis or coincide with the elastic axis for the

structure to be dynamically unstable. Further, as S increases, the dynamic pressure (qcr) at

which flutter first appears decreases. In other words, as the center of gravity of the solid is

moved farther behind the elastic axis, the critical flutter velocity (Ucr) is reduced. This is a

very interesting property of flutter indicating that the mass distribution of a solid body plays

a key role from an aeroelastic point of view. Very often, structures which are prone to flutter

are mass balanced as a way to avoid the dynamic instability within the typical operational

range of the device. To achieve this, the center of gravity is moved as close as required to

the leading edge 2. For the third (III) and fourth (IV) cases, the condition (B < 0) is only

encountered for relatively high values of the dynamic pressure (q). In practice, the flutter

boundary (B2 − 4AC = 0) is crossed before the value of B becomes negative. Therefore, the

two last cases are not relevant as they do not bring new information concerning the onset of

flutter.

The second case (II) can further be analyzed, and it can provide more information concern-

ing the onset of flutter. If the elastic axis coincides with the center of mass (xθ = 0), the

onset of flutter can be predicted solely by considering the relative position (e) of the aerody-

namic center in comparison to the position of the elastic axis, and the ratio of the decoupled

natural frequency in heave
(
ωh =

√
kh/mh

)
over the decoupled natural frequency in pitch(

ωθ =
√
kθ/Iθ

)
. Flutter will not occur if the following conditions are met:

• the aerodynamic center is ahead of the elastic axis (e > 0) and ωh/ωθ > 1;

• the aerodynamic center is behind the elastic axis (e < 0) and ωh/ωθ < 1.

Lastly, if the elastic axis is very close to the center of gravity, but they do not necessarily

coincide, a simplification is possible and it is observed that flutter will not occur for small

2. Such a structure is said to be mass balanced.
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ratios of ωh/ωθ if (−e − xθ) > 0. Conversely, if ωh/ωθ is large, flutter will not occur if

(e− xθ) > 0.

From this linear stability analysis, it appears that the mass distribution is not the only

significant parameter to determine if an airfoil is linearly dynamically stable or not. Indeed,

the relative positions of the elastic axis, of the aerodynamic center, and of the center of mass

are of great influence. Further, the ratio of the natural frequencies is very significant, and

this will be made clear in the following paragraphs. Following this linear stability analysis,

the theoretical influence of several structural parameters has been highlighted, thus providing

some knowledge on how to control the onset of flutter via an adequate design of the aeroelastic

device.

In order to refine the previous analysis and learn more information from a physical point of

view, a quasi-steady or an unsteady potential theory can be used in lieu of a steady theory for

the aerodynamic modeling 3. When this is done, the analysis becomes more convoluted, and

numerical, iterative solutions are generally used. The explanation to this increased level of

difficulty resides in the complexity of the chosen potential aerodynamic modeling. However,

the values for p are found using the same idea as before: one establishes the system of equation

in matrix form and seeks a solution by setting the determinant of the matrix of coefficients

equal to zero.

Figure 1.8 shows a typical plot of the real (Re) and the imaginary (Im) components of the

complex frequency p as a function of the freestream velocity (U∞). Each root of p corresponds

to a different mode (i.e., degree-of-freedom), and the imaginary component of p is, in fact,

the frequency of the mode, while the negative of the real component of p represents the

aerodynamic damping associated to the mode. As it may be observed in the gray area

labeled FLUTTER, flutter occurs when one of the modes reaches a negative value for the

aerodynamic damping. It is also clear that the frequency of oscillation of both modes tend

to merge as the critical flutter velocity is approached. For this reason, this type of flutter is

often referred to as coalescence flutter or merging flutter. Recalling the results from Poirel

et al. introduced previously, this explains why the two-degree-of-freedom aeroelastic device

only had a single frequency of oscillation. Indeed, it has been found that this specific device

was prone to classical flutter (see Poirel and Mendes (2011)).

There are several other subtypes of flutter that could fit into the family of classical flutter,

with some of them having a single degree-of-freedom. In all cases, flutter occurs when the

aerodynamic damping of a mode becomes large and negative, and a complete description

of all the possible mechanisms through which this might happen is out of the scope of this

text. Generally speaking, coalescence flutter is the most common type of dynamic instabil-

ity encountered on wings. Following this physical introduction, the following items briefly

summarize what has been mentioned:

3. The reader may refer to Kinsey (2011) for a concise summary of these aerodynamic models.
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Figure 1.8: Typical frequency (imaginary (Im) component of p) and aerodynamic damping
(opposite of the real (Re) component of p) as a function of the freestream velocity (U∞). The
solid and the dashed curves correspond to the first and the second modes of a two-degree-of-
freedom flapping-airfoil system.

• The static imbalance (S) is a critical parameter. If the center of gravity is ahead of the

elastic axis, no flutter is predicted through a linear stability analysis.

• The ratio of natural frequencies (ωh/ωθ) has a large impact on the onset of flutter.

As previously described, a merging of the modal frequencies is inherent to coalescence

flutter. If the ratio of natural frequencies is close to one, this merging of frequencies

happens faster, and flutter occurs at a lower critical velocity.

• Increasing the torsional stiffness (kθ) generally prevents coalescence flutter from occur-

ring.

• Increasing the structural damping (Dθ and Dh) helps preventing or delaying the onset

of flutter, and this is not only true for coalescence flutter. This holds true for various

types of dynamic instabilities.

1.3.2 Stall flutter

Stall flutter, as explicitly revealed by its name, involves separations of the flow from the

streamlined body undergoing flutter. These separations of the flow may either be complete

or partial, and, unlike classical flutter, stall flutter may reveal not to be catastrophic. In

fact, due to the presence of aerodynamic nonlinearities, the outcome is very often a cyclic
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motion of limited amplitude (see Arena et al. (2013); Dimitriadis and Li (2009) and Razak

et al. (2011)). This phenomenon is known as limit-cycle oscillations (LCO), and this will be

the subject of the next subsection. Even if the amplitude of motion usually stabilizes itself

before structural failure occurs, the large-amplitude, cyclic motion may sometimes result in a

significant impairment of the service life of the device due to fatigue (see Arena et al. (2013)).

For this reason, it is generally better to avoid stall flutter over the complete operational range

of a device, or, at least, to drastically limit the amplitude of motion resulting from it.

The physical mechanisms involved in stall flutter greatly differ from those observed in classical

flutter. This time, the transfer of energy from the flow to the structure is not the result of an

elastic or an aerodynamic coupling between the degrees-of-freedom involved, and the phase lag

between the motions is not a parameter of importance. It must be understood that some level

of coupling between the various degrees-of-freedom, along with a lag between the motions,

may be present and alter the dynamics, but they are not essential features of stall flutter. In

fact, stall flutter is possible as a result of the nonlinear behavior of the aerodynamic forces

on the body, and these nonlinearities are the result of separations occurring in the flow (see

Arena et al. (2013); Dimitriadis and Li (2009) and Razak et al. (2011)).

It is well known that separations occur when an airfoil is undergoing a large-amplitude,

periodic motion in a freestream flow. When this happens, there is a time lag in the aerody-

namic forces and moments exerted by the flow on the body, along with a hysteresis in the

aerodynamic forces. These two phenomena combined, in turns, may give rise to a negative

aerodynamic damping, thus implying that the flow is doing some work on the structure. As

a result of this positive transfer of energy from the flow to the airfoil, flutter may occur if the

structural damping is insufficient.

The occurrence of stall flutter is very often dependent upon the amplitude of the initial

external perturbation, especially if the airfoil is linearly dynamically stable. This is in contrast

with classical flutter, where an infinitesimal perturbation is enough to induce flutter. For stall

flutter, if the initial external perturbation is large enough, the dynamic instability may even

be observed at flow velocities well below the critical flutter velocity as predicted through a

linear theory (see Arena et al. (2013)), such as the one presented in the previous subsection.

Further, stall flutter implies that separation occurs on a cyclic basis. Indeed, separation

must be followed by a reattachment of the flow to the airfoil (see Dimitriadis and Li (2009);

McCroskey (1981) and Razak et al. (2011)). In cases where the flow is always separated,

such as on a bluff body, the structure is said to be galloping 4 whenever flutter occurs (see

Dimitriadis and Li (2009) and Razak et al. (2011)).

4. Galloping is a phenomenon very similar to stall flutter, except that there is no reattachment of the flow
on the body. The reader is referred to Dowell et al. (2005) and Fung (2008) for more details.
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Dynamic stall, the mechanism that accounts for the instability, is the abrupt loss of lift and/or

pitching moment observed as a result of a flow separation over an airfoil undergoing motions

of large amplitude (see Dimitriadis and Li (2009) and Razak et al. (2011)), and it is well

documented in the literature. This unsteady, nonlinear aerodynamic phenomenon may be

further subdivided based on the level of flow separation (see McCroskey (1981, 1982)): light

stall and deep stall. The airfoil is said to be undergoing deep dynamic stall when the main

feature of the flow is the shedding of a large vortex at the leading edge. In such situation, the

viscous layer can be as thick as the airfoil’s chord length. For deep dynamic stall to occur,

a motion that induces angles of attack much larger than the angle of attack needed to reach

static stall is required. This large vortex traveling close to the airfoil, at an approximate

velocity of U∞/2, can generate boosted lift and aerodynamic moments that are far in excess

from their static counterparts. Conversely, light dynamic stall is more similar to static stall.

Trailing-edge separation is encountered, and the thickness of the viscous layer is of the order of

the airfoil’s thickness. The lift and the moments remain closer to the typical values observed

during static stall. Typically, light dynamic stall is observed when the maximum angle of

attack is only a few degrees greater than the angle of attack at static stall. It must be

mentioned that stall flutter may occur under both types of dynamic stall.

As previously mentioned, negative aerodynamic damping arises as a result of the phase lag

between the motion and the aerodynamic forces, combined with a hysteresis in the aerody-

namic forces. The large hysteresis, shown with the gray area in Figure 1.9 and the phase

lag are associated to the cyclic detachment and reattachment of the flow involved in dynamic

stall. This is because the physics of the flow around the airfoil is considerably different as it

approaches dynamic stall, than it is when the airfoil is recovering from the stalling event. In

the light dynamic stall regime, the lag and the hysteresis are moderate, which implies a po-

tential for some negative aerodynamic damping. For the deep dynamic stall regime, there is a

very large hysteresis, which may lead to a considerably more negative aerodynamic damping,

thus implying a larger potential for stall flutter.

Returning to deep dynamic stall, the effect of the shed vortex is particularly evident when

considering the behavior of the pitching moment, which exhibits an abrupt and strong change

of amplitude. The solid curve of Figure 1.9 shows the typical behavior of the lift coefficient

(CL) and the aerodynamic moment coefficient (CM ) as the angle of attack (α) is varied, while

the dashed curve shows the trends for static angles. Large differences between the static and

the dynamic trends, along with a hysteresis for both CL and CM (gray areas), are observed.

The dots identified with numbers correspond to the typical qualitative sequence of events

described in Table 1.2. As it may be seen, the shedding of the vortex plays a crucial role in

the aerodynamics. In fact, stall flutter is sometimes seen as the result of a coupling between

the structure and the flow achieved through vortex shedding. This is because the low pressure

in the core of the shed eddy has the potential of generating fairly large forces on the surface

of the airfoil as it travels downstream.
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Table 1.2: Typical qualitative sequence of events during the deep dynamic stall of an airfoil.
The points are related to those shown in Figure 1.9. Inspired from McCroskey (1981).

.

Point Main flow feature Forces and moments

1 Thin and attached boundary layer Linear regime

2 Flow reversal within the boundary layer Linear and maximum static lift exceeded

3 Vortex shed and moves over the airfoil Pitching moment diverges and lift due to

the vortex is present

4 Vortex continues downstream at Maximum lift and moment followed by a

approximately U∞/2 rapid decay

5 Secondary vortex forms Secondary peaks on both lift and moment

6 Reattachment of the flow Return to linear regime

Figure 1.9: Typical lift coefficient (CL) and aerodynamic moment coefficient (CM ) for a
static airfoil (dashed red line) and for an airfoil undergoing deep dynamic stall (solid line).
The points with numbers are related to those described in Table 1.2. Inspired from McCroskey
(1981).
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Figure 1.10: Typical hysteretic response of a structure undergoing stall flutter as the
freestream velocity (U∞) is increased (unfilled dots) and decreased (filled dots).

Another typical nonlinear behavior of stall flutter is the hysteresis in the response of the airfoil

(not to be confused with the hysteresis of the aerodynamic forces previously discussed). A

qualitative example is provided in Figure 1.10. When a critical parameter is varied, here

the freestream velocity (U∞), a sudden appearance of flutter with a brutal jump to large

amplitudes of motion is observed at a critical velocity, say U1. Then, if the velocity is reduced,

flutter may persist down to a value U2, that is well below U1. The amplitude of motion at a

specific velocity may even differ depending on the fact that the velocity is being increased or

it is being decreased. Memory effects are therefore inherent to the stall flutter phenomenon.

Recalling that a potential aerodynamic theory has been used in the discussion on classical

flutter, one could seek a similar method in order to study stall flutter. In light of all the

nonlinear characteristics involved within stall flutter, this appears to be unrealistic. Indeed,

potential theories do not aim at predicting the aerodynamic forces exerted on a body when

separations are encountered, and, as a result, they fail at predicting stall flutter (see Razak

et al. (2011)). To illustrate this statement, stall flutter has been observed at flow velocities

well below the critical flutter velocity (Ucr) predicted with the linear theories (see Arena et al.

(2013)). In order to study the stability of an airfoil when confronted to periodic stalling,

semi-empirical stall models have to be used, such as the well-known Leishman-Beddoes (see

Leishman and Beddoes (1989)) and the ONERA (see Tran and Petot (1981)) models. As

pointed out by Larsen et al. (2007), the objective of these models is essentially to capture the

main characteristics of the aerodynamics in a fast and efficient way. That being said, this

may prove to be sufficient to conduct the stability analysis of a device, or to roughly estimate

the amount of energy harvested from a flow when the motion of the airfoil is enforced, such

as in the work of Bryant et al. (2013). However, it may fail at predicting accurately the

motion of a fully-passive device. Indeed, in the fully-passive case, the motion depends upon

the aerodynamics, and the aerodynamics depends upon the motion. This interdependence

may lead to an inevitable amplification of the discrepancies inherent to such a model, the

behavior of which is dependent upon an adequate calibration that is case dependent.
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Figure 1.11: Typical qualitative response over time of a dynamically unstable structure that
involves nonlinearities leading to limit-cycle oscillations (LCO) of constant amplitude.

1.3.3 Limit-cycle oscillations

Limit-cycle oscillations (LCO) are self-excited, cyclic oscillations of limited and fairly constant

amplitude (see Dimitriadis and Li (2009)). For this type of motion, which could easily be

characterized as being well-behaved, the amplitude of motion happens to be limited by some

nonlinearities present in the dynamics of the system (see Arena et al. (2013)). The typical

qualitative response of a dynamically unstable structure that involves nonlinearities leading

to LCO is shown in Figure 1.11. Although the representation may suggest that only one

degree-of-freedom is involved, LCO may in fact consist in the simultaneous excitation of

several modes. In the first stage shown in Figure 1.11, the structure is in static equilibrium

and free from any significant motion other than vibrations of very small amplitude (not

shown). Then, following an external perturbation that can take the form of any symmetry

breaking mechanism, the structure becomes unstable and is subject to an oscillatory motion

of growing amplitude throughout the transient regime. As the amplitude grows, the effect

of the nonlinearities becomes greater 5. This turns out to limit the growth of the amplitude

of motion until the instability finally saturates, and a permanent LCO regime of constant

amplitude is reached.

As previously discussed, the nonlinearities involved in LCO may be due to stall flutter. In

this specific case, they are caused by large separations of the flow from the airfoil. However,

LCO may emerge from several other sources of nonlinearities. Indeed, the nonlinear behavior

introduced by large shocks in a flow or by structural (e.g., freeplay in control surfaces),

5. For example, flow separations may appear.
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material (e.g., large deformations) or inertial (e.g., concentrated masses) nonlinearities may

be sufficient to limit the exponential growth of a fluttering airfoil’s amplitude of motion (see

Arena et al. (2013); Dowell et al. (2005) and Razak et al. (2011)). Also, as pointed out by

Dowell et al. (2005), LCO is not the only possible outcome to flutter when nonlinearities are

involved. Other types of response, such as beating and period doubling 6, may sometimes

occur. These behaviors are not discussed further in this text. In fact, due to its well-behaved

character, LCO is the only attractive outcome for a fully-passive, flapping-airfoil turbine

application.

As pointed out in the previous subsection concerned with stall flutter, a linear stability analysis

does not permit to predict the onset of stall flutter due to its nonlinear behavior. As it might

be expected, the same is true for most types of LCO. In fact, a linear analysis generally

predicts fairly well the frequency of oscillation, but it fails at predicting the onset of the

instability or its terminal amplitude of motion. Since one involved in such work generally

seeks a flutter boundary in order to avoid the instability, this type of study is not worth the

trouble. Instead, some semi-empirical or empirical models can be developed to help study

a specific type of system. Nowadays, computational fluid dynamics (CFD) is also used to

study LCO. From CFD and experimental work, the general trend of the LCO’s amplitude is

generally to increase as the flow velocity (U∞) increases, and hysteretic responses, such as the

one depicted on Figure 1.10, are very often observed.

Partial conclusion

The three physical phenomena described in this section will prove to be useful throughout the

current master’s thesis. Classical flutter has been introduced at first. This type of dynamic

instability can be predicted using a fairly simplistic linear, potential aerodynamic theory. All

that is needed is to solve an eigenvalue problem. The objective of such a stability analysis

is mainly to determine when the aerodynamic damping becomes negative for at least one

mode, which indicates the onset of flutter. Indeed, when dealing with classical flutter, the

destructive nature of the instability often makes it useless to predict the amplitude of motion.

Several key parameters affect the location of the flutter boundary, such as the distribution of

mass, the location of the elastic axis, the location of the aerodynamic center and the natural

frequencies. Next, stall flutter has been presented. This type of dynamic instability differs

greatly from classical flutter in the physical mechanisms involved. During classical flutter, the

negative aerodynamic damping arises from the elastic and/or aerodynamic coupling between

the modes. For stall flutter, the negative aerodynamic damping is due to the hysteresis

in the aerodynamic forces and the phase lag between the motion and the forces. These two

phenomena are the result of the highly unsteady flow and the dynamic stall encountered. Very

often, the instability saturates through the nonlinearities involved in the massive separations

6. Period doubling is a type of bifurcation (see Broer and Takens (2010)).
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present. This limits the growth of the amplitudes of motion, thus leading to a well-behaved,

cyclic motion called limit-cycle oscillations (LCO). Although stall flutter often results in LCO,

this type of response may also be due to other physical mechanisms. In this study, for the

purpose of optimizing the fully-passive, flapping-airfoil turbine, LCO are the only outcome of

interest due to its fairly constant amplitude of motion.
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Chapter 2

Modeling of the problem and

computational methodology

This chapter deals with the modeling and the computational methodology used in order to

solve the aeroelastic problem of the elastically-mounted, flapping-airfoil turbine. The first

section addresses the modeling of the aeroelastic problem. The main objective is to formally

introduce and develop the equations of motion of the aeroelastic device. An interpretation

of the various terms involved within the equations is also offered. Because the problem will

later be solved in its non-dimensional form, its non-dimensional formulation is also presented

in this section. As the reader goes through, he is invited to consider the immense dimension

of the parametric space associated to the aeroelastic device, and the richness of the physi-

cal mechanisms involved. In the second section of this chapter, the numerical methodology

implemented within the OpenFOAM CFD toolbox and used to solve both the equations of

the flow and the equations of motion of the airfoil is introduced. This section surely does

not aim at drawing a complete picture of the very vast domain of CFD and the numerical

methodologies typically used to solve the equations involved. Instead, the main objective is

essentially to acquaint the reader with the particular choices that have been made for the

task of solving the equations of the two-dimensional problem here considered, and also to

provide a warrant for these choices whenever needed. The last section of this chapter copes

with the fluid-structure interaction (FSI) coupling scheme. One can have accurate flow and

solid solvers, but they must somehow be linked in order to predict fully and accurately the

flow field and the airfoil’s motion. An overview of the most commonly used coupling schemes

is presented, followed by a description of the specific scheme used in this work. Further, some

inherent, well-known limitations associated to the chosen coupling scheme are discussed.
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2.1 Aeroelastic modeling

In the aeroelastic problem of interest in this master’s thesis, the rigid, elastically-mounted

airfoil is free to pitch around the z -axis and heave along the y-axis. This is clearly illustrated

in Figure 2.1. The motion is not possible in any other direction, nor about any other axis.

As schematically shown, the two-degree-of-freedom system consists of a rigid airfoil which is

mounted on a pivot about which the pitching motion (θ) is possible. Further, the pivot is

mounted on a sliding mechanism, thus allowing the heaving motion (y). It is to be noted that

the sliding mechanism is not schematically shown in Figure 2.1, but the reader may refer to

the previously introduced Figure 1.4 for one particular example of such mechanisms.

Figure 2.1 also schematically depicts several key parameters of interest in the formulation of

the aeroelastic problem. However, not all parameters are explicitly displayed in the figure

for clarity. As previously suggested, the motion of the airfoil which is elastically-supported

in a freestream flow and undergoing LCO may be indirectly controlled through an adequate,

well-studied choice of all structural parameters. This is exactly what has to be achieved

in the current study for the task of optimizing the fully-passive, flapping airfoil as a wind

or hydrokinetic turbine. For clarity and convenience, all variables involved in the current

aeroelastic problem are here enumerated and commented:

• U∞, freestream velocity : velocity of the undisturbed flow upstream of the airfoil;

• airfoil’s profile : the airfoil’s profile is assumed rigid at all time;

• c, airfoil’s chord length: distance between the leading edge and the trailing edge;

Figure 2.1: Simplified schematic of the symmetrical, rigid, elastically-mounted airfoil with
symbolic representation of key parameters (not showing the sliding mechanism). Refer to the
text for a description of all parameters. Adapted from Lapointe and Dumas (2012).
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• mp, pitching mass : mass of all components involved in the pitching motion;

• mh, heaving mass : mass of all components involved in the heaving motion (including

the pitching mass so that mh ≥ mp);

• Iθ, moment of inertia : airfoil’s moment of inertia about the elastic axis (i.e., pitching

axis);

• xea, location of the elastic axis : distance between the elastic axis and the leading edge

of the airfoil;

• xθ, location of the center of mass : distance between the elastic axis and the center of

mass (positive when the elastic axis is ahead of the center of mass);

• kh, heave stiffness coefficient : linear stiffness coefficient used to account for the restoring

force of the linear spring;

• kθ, pitch stiffness coefficient : linear stiffness coefficient used to account for the restoring

moment of the torsional spring;

• Dh, heave damping coefficient : linear damping coefficient used to account for the

dissipation of energy associated to the energy extraction mechanism connected to the

oscillating airfoil (i.e., the electrical generator);

• Dθ, pitch damping coefficient : linear damping coefficient used to account for the dissi-

pation of energy associated to structural damping in pitch 1;

• L, aerodynamic lift: lift force generated by the flow field on the airfoil (upward positive);

• Mea, aerodynamic moment: moment generated by the flow field on the airfoil (clockwise

positive);

• y, heave position: vertical position of the elastic axis (upward positive), where the

superscript (·) denotes its time derivatives;

• θ, pitch angle: angular position of the airfoil i.e., geometric angle between the chord

line and the freestream flow (clockwise positive), where the superscript (·) denotes its

time derivatives 2.

Figure 2.1 also introduces the main system of coordinates used throughout the study. It is

defined such that it corresponds to a right-hand system with the x -axis rightward positive, and

the y-axis upward positive. Further, gravity is assumed in the z -direction, which obviously

excludes it from the dynamics of the airfoil.

It is worth pointing out now that the heaving mass (mh) and the pitching mass (mp) of such

a system do not need to be equal, and this must be taken into account within the equations

1. The reader should understand that viscous damping, which is obviously involved in the dynamics of the
airfoil, is encompassed within the lift force and the moment calculated within the flow solver. Therefore, no
additionnal term is required within the equations of motion to account for its contribution.

2. The reader should note that θ is not equal to the airfoil’s angle of attack (α). Indeed, the angle of attack
must account for the heaving velocity of the airfoil, thus changing the effective velocity of the flow. A better
formulation would be: α = θ − arctan (ẏ/U∞).
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of motion. One can convince oneself by considering the previously introduced Figure 1.4,

which is the perfect example of an aeroelastic device where the mass of the sliding mechanism

is not involved in the pitching motion of the airfoil. At all time, the heaving mass of the

system must remain greater or equal to the pitching mass. Indeed, some components may

be involved solely in the heaving motion, but a mechanism where some components are only

involved in the pitching motion is hardly conceivable. Last, it has been pointed out within the

previous enumeration of the flow and the structural parameters that the effect of the electrical

generator connected to the device is here modeled as a viscous damper with a purely linear

behavior. Such a hypothesis is certainly not new, and more details will be provided on this in

Chapter 5. Nevertheless, the reader might appreciate to be informed now that an electrical

generator 3 may indeed be designed such that it has a linear behavior. Therefore, making

such a hypothesis is not far fetched at all.

With this general picture of the fully-passive, flapping-airfoil turbine, the equations of motion

can be derived in a fairly straightforward way by making use of the Lagrange’s equation (see

Dowell et al. (2005)). A more traditional Newtonian derivation would be equally valid, and, of

course, the same system of equations would be obtained 4. However, using a Newtonian-type

derivation is more work intensive in the current case.

The general trend of the Lagrange-type derivation can be divided into three relatively simple

steps. First, equations for the potential energy (UE) and the kinetic energy (TE) of the system

are found:

UE = UE (q̇i, qi, t) , (2.1)

TE = TE (q̇i, qi, t) , (2.2)

where qi is the ith generalized coordinate of the system, t is the time and the superscript (·)
denotes differentiation with respect to time. As a second step, the ith equation of motion can

be written as:

− d

dt

[
∂ (TE − UE)

∂q̇i

]
+

∂ (TE − UE)

∂qi
+ Fnc = 0 , (2.3)

where Fnc stands for all the nonconservative contributions. The third and last step is to find

an expression for these nonconservative contributions, which often turns out to be relatively

simple. As the reader can surely appreciate, this approach is very systematic. It can now

be successfully applied to the aeroelastic device at the heart of this study, but some details

3. The term electrical generator here refers to the motor/generator itself connected to the oscillating airfoil,
as much as to the electronics used to control and regulate the generator.

4. In fact, the author carried out a Newtonian-type derivation of the equations of motion and obtained,
without great surprise, the same equations as those which will be obtained in this section.
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related to the system of coordinates used in the following derivation should first be clearly

introduced. As shown in Figure 2.2, the generalized coordinates (i.e., q1 and q2) are y and

θ, together corresponding to both degrees-of-freedom of the oscillating airfoil. Further, xc

is the chordwise distance between any station on the chord line and the elastic axis. Last,

i and j are the unit cartesian vectors forming an orthonormal system of coordinates. For

convenience, j is chosen such that it is parallel to the heaving motion of the airfoil. With

these formal definitions, the displacement of any point located on the chord line of the airfoil

may be mathematically represented with a vector r. The geometric construction representing

this entity is presented in Figure 2.2, and r can be defined as:

r = ui + vj , (2.4)

where

u = xc (cos θ − 1) , (2.5)

v = y − xc sin θ . (2.6)

Three more very useful definitions can be made before working out the equations. If the linear

density of the structure (ρs) is multiplied by powers of xc and integrated along the chord line,

one obtains:

Figure 2.2: Complete system of coordinates used for the derivation of the general equations
of motion of the fully-passive, flapping-airfoil turbine.
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mp =

∫
ρs dxc , (2.7)

mpxθ =

∫
ρsxc dxc , (2.8)

Iθ =

∫
ρsx

2
c dxc . (2.9)

With these, the kinetic energy of the components involved in both the pitching and the heaving

motions (Tp) can be found. Some simplistic mathematical manipulations are here skipped:

Tp =
1

2

∫ [(
du

dt

)2

+

(
dv

dt

)2
]
ρs dxc ,

=
1

2

(
mpẏ

2 − 2mpxθ ẏ θ̇ cos θ + Iθθ̇
2
)
.

(2.10)

The kinetic energy associated to the components involved only in the heaving motion (Th)

must also be considered:

Th =
1

2
(mh −mp) ẏ

2 , (2.11)

thus yielding the following expression for the total kinetic energy:

TE =
1

2
mhẏ

2 − mpxθ ẏ θ̇ cos θ +
1

2
Iθθ̇

2 . (2.12)

The potential energy is more readily found because only the elastic supports contribute to its

value:

UE =
1

2
khy

2 +
1

2
kθθ

2 . (2.13)

Using the Lagrange’s equation, the equation for the heaving motion can be obtained:

− d

dt

(
∂(TE − UE)

∂ẏ

)
+

∂(TE − UE)

∂y
+ Fnc = 0 . (2.14)

Injecting Eqs. 2.12 and 2.13 for the kinetic and the potential energy into Eq. 2.14, the

following is obtained after simplification:
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−mhÿ + mpxθ θ̈ cos θ − mpxθ θ̇
2 sin θ − khy + Fnc = 0 . (2.15)

The nonconservative forces involved in this degree-of-freedom are the lift (L) and the damping

force (Dhẏ). After isolating the lift on the left-hand side (LHS), this yields:

L = mhÿ︸︷︷︸
inertial
term

+ S
(
θ̇2 sin θ − θ̈ cos θ

)
︸ ︷︷ ︸

inertial coupling
term

+ khy + Dhẏ︸ ︷︷ ︸
structural

terms

. (2.16)

To obtain the previous equation, the sign associated to each nonconservative force has been

chosen according to the physics at play. Indeed, a positive lift (L) must result in a positive

acceleration (ÿ), and the damping force (Dhẏ) must always be opposed to the heaving motion

(ẏ). As a last simplification, the previously introduced static imbalance (S = mpxθ) has been

used to reinforce the idea that mpxθ forms a single structural parameter 5.

The same derivation can now be done for the equation of motion related to the pitching

motion:

− d

dt

(
∂(TE − UE)

∂θ̇

)
+

∂(TE − UE)

∂θ
+ Mnc = 0 , (2.17)

where the nonconservative forces (Fnc) have been replaced with the nonconservative moments

(Mnc). Using Eqs. 2.12 and 2.13 again, this yields after simplification:

mpxθ ÿ cos θ − Iθθ̈ − kθθ + Mnc = 0 . (2.18)

The nonconservative contributions to this last equation are the aerodynamic moment about

the elastic axis (Mea) and the damping moment (Dθθ̇). Again, the signs are easily determined:

a positive aerodynamic moment must yield a positive angular acceleration (θ̈), and the damp-

ing moment must be opposed to the angular motion (θ̇). The final result can therefore be

written as:

Mea = Iθθ̈︸︷︷︸
inertial
term

− Sÿ cos θ︸ ︷︷ ︸
inertial coupling

term

+ Dθθ̇ + kθθ︸ ︷︷ ︸
structural

terms

. (2.19)

5. The origin of the name static imbalance is simple and very meaningful. If gravity was such that it played
a role in the dynamics of the airfoil, a nonzero value of S, which implies that the center of mass does not
coincide with the elastic axis, would yield a nonzero value of θ at static equilibrium. Because gravity is not
involved in the current problem, the static equilibrium is not affected by S. However, the typical terminology
used in aeroelasticity is here retained.
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Equations 2.16 and 2.19 constitute the two equations of motion of the fully-passive, flapping-

airfoil turbine modeled in this study. In each of these equations, there is an aerodynamic

force or moment with an inertial term, an inertial coupling term and two structural terms.

The inertial coupling term explicitly couples the equations of motion when S 6= 0. It can be

seen that no inertial coupling term is present when the elastic axis coincides with the center

of mass of the pitching components (S = 0). To illustrate the effect of this inertial coupling,

one can think of holding a small beam in his hands. If the beam is held at a location which

does not coincide with its center of mass, moving the beam up and down (heaving motion)

will necessarily induce some angular motion of the beam. However, if the beam is supported

at its center of mass, a heaving motion will not engender any angular motion.

There is another form of coupling between the equations of motion. Contrary to the inertial

coupling, the aerodynamic coupling is always present, whatever the choice of the structural

parameters. Indeed, L and Mea are always greatly linked together, and this implicitly 6

couples both equations of motion. As it may be observed, no other form of coupling is possible

between the equations of motion, and this is in agreement with the modeled device: there is

no mechanical linkage between the degrees-of-freedom to control the phase lag between the

motions, and there is no way to control explicitly the shape of any of the two motions. The

equations of motion are indeed those of a fully-passive, flapping airfoil.

Within the structural terms, the assumed linear behavior of the structural restoring forces and

moments, along with the damping forces and moments, is necessarily a simplification over the

physical reality. It is worth pointing out that even with this simplification of the equations

of motion, together they contain a total of seven structural parameters. Each one of these

parameters can be individually varied, thus providing several ways to indirectly control the

dynamics of the airfoil. The reader may appreciate the vast parametric space of the aeroelastic

device, and, as a result, the richness of the physics embodied within the problem modeled.

If nonlinearities were introduced within the model, this would add further dimensions to an

already immense parametric space, and this would certainly make the optimization of the

device much more challenging at different levels.

For convenience and later use, both equations of motion can be written in their non-dimensional

form. The following reference values are used:

• Length: Lref = c ;

• Velocity: Vref = U∞;

• Time: Tref = c/U∞;

6. This coupling is characterized as implicit because its presence is not obvious when looking at the equations
of motion. Conversely, the inertial coupling is explicit because it is obvious at first glance.
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• Pressure: pref = ρfU
2
∞;

• Aerodynamic lift: Lref = 1
2ρfU

2
∞bc;

• Aerodynamic moment: Mref = 1
2ρU

2
∞bc

2.

The details of the non-dimensionalization process, which may be found in Kundu et al. (2012),

are left behind and only the results are presented. The superscript (∗) is here used to identify

a non-dimensional parameter. The equations of motion then become:

CL = m∗h ÿ
∗ + S∗

(
θ̇2 sin θ − θ̈ cos θ

)
+ D∗h ẏ

∗ + k∗h y
∗ , (2.20)

CM = I∗θ θ̈ − S∗ÿ∗ cos θ + D∗θ θ̇ + k∗θ θ , (2.21)

with the following definitions for the non-dimensional parameters:

CL =
L

1
2ρU

2
∞bc

, CM =
Mea

1
2ρU

2
∞bc

2
, I∗θ =

Iθ
ρbc4

, k∗θ =
kθ

ρU2
∞bc

2
, D∗θ =

Dθ

ρU∞bc3
,

k∗h =
kh

ρU2
∞b

, D∗h =
Dh

ρU∞bc
, m∗h =

mh

ρbc2
, S∗ =

S

ρbc3
, y∗ =

y

c
.

As one might expect, this choice of non-dimensional parameters is not unique but their number

is. The reader may find a concise overview of some other possible choices in the master’s thesis

of Metivier (2012). To this, one must add the Reynolds number (Re) which comes from the

fluid equations (Navier-Stokes) in incompressible form.

2.1.1 Equation for the cycle-averaged power

It is possible to find an equation for the cycle-averaged power of such a device. As one might

expect, if the airfoil has reached a permanent regime of motion, the inputs of power are exactly

balanced by all outputs. Writing such an equation will prove to be helpful at understanding

better the fully-passive turbine. As a first step towards that equation for the cycle-averaged

power, an equation for the instantaneous power can be found by simply multiplying all terms

of the equation in heave by the heaving velocity, and all terms of the equation in pitch by

the pitching rate. Once this is done, all terms can be summed (the (∗) notation is dropped

to avoid overloading the equations):

CLẏ + CM θ̇ = mh ÿẏ + S
(
θ̇2 sin θ ẏ − θ̈ cos θẏ

)
+ Dh ẏ

2 + kh yẏ

+ Iθ θ̈θ̇ − Sÿ cos θθ̇ + Dθ θ̇
2 + kθ θθ̇ .

(2.22)

41



Over a complete cycle of oscillation, the contribution of some terms is expected to be zero.

In order to demonstrate that some terms do not contribute to the cycle-averaged equation of

power, the following very general cyclic motion is assumed:

θ =
∞∑
n=1

(
an cos (2πnft) + bn sin (2πnft)

)
, (2.23)

y =
∞∑
n=1

(
cn cos (2πnft) + dn sin (2πnft)

)
. (2.24)

Because the aerodynamic forces and the aerodynamic moments remain unknown, the terms

on the LHS of Eq. 2.22 cannot be treated. Nevertheless, they are obviously expected to have a

cycle-averaged contribution. In fact, they will have a positive contribution whenever negative

aerodynamic damping is present. This is obviously the case here since LCO are assumed.

All terms on the right-hand-side (RHS) can now be treated, and the interested reader may

find the formal proof in Appendix B. Only the final equation for the cycle-averaged power is

shown here, which is:

1

T

T∫
0

(
CLẏ + CM θ̇

)
dt =

1

T

T∫
0

(
Dhẏ

2 + Dθθ̇
2
)
dt . (2.25)

With this in hand, it is clear that over one complete cycle in the mean, only the aerodynamics

can provide some energy to the airfoil, while both damping coefficients provide the energy

sinks. At each cycle where the airfoil is in a permanent regime, this equality must be satisfied.

Because it will be useful, later, to quantify the contribution of each term involved into this

equation for the cycle-averaged power, some coefficients of power can be defined. They are

complementary to the coefficient of power CP previously defined in Chapter 1, which will also

prove to be useful later. These new coefficients are:

CPy =
1

T

T∫
0

Lẏ
1
2 ρU

3
∞ bc

dt , (2.26)

CPθ =
1

T

T∫
0

Meaθ̇
1
2 ρU

3
∞ bc

dt , (2.27)
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CPy,damp =
1

T

T∫
0

Dhẏ
2

1
2 ρU

3
∞ bc

dt , (2.28)

CPθ,damp =
1

T

T∫
0

Dθθ̇
2

1
2 ρU

3
∞ bc

dt . (2.29)

One should note that by using these definitions, the following cycle-averaged equation holds

true, which is simply another way of writing Eq. 2.25:

CP = CPy + CPθ = CPy,damp + CPθ,damp . (2.30)

Further analysis, which is included in Appendix B, also reveals that:

1

T

T∫
0

S
(
θ̇2ẏ sin θ − θ̈ ẏ cos θ

)
=

1

T

T∫
0

S ÿ θ̇ cos θdt . (2.31)

This equation states two very important findings. First, and this is already known from

Eq. 2.25, the inertial coupling term does not contribute, over one complete cycle, at providing

or incurring some power to or from the airfoil. However, the cycle-averaged power calculated

for the inertial coupling term coming from the equation of motion in heave (LHS of Eq. 2.31)

exactly balances the contribution of the inertial coupling term coming from the equation of

motion in pitch (RHS of Eq. 2.31). Second, the only way to guarantee that the LHS and the

RHS of Eq. 2.31 are equal to zero is by setting S = 0. This indicates that the inertial coupling

terms provide a way to transfer energy from one degree-of-freedom to the other. However, it

is not possible to predict in what direction this will happen as this remains case dependent. In

order to quantify this internal transfer of power between the pitching motion and the heaving

motion, the following coefficient of power is to be used:

CP,tr =
1

T

T∫
0

S
(
θ̇2ẏ sin θ − θ̈ ẏ cos θ

)
1
2 ρU

3
∞ bc

dt =
1

T

T∫
0

S ÿ θ̇ cos θ
1
2 ρU

3
∞ bc

, (2.32)

With all the previous definitions, the following can also be written for convenience:

CP,tr = CPy,damp − CPy = CPθ − CPθ,damp . (2.33)
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Again, these definitions will prove to be very useful later in this master’s thesis in order to

qualify and quantify the contribution of each degree-of-freedom to the harvested power, and,

also, to the power dissipated through the dampers connected to the device. This will greatly

help at developing better understanding of how the fully-passive, flapping-airfoil works.

2.2 Fluid-structure solver

The fully-passive, flapping-airfoil problem is solved using OpenFOAM-2.1.x, a finite-volume,

open-source CFD toolbox 7. Other than being costless, this open-source software is making

use of the object-oriented paradigm and is written with the C++ language which offers the

great advantage of allowing the user to implement its own applications through high-level

programming. For a complete description of the numerical methods readily available within

the CFD toolbox, the reader is referred to the OpenFOAM-2.1.x official documentation (see

OpenCFD (2012a,b)). The reader is also referred to the book of Ferziger and Perić (2002),

which deals with the numerical methods used for CFD in general. Otherwise said, this last

reference is not specific to OpenFOAM or any CFD code. Instead, it offers a comprehensive

discussion about CFD in general with some emphasis on the numerical methods used to solve

the equations of the flow.

2.2.1 Equations of the flow

The equations of the flow, including the equations presented within the subsection on the

modeling of turbulence, are written using the indicial notation. With this notation, implicit

summation, or Einstein summation, is assumed whenever an index is repeated twice within

a monomial. The governing equations of the incompressible, viscous flow with constant and

uniform properties are the continuity and the Navier-Stokes equations, which are respectively:

∂ui
∂xi

= 0 , (2.34)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρf

∂p

∂xi
+ ν

∂2ui
∂x2

j

, (2.35)

where ui are the velocity components, p is the pressure, xi are the cartesian coordinates, ρf

is the density of the fluid and ν is the kinematic viscosity of the fluid. In order to solve for

the flow field, the momentum equations (Eq. 2.35) are used to determine the magnitude of

each velocity component of the flow. As a result, this leaves the continuity equation (Eq.

2.34) to calculate the last unknown, which is the pressure. However, the continuity equation

7. The complete code of the current FSI solver implemented within the OpenFOAM-2.1.x CFD toolbox is
available at the LMFN upon request.
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does not contain any pressure term. One possible solution to this apparent issue is to take

the divergence of the momentum equation, and to use the continuity equation to simplify the

result. This yields an elliptical Poisson equation for the pressure:

∂2p

∂x2
i

= −ρf
∂

∂xi

(
uj
∂ui
∂xj

)
. (2.36)

The pressure and momentum equations may be solved in two different ways: either simultane-

ously (a coupled approach) or sequentially (a segregated approach). Within the OpenFOAM-

2.1.x CFD toolbox, only the segregated approach is readily available, and this is the method

used for this study. In this method, the momentum equation is first solved using an approx-

imation of the pressure field throughout the fluid domain. Following this, the pressure field

is corrected and updated. Through an iterative procedure, this routine may be repeated as

many times as required in order to converge the solution up to a specified level of tolerance.

More than a single scheme have been designed to achieve this coupling of the pressure and the

velocity. The most famous schemes are SIMPLE (Semi-Implicit Method for Pressure Linked

Equations) and PISO (Pressure Implicit with Splitting Operator). In the current study, the

PISO algorithm has been chosen. In fact, both PISO and SIMPLE schemes have been tested,

and the PISO algorithm has demonstrated a superior efficiency for the present application.

Indeed, PISO has shown to require less computational time over SIMPLE in order to converge

the solution up to the exact same level of tolerance. The PISO algorithm is summarized in

Figure 2.3. As it can be seen, the main characteristic of this coupling scheme is certainly

the presence of not one, but two corrections on the pressure field. Another characteristic not

shown on this figure is the fact that no under-relaxation is required. This last property partly

explains the reduced computational cost of PISO over SIMPLE.

2.2.2 Turbulence modeling

In the current numerical study, the Reynolds number (Re = U∞c/ν) is set to a value of 500,000

unless otherwise noted. That being said, directly solving all scales of motion, including the

turbulent ones, is strictly out of reach. Indeed, direct numerical simulations (DNS) are not

conceivable for flows at such high Reynolds numbers with today’s computational and mem-

ory resources. This is such because DNS calculations require that the spatial and temporal

resolutions be fine enough to capture the smallest length and time scales of turbulent motions

(i.e., the Kolmogorov scales). This results in very fine grid spacings and very fine time steps,

especially for calculations at moderate to high Reynolds numbers. In fact, the full spectrum

of turbulence is resolved when a DNS calculation is performed, and the result is certainly the

most accurate that one could expect to obtain through CFD. As a rule of thumb, the cost of

a DNS calculation goes approximately with Re3
L (see Ferziger and Perić (2002)), where ReL

is a Reynolds number based on the magnitude of the velocity fluctuations and on the integral
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Figure 2.3: Representation of the PISO segregated algorithm for pressure-velocity coupling
within a computational time step of the FSI solver.

length scale. This result indicates that this type of calculation rapidly becomes prohibitive

as the Reynolds number grows. Nowadays, this type of calculation is only at reach for some

canonical flows at relatively low Reynolds numbers.

An alternative to DNS calculations is the large eddy simulation (LES) approach. The phi-

losophy behind LES is essentially to resolve the motions at the larger scales (i.e., the scales

above a certain filter width ∆), and to model the effect of the motions at the smaller scales

(i.e., the scales below the same filter width ∆). As a result, a part of the turbulence spectrum

is resolved, while the rest of it is being modeled. The filter width ∆ is somewhat dependent

upon the grid resolution. In fact, its size is always greater or equal to the grid spacing. As

a direct result of this, the modeled scales are often referred to as the sub-grid scales (SGS),

and they are taken into account through a SGS model. Further, in order to resolve a fair

portion of the turbulence spectrum, the resolution of the grid must be fine enough to permit

relatively small values of the filter width ∆. Although this type of numerical simulations is

less computationally demanding than DNS, the strict requirements on the temporal and on

the spatial resolutions still make it very computationally demanding for flows at moderate to

high Reynolds numbers. Therefore, LES is rarely used for engineering purposes nowadays.

The Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach is another well-known

methodology. Its ability to predict all types of flow fields for all Reynolds numbers at a

relatively low cost compared to DNS and LES simulations makes it very useful for engineering

purposes. The philosophy is here to decompose all variables into the sum of an averaged value

(φ(xi, t)) and a fluctuating value about that average (φ′(xi, t)):
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φ(xi, t) = φ(xi, t) + φ′(xi, t) , (2.37)

where the averaged value, for an unsteady flow, is calculated by ensemble averaging:

φ(xi, t) = lim
n→∞

1

N

N∑
n=1

φn(xi, t) , (2.38)

with N being the number of members contained within the ensemble. With this concept, the

process of Reynolds averaging can be performed on the Navier-Stokes and on the continuity

equations (Eqs. 2.34 and 2.35), a process that yields the famous URANS equations:

∂ui
∂xi

= 0 , (2.39)

∂ui
∂t

+
∂

∂xj

(
uiuj + u′iu

′
j

)
= −1

ρ

∂p

∂xi
+

∂τ ij
∂xj

, (2.40)

where

τ ij = ν

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.41)

In the URANS equations, the presence of the Reynolds stresses (u′iu
′
j) means that the system

of equations is not closed anymore. Closure requires some form of approximation where the

Reynolds stresses are calculated in terms of the averaged flow quantities (i.e., the system

is closed, in part, by reducing the number of unknowns). This is exactly the task of the

several turbulence models that have been developed and validated in the past. In this study,

the Spalart-Allmaras, one-equation turbulence model originally presented by Spalart and

Allmaras (1994) is used, except that no trip term is present. This corresponds to what

is known as the fully-turbulent mode of the Spalart-Allmaras model. As demonstrated by

Rumsey and Spalart (2008), this turbulence model intends to be used for fully-turbulent,

high Reynolds number flows, and should never be used to predict the laminar to turbulent

transition. This is one main reason why the fully-turbulent mode is preferred by most users

of this model.

In the Spalart-Allmaras turbulence model, as much as for several other models, the effect of

turbulence is taken into account through the eddy-viscosity concept 8. Indeed, the mixing

effect of turbulence is here modeled as an increase of the fluid’s molecular viscosity. With this

concept, the Spalart-Allmaras turbulence model calculates the Reynolds stresses as:

8. The Spalart-Allmaras turbulence model does not make use of the original eddy-viscosity concept. See
Appendix A for more details.

47



− u′iu′j = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.42)

where νt is the turbulent kinematic viscosity. Following this modification, there is still one

unknown in excess compared to the number of equations available. To solve this issue, a

transport equation for νt has been developed based on an empirical approach, thus finally

closing the system of equations. The interested reader may find the complete mathematical

description of the turbulence model in Appendix A.

Previous work at the LMFN on pitch-heave oscillations of an airfoil, such as Julien et al.

(2007) and Lapointe and Dumas (2012), validated the use of the Spalart-Allmaras turbulence

model for this specific task. The authors came to the conclusion that although this model does

not always provide excellent quantitative agreement with experimental data, the qualitative

results and the trends are typically fairly good and reliable. As for any URANS model, great

care must be taken when massive separations are encountered, and the reader must keep in

mind the usual limitations of URANS simulations. It is recalled that this study is primar-

ily concerned with the general trends and engineering predictions of the physical responses.

Further, the good agreement between the URANS simulations and the experimental results

for the kinematically-constrained device should not be forgotten (see Chapter 1). For these

reasons, URANS simulations making use of the Spalart-Allmaras turbulence model appear to

be justified in the present study. This will further be validated in Chapter 3.

2.2.3 Dynamic mesh and boundary/initial conditions

In the current implementation, the pitching and heaving airfoil problem is conveniently solved

in a non-inertial frame of reference. The translational, heaving motion of the airfoil is thus

taken into account via a proper volume, momentum source term effective over the entire

calculation domain (100 chords × 100 chords), along with unsteady boundary conditions

on the velocity at all inlets. The purpose of these boundary conditions is simply to add

a time-varying y-component of velocity on the frontiers of the calculation domain. This

component of velocity, in order to account for the heaving velocity of the airfoil, must be

equal to the opposite of the heaving velocity (−ẏ). Conversely, the pitching motion of the

airfoil requires moving-body and moving-grid capabilities, all of which are readily available

within the OpenFOAM-2.1.x CFD toolbox. As shown in Figure 2.4, the central, circular

portion of the mesh, which has a radius of 2 chords, is free to rotate about an axis passing

through the circle’s center. In fact, this rotating mesh is adjusted so that its center coincides

with the elastic axis of the airfoil, and the rotation of this dynamic portion of the mesh is

simply equal to the airfoil’s angular position (θ). At the interface between the static and

the dynamic portions of the mesh, an interpolation scheme is required due to the obvious

non-conformity of the grids. This is achieved with the native OpenFOAM Arbitrary Mesh
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Figure 2.4: Configuration of the computational domain (not shown to scale) with its dimen-
sions, the boundary conditions and the main features for solving the aeroelastic problem in a
heaving reference frame.

Interface algorithm (see Farrell and Maddison (2011)).

This idea of solving the problem in the heaving frame of reference and using dynamic meshes

for the pitching motion has been validated in the past by Kinsey and Dumas (2008) and

Lapointe and Dumas (2011). The accuracy of the method has also been confirmed in the

present investigation through the general validation of the solver (see Chapter 3). The main

advantage of this technique is surely that it does not make use of remeshing or deforming

meshes, which can turn out to be significantly demanding from a computational point of

view.

Figure 2.4 also shows the boundary conditions used on the computational domain. The

boundary conditions are further described in more details in Table 2.1. It is to be noted

that the boundary conditions applied on the airfoil’s surface are those required to satisfy the

no-slip condition and the impermeability of the surface. Further, the derivative of a given

parameter φ in a direction perpendicular to a boundary is written as ∂φ/∂n, and the value of

the flow velocity (u) is given in the form of a vector. Last, the numerical value of νt/ν given

in Table 2.1 at the unsteady velocity inlets will be discussed in Chapter 3.

Concerning the initial conditions of the numerical problem, each simulation is initialized with

uniform pressure and velocity fields throughout the domain. The initial value of the pressure

field is set to zero, while the value of the velocity field corresponds to the superposition of

the freestream velocity (U∞) along the x -axis, and the opposite of the initial heaving velocity
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Table 2.1: Boundary conditions used for solving the aeroelastic problem of a fully-passive,
flapping-airfoil turbine in a heaving reference frame using OpenFOAM-2.1.x. Refer to Fig-
ure 2.4 for the location of each boundary in the calculation domain.

Boundary Parameter Type Value

Unsteady velocity inlet u Dirichlet u = (U∞,−ẏ, 0)

p Neumann
∂p

∂n
= 0

νt Dirichlet νt/ν = 1

Pressure outlet u Neumann
∂u

∂n
= 0

p Dirichlet p = 0

νt Neumann
∂νt
∂n

= 0

Airfoil’s surface u Dirichlet u = (0, 0, 0)

p Neumann
∂p

∂n
= 0

νt Dirichlet νt = 0

(−ẏi) along the y-axis. A uniform value of the turbulent viscosity field is also used throughout

the domain. The prescribed value is the same as the one prescribed at the inlets (see Figure 2.1

and Table 2.1). Last, an initial heaving velocity (ẏi) and/or an initial pitching rate (θ̇i) of the

foil can be enforced at the beginning of the calculation. These initial velocities may model an

external perturbation with which the airfoil is disturbed from its equilibrium position. Such

a perturbation is not always required for the LCO to develop, but it has been found that an

adequate choice of these initial velocities can greatly help at shortening the duration of the

transient regime, which in turns shortens the total computational time. As a rule of thumb, a

heaving initial perturbation ẏi = 0.1U∞ combined with the absence of an initial perturbation

in pitch is generally an adequate initial setting.

2.2.4 Numerical schemes and solvers

To complete the description of the numerical methodology used to solve the aeroelastic prob-

lem, the various numerical schemes and solvers used to solve the equations of the flow should

at least be mentioned. The transient terms are discretized using a second-order backward

implicit scheme, while the convective terms are treated with a second-order scheme based

on a linear upwind interpolation. Finally, the diffusive terms are discretized using a second-

order scheme based on a linear interpolation, and an explicit non-orthogonal-limited surface-

normal gradient scheme is also used. Furthermore, the linear equations solver is a generalized
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geometric-algebraic multigrid (GAMG) method for both the pressure and momentum equa-

tions, while a smooth solver using Gauss-Seidel method is used for the transport equation of

νt.

For the task of solving the equations of motion of the airfoil (Eqs. 2.16 and 2.19), the system

of two differential equations of degree two is decomposed into a system of four differential

equations of degree one. In fact, OpenFOAM-2.1.x also demands an equation of degree one

for all constants that appear in the equations of motion, but the value of their derivative is,

of course, equal to zero. The resulting system of equations is then solved using a 4th order

Runge-Kutta method (see Fortin (2001)) readily available within OpenFOAM-2.1.x.

2.3 Fluid-structure coupling

Fluid-structure interaction (FSI) is a multiphysics problem that involves some interaction

between a fluid and a body submerged within that same fluid. FSI is of great interest in

several fields of engineering because vibrating structures or structures undergoing some sort

of motion in a flow are frequently encountered. When this is the case, there exists a two-way

interaction between the fluid and the structure. Indeed, the motion of the structure very often

arises from the fluctuating forces generated by the fluid on the structure. In turns, the motion

of the structure typically alters the flow pattern close to the structure (see He et al. (2012) and

Yang et al. (2008)), which of course affects the forces. The strength of this dual interaction,

which is often referred to as the FSI strength, is certainly variable and dependent upon various

parameters. Howbeit, some situations where this two-way coupling between the equations of

the fluid flow and the equations of the structure becomes large enough not to be negligible are

frequently encountered in practice. This is certainly the case of airfoils undergoing LCO as a

result of stall flutter such as those considered in the current study. To exemplify concretely this

two-way interaction, it should be recalled from Chapter 1 that the flapping airfoil considered

in this study is fluttering due to the hysteresis in the aerodynamic forces, thus giving rise to

negative aerodynamic damping, while this same hysteresis depends upon the specific motion of

the airfoil. Until recently, this type of interaction had primarily been studied experimentally.

Nevertheless, experimental work is not always available or practical for various reasons, and

numerical methods making use of CFD have been actively developed to fulfill the needs for

accurate and inexpensive predictive methods of FSI phenomena.

In the relatively young field of numerical FSI, the aeroelastic problems studied have proven,

in several circumstances, to be quite challenging and computationally demanding. The phe-

nomena involved in FSI are often nonlinear and relatively convoluted. Some even believe that

FSI is one of the most challenging current topics in the field of CFD (see He et al. (2012)).

The challenge does not arise, per se, from the fact that numerical methods do not exist for

the task of solving FSI problems. The challenge emerges much more from the fact that robust
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numerical solvers able to solve all FSI problems, regardless of the strength of the dual inter-

action, turn out to be highly expensive from a computational point of view. Therefore, the

goal of recent research has been to actively develop numerical methods proving to be robust

at a specific task, and also to make these methods much less computationally demanding.

Numerical approaches dealing with FSI are frequently divided into two main categories: the

monolithic approach and the staggered (or partitioned) approach. In the first category, the

equations of both the structure and the flow are combined within a single solver, and the whole

system is solved iteratively. This methodology, apart from being computationally expensive,

often demands a great deal of work in order to implement the solver that combines all equa-

tions. When a whole new FSI problem is considered, the equations may change significantly,

and this can demand extensive work in order to adapt the monolithic solver. Although this is

probably the most robust and accurate method for solving a FSI problem, it is not the most

frequently encountered one due to its lack of flexibility and its high cost.

In the second category, one solves the equations of the flow and the equations of the solid

in a sequential manner. This methodology offers attractive advantages over the monolithic

one. This is because it permits recycling some numerical solvers that have previously been

developed, and have already proven their numerical efficiency as much as their accuracy. In

other words, implementing a staggered solver is much simpler, and generally requires far less

work than what is needed for implementing a monolithic solver. To use the same terminology

as the one from Degroote et al. (2008) and Olivier (2014), it is best to think of the fluid

solver and the solid solver of the staggered approach as independent black boxes where each

one of these black-box solvers may have been individually designed without giving thoughts

about its interaction with other solvers. Very often, these black boxes are solvers that have

been designed in order to be efficient at a specific task which is not necessarily FSI. To

make use of these well-designed, specialized solvers within a FSI staggered solver, all that is

required is to implement an adequate coupling scheme between them. Because of their great

independence, one of the solvers can be changed at any time without altering the behavior

or the implementation of the other. These properties make the staggered approach very

convenient due to the minimal amount of work required to adapt the numerical solver to a

whole new FSI problem. As a result of their great flexibility, it is without great surprise that

they are more frequently used than monolithic solvers.

Staggered FSI solvers can be further subdivided according to the strength of the coupling

schemes between the fluid and the structural solvers. This should not be confused with the

aforementioned physical strength of the two-way interaction between the structure and the

flow. Here, the coupling strength is purely a numerical matter, and refers to the robustness of

the implemented numerical scheme dealing with the flow of information between the solvers,

along with the sequential manner though which each solver is called. In the literature, the

staggered solver is often qualified as being coupled explicitly, implicitly, strongly, weakly, etc.
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Figure 2.5: A typical implicit coupling scheme between the solid and the fluid solvers in a
staggered, fluid-structure interaction CFD solver.

There is a plethora of terms that can be found, with many of them, in fact, referring to the

same type of coupling. However, two main subcategories can be distinguished, here referred

to as implicit and explicit coupling.

Generally speaking, a strongly or implicitly coupled staggered scheme includes subiterations

within each numerical time step. The typical example of such a coupling scheme is shown

in Figure 2.5. The numbers above the lines represent the sequence of events within the

two initial subiterations. Of course, the subiterations improve the numerical accuracy of the

solution. This is what is represented in Figure 2.5 with the solutions at t+∆t. As the number

of iteration increases (i.e., i increases), the intermediate solution of each solver, represented

with an unfilled circle, gets closer and closer to the converged solution, represented with a

filled circle. The subiterations also have another great advantage: they make the procedure

insensitive to the well-known added mass instability, which is discussed later. The implicit

coupling is thus more robust and so is called strong coupling. However, this type of coupling

scheme remains relatively expensive. In fact, if CFSI is the computational cost of the FSI

solver, CF is the cost of the fluid solver and CS is the cost of the solid solver, one can safely

argue, in general, that:

CFSI � CF + CS . (2.43)
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Figure 2.6: A typical explicit coupling scheme between the solid and the fluid solvers in a
staggered, fluid-structure interaction CFD solver.

In the best case, one could replace the much greater symbol (�) of the above relation with a

less restrictive greater symbol (>). One reason for this relatively high cost of computation is

the fact that this coupling scheme should include some relaxation. This inevitably makes the

convergence of the solution more computationally demanding. Other alternatives to relaxation

exist, such as the use of pseudo-compressibility (see Olivier (2014)), but the cost remains fairly

high in all cases. Another reason for the increased numerical cost is obvious: each solver is

called more than once per time step in most situations. However, this coupling scheme has

not been retained in the present study for reasons that shall shortly become clear.

The second subcategory of staggered solvers is the explicitly or weakly coupled one. In this

approach, no subiterations are carried out within a numerical time step. A typical example of

such coupling scheme is shown in Figure 2.6. Again, the numbers above the lines indicate the

sequence of events, and the schematic depicts clearly that a single iteration is performed, thus

leading immediately to the next-step solution for each solver (i.e., no intermediate solution is

present). The main advantage of such a strategy can be conveniently expressed through the

following relation:

CFSI ≈ CF + CS . (2.44)

Indeed, the cost of such a numerical methodology is considerably lower than the cost of an

implicit numerical scheme. In the explicit scheme, the coupling itself has a negligible cost, and
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each solver, fluid and structure, is called only once. The minimal cost of this method turns

out to be very appealing, but unfortunately there are some drawbacks associated to it. As a

matter of fact, this type of coupling can prove to be unstable under some circumstances due

to the well-documented added mass effect 9 (see Causin et al. (2005); Degroote et al. (2008);

Förster et al. (2007) and He et al. (2012)). As a result of the staggered character of this

scheme, and the absence of subiterations, there is an inherent time lag between the fluid and

the structural subsystems. More concretely, this means that when a solver is called, the other

one is conceptually at a different solution time. This time lag becomes a numerical stability

issue when the CFD solver deals with the equations of an incompressible fluid, and when the

strength of the interaction between the fluid and the structure is important. Indeed, when

an incompressible fluid is assumed, the elliptical character of the pressure equation becomes

problematic 10. As mentioned previously, the role of the pressure equation is to enforce the

incompressibility constraint, and it turns out to be a relatively stiff equation (i.e., it is more

reactive to numerical errors). Because it is elliptical in character, any error on the pressure

propagates instantaneously through the whole domain and affect the entire pressure field. A

very raw but meaningful explanation is to think of the time lag as introducing some sort of

holes in the calculation grid, the holes being the locations where there is no fluid and no

solid. When the interaction between the solid and the structure is strong, the motion of the

solid between each time step is greater, and the size of the holes created in the grid increases.

When the CFD solver tries to calculate a new flow field and tries filling the holes, this locally

affects greatly the pressure field. However, because of the elliptical character of the pressure

equation, perturbations on the pressure field propagate instantaneously throughout the whole

calculation domain. This has catastrophic effects on the overall numerical solution, if any

is obtained, and it is generally impossible for the solver to recover from such an undesirable

situation.

It is well known that the strength of the FSI is particularly important when the density of

the fluid (ρf ) is comparable or greater than the density of the solid (ρs). This is so because

the forces exerted on the structure are proportional to the fluid’s density (ρf ), while the

reaction of the solid is proportional to its own density (ρs). As the ratio ρs/ρf becomes

smaller, the structure becomes more and more responsive. This, in turns, amplifies the

numerical errors arising from the mismatch in time of both solvers. Generally speaking, the

following stability criterion may be obtained through advanced mathematical considerations

of simplified aeroelastic problems (see Causin et al. (2005) and Förster et al. (2007)):

9. This instability is called added mass effect in the literature because the effect of the fluid entrained with
the moving body can be seen as an increase of the total mass of the structure. The rationale of this becomes
more obvious when advanced mathematical studies of the instability are performed, but this is beyond the
scope of the present text.

10. When a compressible fluid is assumed, the instability due to the added mass effect is not present. This
is the basis of the artificial compressibility method previously mentioned. More details can be found on this
matter in the thesis of Olivier (2014).
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ρshs
ρfµmax

> ζ , (2.45)

where hs is a characteristic thickness of the structure and µmax is the largest eigenvalue of

the discrete operator arising in the structural solver discretization. This last parameter only

depends on the geometry of the problem considered. On the other hand, the value of ζ may

depend upon the specific numerical schemes used, such as the order of convergence of the

numerical schemes, to solve the equations. In general, increasing the order of the numerical

schemes increases the value of ζ, which makes the stability criterion more restrictive (i.e., the

solver is less robust). As a rule of thumb, and as a first order approximation, this stability

criterion may be approximated as:

ρs
ρf

> 1 . (2.46)

That being said, Eq. 2.46 shows that decreasing the ratio ρs/ρf may lead to a numerical

instability. Further, as shown with Eq. 2.45, decreasing the characteristic thickness of the

structure is also problematic. This last finding is of no concern in the current work as the

thickness of the airfoil is held constant.

The time lag between both solvers being the reason why some numerical instabilities can

be encountered, one could reasonably suggest to reduce the size of the time step in order to

avoid the numerical instability. However, the effect of such a modification is counter-intuitive,

and it turns out to only make things worse. Indeed, when the displacement error of the fluid-

structure boundary is divided by a smaller time step, this increases the error on the velocity of

that same boundary. Otherwise said, decreasing the time step amplifies the numerical errors

already present, thus leading to a divergence of the physical variables from the physical reality.

FSI problems making use of a staggered coupling scheme are then subject to a classical upper

bound criterion on the time step (i.e., the CFL condition), as much as to a criterion on the

minimal value of the time step, which is due to the added mass instability.

With this in hand, the main reason why the staggered, explicit coupling scheme is so successful

in the field of aeronautics is not obvious. In fact it is simple. Because the density of the fluid

is typically considerably smaller than the structural densities used in this specific discipline,

most aeroelastic calculations in aeronautics are not prone to the added mass instability. As

a result, using an explicit coupling scheme provides the desired accuracy at a minimal cost

when compared to an implicit coupling scheme.

In the current study, the staggered coupling scheme has been chosen due to its lower numerical

cost. This, of course, is achieved at the cost of being susceptible to the added mass instability.

For fully-passive, flapping-airfoil wind turbines, this is certainly not an issue as a result of the
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low fluid’s density. However, for a hydrokinetic turbine, this numerical stability criterion may

restrict the size of the parametric space that can be investigated with the implemented tools.

Indeed, hydrokinetic turbines are typically conceived with a lower density ratio than what is

found in wind turbines.

The reader who might be interested in having more details on the various coupling schemes

used in FSI is referred to a comprehensive text on this matter within the thesis of Olivier

(2014). Further, the staggered FSI coupling scheme chosen for the sake of this study will later

be validated and characterized more precisely in Chapter 3.

Conclusion

Within this chapter, the aeroelastic modeling of the fully-passive, flapping-airfoil turbine has

first been introduced. All parameters involved in the modeling have been presented, followed

by the formal derivation of the equations of motion. This has been achieved by making use of

the well-known Lagrange’s equation. This method is the one typically used in order to obtain

the governing equations of motion in the field of aeroelasticity. It has been found that the

equations of motion are coupled through the aerodynamics and through an inertial coupling

term arising from the voluntary misalignment of the elastic axis and the center of mass of the

pitching components. Further, a total of seven structural parameters can be varied to modify

the dynamics of the oscillating airfoil. The non-dimensional formulation of the aeroelastic

problem has also been introduced, and this formulation will be used throughout the current

document for convenience.

Next, the fluid-structure solver has been presented. This includes a presentation of the

methodology used to solve the equations of the flow and the equations of the structure.

Through this section, the various choices made on the modeling and on the numerical method-

ology have been briefly discussed.

In the last section, an overview of the various coupling schemes between the fluid and the

structural solvers has been presented. Some limitations associated to the scheme used in

the current study, namely the staggered explicit scheme, have also been addressed. In fact,

a numerical instability known as the added mass effect emerges when a strong interaction

between the fluid and the structure is involved, and when an incompressible fluid is considered.

This numerical instability is greatly related to the elliptical character of the stiff Poisson

equation for the pressure. A validation of the numerical methodology is to be presented in

the next chapter, and this coupling scheme will also be further investigated.
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Chapter 3

Validation of the FSI solver

This chapter aims at validating the methodology used for the task of solving the aeroelas-

tic problem of the fully-passive, flapping-airfoil turbine. The specific methodology, which has

been thoroughly presented within the previous chapter, is here validated into two complemen-

tary ways. First, some experimental results for a fully-passive, flapping airfoil investigated at

the RMC in Kingston, Ontario, are compared to the present FSI solver’s predictions. This

experiment has been described in Chapter 1 of this thesis. The idea here is really to put the

FSI solver to the test by comparing the numerical predictions with the experimental observa-

tions from the RMC. While reading through this section, the reader should remain fully aware

that the RMC experiment has been performed in the transitional range of Reynolds number,

while the current FSI solver has been specifically developed to be used in a turbulent regime

more representative of a turbine application. Nevertheless, such a validation of the numerical

predictions, as it will be seen, proves to be very useful, and it helps assessing the validity of

the solver.

As a second validation, the well-documented aeroelastic problem of an oscillating cylinder

is used. In this FSI problem, the cylinder is undergoing vortex induced vibrations (VIV).

Some past numerical results are used for the sake of studying the validity of the numerical

predictions obtained with the FSI solver of this thesis. Moreover, the results of a low Reynolds

number experiment are used to push the validation a step further. As a final case, the same

aeroelastic problem of the cylinder undergoing VIV is used as a way to assess the performances

of the present FSI solver when the physical strength of the FSI is increased. The objective

here is to characterize the specific behavior of the solver when a moderate to high interaction

level is present between the fluid and the structure.
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3.1 Flapping airfoil

The main validation of the complete flapping-airfoil model has been carried out through two-

dimensional numerical simulations in the transitional range of Reynolds numbers. As pointed

out in Chapter 1, a research group from the RMC in Kingston, Ontario, published some

results concerning a fully-passive, flapping-airfoil aeroelastic device that is very similar to the

one considered in this study (see Mendes et al. (2011) and Poirel and Mendes (2011)). In

fact, the apparatus at the heart of the experimental study conducted at the RMC shares

the exact same equations of motion as those derived in Chapter 2 of the current study. The

only difference between the experimental work and the current study resides in the choice

of the flow and the structural parameters. This is so because the objectives of both studies

are significantly different, and, as a result, a different region of the parametric space has

been investigated. Nevertheless, this indicates that no modification at all of the FSI solver is

required in order to numerically replicate the experiment of the RMC.

It should be recalled from Chapter 1 that the experimental work conducted at the RMC has

involved Reynolds numbers between 50,000 and 120,000. This is, of course, in contrast with

the Reynolds number of 500,000 used in the current numerical study of the fully-passive,

flapping-airfoil turbine. Nevertheless, the experimental results remain of great interest for

validating the solver. For this reason, the experiment of the RMC has been reproduced with

the current FSI solver over this range of transitional Reynolds numbers. The set of structural

parameters reported in Table 1.1 has been used throughout this validation, and it is based

on the values published for the setup used at the RMC. Further, both the low heave stiffness

case (kh = 800 N/m) and the large heave stiffness case (kh = 1484 N/m) have been studied

numerically, which are the same cases as those of the experiment. As the reader will soon

realize, this test case is not only used in order to assess the physical validity of the numerical

results. In fact, it is also used to the extent of studying the independence of the numerical

results from the temporal and the spatial discretizations, as well as from the convergence

criteria, and from the turbulence model.

3.1.1 Baseline numerical values

The baseline numerical parameters presented here are those used for predicting the motion

of the airfoil in the transitional range of Reynolds numbers, as well as for the case at Re =

500,000. This means that the same numerics is used for the simulations in the transitional

range of Reynolds number of this chapter, and for the simulations at Re = 500,000 of the

following chapters. The specific choice of each numerical value will be validated and justified

within the following subsections.

In all simulations of this thesis, a time step providing a minimum of 3,000 steps per period of

oscillation (T ) and a minimum of 200 steps per convective time unit (c/U∞) is used, unless
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otherwise noted. To respect these constraints, the choice of a time step can be summarized

with the following equation:

∆t = min

{
1

3000 f
,

c

200 U∞

}
, (3.1)

where f is the frequency of oscillation. It is worth mentioning that the specific frequency of

oscillation is not always known a priori. This means that the requirement on the time step

given by Eq. 3.1 should also be verified a posteriori, once the predicted motion of the airfoil

is obtained. Further, a baseline convergence criterion of 1× 10−5 is enforced on the pressure

residuals, while a criterion of 1 × 10−6 is used for both the momentum and the turbulent

quantities.

The 2D computational grid used is shown in Figure 3.1, and it is in agreement with the

general description of the computational domain presented in Chapter 2. The grid is built

with approximately 65,000 cells with close to 450 points on the airfoil to provide enough near-

body resolution, and to capture sufficiently the physics of the flow. The first cell thickness

is set in order to respect y+ ≈ 1 on the airfoil’s surface for all simulations. It must be clear

that the mesh used for the simulations in the transitional range of Reynolds numbers is the

same for all velocities of the freesteam flow, which means that the first cell thickness has

been chosen according to the most restrictive case considered, which is here the one at Re =

120,000. Further, the 2D grid used for the numerical study at Re = 500,000 is very similar

to the one here presented. In fact, only the wall-normal resolution has been slightly refined

in order to again respect a value of y+ approximately equal to 1.

Concerning the turbulent viscosity ratio, a value of νt/ν = 1 is used at all inlets of the

computational domain. This yields negligible turbulent mixing at a station immediately

upstream of the airfoil. Some simulations have been carried out with a ratio of νt/ν greater

and lower by one and two orders of magnitude (i.e., ratio of νt/ν of 0.01, 0.1, 10 and 100),

and no significant variations have been observed on the numerical results. This indicates that

the airfoil’s motion is not sensitive to the chosen value of νt/ν at the inlets, as much as from

the initial condition within the domain. Furthermore, a value of νt/ν = 1 is consistent with

the recommended value for the Spalart-Allmaras turbulence model when used in the fully

turbulent mode (see Spalart (2000) and Spalart and Rumsey (2007)).

As mentioned in Chapter 2, all simulations are initialized with a perturbed airfoil unless

otherwise noted. This is achieved here by specifying an initial heaving velocity (ẏi). All other

initial values are set to zero, namely yi = 0, θi = 0 and θ̇i = 0. The parameter ẏi is set

to approximately 5-10% of U∞. After trying several initial perturbations, it has been found

that such a value of ẏi typically shortens the duration of the transient regime. The flow and

the structural parameters also influence the duration of the transient regime, and care must
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Figure 3.1: Main features of the computational grid used for the numerical simulations in the
transitional range of Reynolds numbers, as well as for those at Re = 500,000.

be taken in order to minimize its duration as this directly affects the total time required

to achieve a complete simulation. Nevertheless, it has been verified that the terminal LCO

regime is not dependent upon the initial perturbation unless an excessively large perturbation

is provided. When such an excessively large perturbation is provided, the airfoil simply flips

over (i.e., θ > 180◦), and this rapidly has disastrous consequences on the numerical solution.

As it has been stated earlier, the one-equation Spalart-Allmaras turbulence model has been

used throughout the current research project. However, this chapter contains some laminar 1

computations (i.e., no turbulence model is used), and some computations using the SST

k-ω turbulence model from Menter (1994) (see Appendix A for a description of this model).

The objective is to assess the independence of the results from the chosen turbulence model.

In the simulations using the SST k-ω model, various inlet turbulence intensity have been

1. This type of numerical simulations can be thought of as an under-resolved DNS, or an Implicit LES
(ILES) (see Jiang and Lai (2009)). Typically, DNS and LES are used for 3D simulations. However, the same
philosophy has been used here for 2D simulations: no explicit SGS model is present. Instead, dissipation
of the turbulent energy is achieved through numerical dissipation. Generally, ILES requires the use of some
very specific numerical schemes where the truncation error is chosen in order to act as a well-adapted SGS
model. In the simulations here achieved, the numerical schemes have not been changed or adapted. It must be
emphasized that the idea is only to assess the effect of the chosen turbulence model by simply deactivating it.
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Table 3.1: Relative effect of the time step with respect to the most refined simulation results on
the lift coefficient (CL), the aerodynamic moment coefficient (CMea) and the drag coefficient
(CD), along with its effect on the motion in both pitch (θ) and heave (y).

Time step CL (%) CMea (%) CD (%) θ (%) y (%)

Coarse (500 steps/cycle) 2.63 2.20 3.12 0.40 0.18

Baseline (3,000 steps/cycle) 0.42 0.59 0.72 0.16 0.05

Fine (26,000 steps/cycle) — — — — —

investigated, and very little change have been observed for an increase or decrease of one

order of magnitude of this parameter. A fairly low inlet turbulence intensity of approximately

0.2% has finally been retained for the calculations making use of this turbulence model.

3.1.2 Results’ independence

The independence of the numerical results from the time step size has been demonstrated

by varying the time step from the baseline criterion used throughout the simulations, which

is provided by Eq. 3.1. Table 3.1 shows the effect of varying the time step. The effect is

quantified by computing the RMS value over three complete cycles of oscillations for the lift

coefficient (CL), the aerodynamic moment coefficient about the elastic axis (CMea), the drag

coefficient (CD), and the motion in both pitch (θ) and heave (y). The relative variations

shown are in percents, and they have been computed by taking the most refined case as the

reference. The most refined time step provides 26,000 steps per period of oscillation and

2,400 steps per convective time unit. Using the baseline requirement instead of the fine time

step did not affect noticeably the results. Variations of less than 0.2% are observed on both

motions, and variations of 0.75% or less are observed on the aerodynamic forces and moments.

Conversely, a coarser time step providing 500 steps per period and 50 steps per convective

time unit has also been investigated, and variations of less than 0.4% are observed on both

amplitudes of motion, but the differences are in the range of 2% to 3% for the aerodynamic

forces and moments. These results confirm that the baseline requirement provided by Eq. 3.1

is sufficient and adequate.

Concerning the numerical convergence criteria used on the physical quantities, a refinement

and a coarsening of one order of magnitude from the baseline values did not significantly

affect any of the parameters recorded, which are the same as the ones considered above. The

results are shown in Table 3.2, and the effect is again quantified as a relative variation, in

percents, from the case using the most refined criteria. The maximum differences on CL,

CMea and CD have been found to remain below 0.01%, which is certainly a very negligible

difference. The same observations hold true for both motions. As a result, it could be justified
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Table 3.2: Relative effect of the convergence criteria on the lift coefficient (CL), the aerody-
namic moment coefficient (CMea) and the drag coefficient (CD), along with its effect on the
motion in both pitch (θ) and heave (y). Refer to the text for a description of the criteria used.

Mesh CL (%) CMea (%) CD (%) θ (%) y (%)

Coarse 0.004 0.004 0.006 0.002 0.002

Baseline 0.000 0.000 0.000 0.000 0.000

Fine — — — — —

Table 3.3: Relative effect of the grid resolution on the lift coefficient (CL), the aerodynamic
moment coefficient (CMea) and the drag coefficient (CD), along with its effect on the motion
in both pitch (θ) and heave (y).

Mesh CL (%) CMea (%) CD (%) θ (%) y (%)

Coarse (30,000 cells) 0.52 1.37 1.62 0.88 0.17

Baseline (65,000 cells) 0.13 0.97 1.38 0.67 0.18

Fine (120,000 cells) — — — — —

to use the coarser criteria. However, using the coarser criteria does not provide much gain in

computational time. For this reason, it remains safer to use the baseline values throughout

the numerical study.

Mesh refinements in the rotating portion of the grid have been considered both in the stream-

wise and the wall-normal directions. The validation has been achieved with a run on a coarse

grid of approximately 30,000 cells with approximately 250 points on the airfoil, and with a run

on a refined grid of approximately 120,000 cells with 650 points on the airfoil. The results are

shown in Table 3.3, where the same quantities as before are used to quantify the effect of the

mesh resolution. Once again, the relative differences, in percents, are calculated using the fine

grid as a reference. As shown, the variations on CL, CMea and CD are in the range of 1.6%

and below for both the coarse and the baseline grid, and the differences on θ and y remain

well below 1%. It should be noted that the parameter most influenced by the grid resolution,

namely the drag coefficient, is not involved in the equations of motion of the fully-passive,

flapping airfoil. Therefore, these results confirm that using the baseline grid is sufficient and

adequate for the current task.
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At last, because all computations have been performed on multiple processors in parallel,

the results of a serial computation have been compared to those of a parallel computation

achieved on eight cores. All quantities checked matched nearly perfectly, thus indicating the

adequate parallelization of the tools used to solve the current aeroelastic problem.

3.1.3 Comparison with experimental results

Before moving on to the comparison of the CFD results with the experimentally measured

values, it must be recalled from Chapter 1 that a numerical value for the heave structural

damping coefficient (Dh) has not been provided for the experimental setup of the RMC.

Instead, Figure 1.7 displays the experimental heave damping ratio (ξh) as a function of the

normalized heaving amplitude (y0/c). However, the current implementation of the FSI solver

does not allow to modulate any of the damping coefficients according to the instantaneous

dynamics of the airfoil. In order to circumvent this possible issue, a hypothesis has been

made concerning the value of the heave damping coefficient: the damping ratio (ξh) in heave

is considered to be constant and equal to the asymptotic value for a large amplitude of motion

in heave. This yields a damping coefficient Dh = 2 Ns/m. This hypothesis will be revisited

and discussed a posteriori once a prediction of the amplitudes of motion is available.

Using the aforementioned parameters of Table 1.1, several numerical simulations have been

performed for the range of freestream velocities (U∞) investigated in the wind-tunnel ex-

periment of the RMC. In the experiment, the velocity of the flow has been varied be-

tween 4.68 m/s, which corresponds to Re = 50,000, and 11.23 m/s, which corresponds to

Re = 120,000. However, it should be mentioned that experimental results are not available

throughout this complete range of freestream flow velocities for the large heave stiffness case.

This is because the amplitude of motion of the flapping airfoil became large enough to fear

that it would impair its structural integrity. Nevertheless, this complete range of velocities has

been experimentally studied for the low heave stiffness case. As it will be seen, the amplitudes

of motion are not as important, and no structural failure was feared.

Large heave stiffness

Experimental and CFD results for the case using a large heave stiffness of kh = 1484 N/m are

gathered in Figures 3.2 and 3.3, where the reduced frequency (f∗ = fc/U∞), the normalized

heaving amplitude (y0/c) and the pitching amplitude (θ0) are shown for various Reynolds

numbers. The decoupled reduced natural frequencies for both the pitch (fN,p c/U∞) and the

heave (fN,h c/U∞) degrees-of-freedom are also plotted, where:

fN,p =
1

2π

√
kθ
Iθ

, (3.2)
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fN,h =
1

2π

√
kh
mh

. (3.3)

As it can be observed in Figure 3.2, a single frequency of oscillation emerges for this two-

degree-of-freedom device (i.e., the frequencies in pitch and in heave are the same). The

coalescence of the frequencies has already been explained in Chapter 2 within the theoretical

discussion on flutter. It can be seen that an excellent match is obtained between the ex-

perimentally measured frequencies and the numerically predicted frequencies for the limited

range of Reynolds numbers covered by the experiment. For both the experimental and the

CFD values, the apparatus oscillates at a frequency nearly identical to the calculated decou-

pled natural frequency in heave (fN,h). This indicates that aerodynamic stiffening in heave

is not significant in this specific regime of oscillation. However, the aerodynamic stiffening

is significant on the rotational motion of the airfoil. Outside of the experimental range, the

predicted frequencies still agree fairly well with the decoupled natural frequency in heave,

but there is no way to tell if this is in agreement with the experiment. Further, the values

predicted without turbulence modeling, which are labeled as laminar, are almost identical to

those predicted using the Spalart-Allmaras URANS model. This is not unexpected at these

moderate Reynolds numbers.

Figure 3.3 shows that the experimentally measured amplitudes of motion compare well with

those predicted through the FSI solver over the limited experimental range of Reynolds num-

bers. Nevertheless, as previously mentioned, the experiment on the large heave stiffness case

has been stopped at a lower freestream flow velocity due to the rapid growth of the ampli-

tudes of motion. That being said, the predicted values indeed show that both amplitudes of

motion keep growing past the maximum wind-tunnel velocity for which experimental values

have been published. This appears to be in qualitative agreement with the observations of

the RMC.

Concerning the laminar results shown in Figure 3.3, some error bars are shown as a way to

quantify the amount of fluctuations within the predicted amplitudes of motion from one cycle

to the other 2. The average amplitude is therefore displayed with error bars extending up

to the maximum and the minimum amplitudes recorded. These laminar simulations predict

amplitudes that are slightly lower or equal to those predicted with the Spalart-Allmaras

turbulence model. It must be noted that the differences between the predictions of both

series increase as the Reynolds number grows.

Unfortunately, the experimental uncertainties over the results, as much as the uncertainties

over the structural parameters of the device, have not been addressed in the work of the

RMC. Nevertheless, the good agreement with the experimentally measured values is a first

2. Indeed, stable LCO are not obtained through laminar simulations. Instead, a modulation of the ampli-
tudes is observed.
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Figure 3.2: Comparison of the numerically predicted reduced frequencies with the experi-
mentally measured reduced frequencies and with the calculated decoupled natural structural
frequencies for the large heave stiffness case (kh = 1484 N/m). Experimental values from
Poirel (2012) and Poirel and Mendes (2011).

Figure 3.3: Comparison of the numerically predicted amplitudes of motion in both pitch and
heave with the experimentally measured amplitudes of motion for the large heave stiffness
case (kh = 1484 N/m). Error bars on the laminar results show the amount of fluctuations
within the amplitude of motion from one cycle to the other. Experimental values from Poirel
(2012) and Poirel and Mendes (2011).
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confirmation of the validity of the FSI solver used in this numerical study. Furthermore, the

numerical results obtained with and without the modeling of turbulence are definitely in the

same range of values, and the trends are the same.

Low heave stiffness

Several numerical simulations have also been carried out for the low heave stiffness case, where

kh = 800 N/m. The experimentally measured reduced frequency of oscillation, along with

the frequency predicted with the FSI solver, are shown in Figure 3.4. Further, the maximum

effective angle of attack of the airfoil is shown in Figure 3.5. Unfortunately, the experimental

pitching amplitude (θ0) of the airfoil has not been published. Instead, only the effective angle

of attack has been published, and this quantity is classically calculated as follows 3:

α = θ − arctan (ẏ/U∞) . (3.4)

Defined as such, the effective angle of attack accounts for the pitching motion, as much as

for the heaving velocity (ẏ) of the airfoil, which changes the magnitude and orientation of the

effective freestream flow seen by the airfoil. Because not enough data has been published, it

has not been possible to extract the pitching amplitude from the results of the RMC. For this

reason, the results obtained with CFD, which are shown if Figure 3.5, also correspond to the

effective angle of attack so that a direct comparison among all sets of data is still possible.

Another unfortunate circumstance is the lack of published results concerning the amplitude of

motion in heave. Although no comparison of this parameter is possible with the experiment,

the amplitudes predicted with the FSI solver are shown in Figure 3.6.

As shown in Figure 3.4, the reduced frequencies predicted through CFD compare very well

with the experimentally measured reduced frequencies. For the simulations making use of

the Spalart-Allmaras turbulence model, the match is excellent in the lower range of Reynolds

numbers, and a slight discrepancy appears as the Reynolds number is increased. Concerning

the maximum effective angle of attack shown in Figure 3.5, the CFD values predicted with

the Spalart-Allmaras turbulence model exhibit a trend that agrees favorably well with the

experiment, especially for Reynolds numbers below 80,000. Nonetheless, the CFD values

obtained with the Spalart-Allmaras model remain lower than the values measured during the

experiment. The same conclusions still hold true concerning the numerical results obtained

through simulations making use of the SST k-ω turbulence model. In fact, it is observed that

the Spalart-Allmaras turbulence model provides results that are very close to those obtained

with the SST k-ω turbulence model. For this reason, it does not appear justified to use the

3. Unfortunately, some uncertainties remain on the method used by the RMC to compute/measure the
maximum effective angle of attack.
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two-equation SST k-ω turbulence model. Indeed, the one-equation Spalart-Allmaras model

turns out to be sufficient and adequate for the current task.

In counterpart, the numerical values predicted with the laminar simulations appear to be more

representative of the experimental results for both the reduced frequency and the maximum

effective angle of attack, but this is especially true for the predicted frequencies. The fact that

a better match is obtained between CFD and the experiment through laminar calculations

suggests that the turbulence model struggles at predicting some features of the flow. In fact,

this is not a great surprise, and this has been expected before running any CFD simulation:

the Spalart-Allmaras turbulence model and the SST k-ω turbulence model have not been

developed for applications in the transitional range of Reynolds numbers. As a matter of fact,

they both appear to produce too much turbulent viscosity (νt), especially in the higher range

of the transitional Reynolds numbers investigated in the experiment. This alone could explain

why the slight mismatch between the experiment and the CFD increases with the Reynolds

number when one of the turbulence models is used.

Contours of the turbulent viscosity ratio (νt/ν) in the vicinity of the airfoil’s surface are shown

in Figure 3.7. As one might observe, the ratio of turbulent viscosity in the attached boundary

layer (i.e., on the upper surface) is somewhat larger than expected, especially for Re = 120,000

at which one might suspect a laminar boundary layer in that region. Contours of vorticity

are shown in Figure 3.8, and the vorticity field is found to be very different for a laminar

simulation than what is obtained with the Spalart-Allmaras turbulence model. The effective

body of the airfoil is therefore considerably thinner for the laminar simulations, which affects

the forces on the airfoil. The Reynolds number also has a significant effect on the vorticity

field, but direct comparison between cases at different Reynolds numbers is more iffy since the

dynamics of the airfoil is also significantly modified when the Reynolds number is varied by

changing the freestream velocity (U∞). An alternative to these issues would be to make use of

a transitional turbulence model, but this is certainly out of the scope of this study due to the

intent of using the FSI solver at Re = 500,000 for studying the fully-passive, flapping-airfoil

turbine. The reader should understand that for Re = 500,000, the preceding issues observed

with the turbulent modeling are not likely to be a factor.

In order to assess the effect of the aforementioned uncertainty relative to the numerical value

of the heave damping coefficient (Dh), a few simulations have been carried out with some

variations of this parameter. The effect of these modifications on the reduced frequency and

on the maximum effective angle of attack are shown in Figures 3.9 and 3.10. The variations

of Dh were such that self-sustained oscillations were still possible (i.e., no extreme values of

the damping in heave preventing flutter to occur have been used). As shown in Figure 3.9,

these modifications did not prove to have a significant effect on the reduced frequency. Note

that the label strong damping refers to Dh = 3.5 Ns/m (ξh = 0.15), and the label no damping

obviously refers to Dh = 0 Ns/m (ξh = 0). Concerning the baseline value of the damping,
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Figure 3.4: Comparison of the numerically predicted reduced frequencies with the experi-
mentally measured reduced frequencies and with the calculated decoupled natural structural
frequencies for the low heave stiffness case (kh = 800 N/m). Experimental values from
Mendes et al. (2011).

Figure 3.5: Comparison of the numerically predicted maximum effective angle of attack with
the experimentally measured maximum effective angle of attack for the low heave stiffness
case (kh = 800 N/m). Error bars on the laminar results show the amount of fluctuations
within the amplitude of motion from one cycle to the other. Experimental values from Mendes
et al. (2011).
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Figure 3.6: Numerically predicted heaving amplitude for the low heave stiffness case
(kh = 800 N/m). No experimental data available. Error bars on the laminar results
show the amount of fluctuations within the amplitude of motion from one cycle to the other.

it was previously defined as Dh = 2 Ns/m (ξh = 0.09). The maximum effective angle

of attack shown in Figure 3.10, does exhibit some significant variations when the damping

coefficient in heave is varied, but this alone cannot account fully for the slight mismatch with

the experimental values.

One should recall the hypothesis made at the beginning of this section where the damping

has been assumed linear. However, as clearly mentioned in Chapter 1, the heave damping of

the RMC aeroelastic device is definitely not linear. Recalling from Chapter 2 that structural

nonlinearities can significantly affect LCO, the linear modeling of the heave damping could

likely account for the slight discrepancies observed. Last, the uncertainties on the experimental

measurements of the airfoil’s motion and of the structural parameters have not been addressed

by the research group at the RMC. This could certainly account for another part of the

discrepancies. It should be clear that because such an aeroelastic device is passive, even

slight modifications of the structural parameters can turn out to have a significant impact on

the airfoil’s response. This is because of the two-way interaction between the flow and the

structure, which can amplify what appears, at first, to be a relatively small difference.

To complete this first validation process, the reader has probably noticed that the experimen-

tally measured reduced frequencies and the reduced frequencies predicted through CFD for
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Figure 3.7: Close up view on the instantaneous turbulent viscosity ratio (νt/ν) for
Re = 120,000 and Re = 50,000 at a similar moment within their cycle of oscillation. This is
for the low heave stiffness case (kh = 800 N/m) simulated with the Spalart-Allmaras model.
Note that the values of νt/ν extend beyond the max value shown on the color scale.

Figure 3.8: Comparison of instantaneous vorticity contours for Re = 120,000 and Re = 50,000
at a similar moment within their cycle of oscillation. This is for the low heave stiffness case
(kh = 800 N/m). Note that the values of the vorticity extend beyond the min/max values
shown on the color scale.
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Figure 3.9: Comparison of the numerically predicted reduced frequencies with the experimen-
tally measured reduced frequencies for various heave damping coefficients (Dh) for the low
heave stiffness case (kh = 800 N/m). Experimental values from Mendes et al. (2011).

Figure 3.10: Comparison of the numerically predicted maximum effective angle of attack with
the experimentally measured effective angle of attack for various heave damping coefficients
(Dh) for the low heave stiffness case (kh = 800 N/m). Experimental values from Mendes
et al. (2011).
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the low heave stiffness case are not equal to the pitching decoupled natural frequency, nor to

the heaving decoupled natural frequency. This is in contrast with the large heave stiffness

case, where the reduced frequency is very close to the decoupled natural frequency in heave.

For the low heave stiffness case, aerodynamic stiffening is present and active for both the pitch

and the heave degrees-of-freedom. This suggests that the aerodynamics is far more dominant

here than it is with the large heave stiffness case. The fluctuations of the predicted amplitudes

of motion observed with laminar simulations being greater with the low heave stiffness case

suggests the same conclusion. This makes sense from a physical point of view as the restoring

forces generated by the spring in heave are necessarily greater for the large heave stiffness

case, thus leaving less room for the aerodynamics at governing the airfoil’s motion. This could

partially explain as well why the turbulence model has a more significant effect on the results

obtained for the low heave stiffness case.

Summary of the validation using the RMC experiment

To summarize, laminar simulations in the transitional range of Reynolds numbers provide

numerical results that are in better agreement with the experimental values when compared

to the predictions obtained with the Spalart-Allmaras or the SST k − ω turbulence model.

This is especially true for the low heave stiffness case, where the aerodynamics appears to be

more dominant than it is for the large heave stiffness case. This is due to the smaller restoring

forces from the spring in heave, thus leaving more room to the aerodynamics for governing the

airfoil’s motion. These results suggest that the numerical solver could be improved by making

use of a transitional turbulence model 4, which would be more appropriate for the transitional

flow regime considered in this section. However, this would most likely not be necessary for the

simulations at Re = 500,000. A second refinement of the numerical predictions could certainly

be achieved by making use of a nonlinear damping model in both pitch and heave. Even if

such a refinement would most probably provide a better match with the experimental results

from the RMC, this would not be of great interest for the current optimization of the fully-

passive, flapping-airfoil turbine. Indeed, including a nonlinear damping model would increase

the size of the already immense parametric space by adding more structural parameters.

Finally and most importantly, the results obtained in this section provide great confidence in

the current FSI solver, and it can certainly be used without risks at higher Reynolds numbers

more representative of a wind or hydrokinetic turbine.

4. A transitional turbulence model is not readily available within the OpenFOAM-2.1.x CFD toolbox, which
explains why simulations making use of such modeling have not been tried. Of course, implementing such a
model was an option, but this requires extensive work. Because the FSI solver is intended to be used at
Re = 500,000, this idea was quickly rejected.
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Figure 3.11: Schematic of the elastically-mounted cylinder which is free to oscillate transver-
sally to the freestream flow. Reproduced from Morissette (2009).

3.2 Vortex induced vibrations of a cylinder

3.2.1 Description of the aeroelastic problem

In order to further validate the FSI solver, a relatively simple and well-documented aeroelastic

problem is used. It consists of a rigid, two-dimensional cylinder which is elastically mounted

in a freestream flow. The cylinder only has one degree-of-freedom: it is free to oscillate

transversally to the flow (i.e., along the y-axis). The configuration of the benchmark is

schematically depicted in Figure 3.11. As it will be seen, this very simple aeroelastic problem

is especially useful for the task of validating the numerical scheme used in order to couple the

fluid and the structural solvers (see Chapter 2 for a description of the numerical scheme).

The physical explanation to the self-sustained and self-induced oscillations of the cylinder is

relatively simple: they are due to the alternating vortex shedding behind the cylinder. This

alternating shedding, which is not a physical mechanism attributed to the motion of the solid

(i.e., it is also observed on static cylinders), implies that the flow around the cylinder is not

symmetrical and not steady. As a result, the cylinder is exposed to a non-zero fluctuating

vertical force (i.e., along the y-axis) that sets the solid structure into motion. Because vortex

shedding is the key element here, the phenomenon has been given the name of vortex induced

vibrations (VIV). This phenomenon is very well documented in the literature, and the reader

may refer to a fairly complete review article by Williamson and Govardhan (2004) for a

comprehensive discussion on this matter, and also to obtain a clear picture of the state-of-the-

art. This review article also contains an extensive list of published results obtained through

both CFD and experimental work. Several studies also enabled the motion of the cylinder

along the x -axis (i.e., the cylinder had two degrees-of-freedom), but the current validation is

limited to the one-degree-of-freedom case.
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Before making use of this simple aeroelastic problem for validating the solver, the equation

of motion first has to be introduced. For such an elastically mounted cylinder, the equation

of motion is that of a simple spring-mass-damper system:

F = mÿ + cẏ + ky , (3.5)

where F is the fluctuating vertical force, m is the mass of the cylinder, c is the structural

damping coefficient, and k is the spring stiffness coefficient. All these previous parameters

are given per unit depth of the cylinder. Further, y, ẏ and ÿ are respectively the vertical

position, the velocity and the acceleration of the cylinder’s center of mass, which is located

at the center of the cylinder. As the reader may already have noticed, Eq. 3.5 is very similar

to the equation of motion in heave of the fully-passive, flapping airfoil (Eq. 2.16). The only

difference is the absence of the inertial coupling term in the case of the oscillating cylinder.

In most published work, the following non-dimensional formulation of the problem is preferred

over Eq. 3.5:

2

πm∗
Cy = ÿ∗ + 2ξ

(
2π

U∗

)
ẏ∗ +

(
2π

U∗

)
y∗ . (3.6)

In this equation, the vertical position (y) is normalized with the cylinder’s diameter (D) in

the following way:

y∗ =
y

D
. (3.7)

Further, the non-dimensional mass per unit depth (m∗) simply corresponds to the ratio of the

cylinder’s density (ρs) to the fluid’s density (ρf ):

m∗ =
ρs
ρf

. (3.8)

Defined as such, m∗ is also a direct measure of the fluid-structure interaction strength. For

reasons explained in Chapter 2, decreasing m∗ increases the strength of the FSI, and vice-

versa. Concerning the non-dimensional velocity of the flow (U∗), it is calculated as:

U∗ =
U∞
fND

, (3.9)

where U∞ is the velocity of the freestream flow, and fN is the natural frequency of the

oscillating cylinder. This frequency is, in turns, calculated as:
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fN =
1

2π

√
k

m
. (3.10)

Finally, the coefficient of vertical force per unit depth (Cy) is obtained by making use of the

dynamic pressure (1
2ρfU

2
∞), along with the cylinder’s diameter (D):

Cy =
F

1
2ρfU

2
∞D

, (3.11)

and the damping ratio is:

ξ =
c

2
√
km

. (3.12)

3.2.2 Comparison with results available in the literature

The fact that several two-dimensional experimental and numerical studies have been per-

formed on the one-degree-of-freedom elastically-mounted cylinder within various ranges of

flow and structural parameters turns out to be very useful for validating the FSI solver of

this study. In fact, some of the previously published CFD results have been obtained for

Reynolds number of 200, where the Reynolds number is based on the cylinder’s diameter.

Obviously, the flow regime is expected to be laminar at such Reynolds number, and this turns

out to be very appreciated for the current validation. This is because no modeling of turbu-

lence is required for such a low Reynolds number. As a result, these CFD computations offer

the possibility of validating the FSI modeling and the numerical methodology alone: there

is no uncertainty associated to the modeling of turbulence. If the validation was achieved

at a higher Reynolds numbers where a turbulence model was needed, it would be hard to

state if either the turbulence modeling, the FSI or the numerics would account for possible

mismatches with the experimental values.

Validation using other CFD studies

In this subsection on VIV, a total of three numerical studies are used for the sake of comparing

the results obtained with the FSI solver of this thesis. The first numerical study is from Yang

et al. (2008), where the laminar results have been obtained using a strong coupling scheme

between the equations of the incompressible flow and the cylinder’s equation of motion. The

second numerical study is from Leontini et al. (2006), and the results have been obtained

through a spectral-element method which was coupled to the harmonical equation of the

cylinder. The third and last numerical study used within this section is from Morissette

(2009), a former student from the author’s research group. His numerical results have been

obtained using both an in-house lagrangian vortex method, and the commercial CFD software
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Table 3.4: Set of non-dimensional parameters used in the numerical studies of the one-degree-
of-freedom elastically-mounted cylinder performed by Yang et al. (2008); Leontini et al. (2006)
and Morissette (2009). The same parameters are used for the current validation.

Physical parameter Symbol Value

Reynolds number Re 200

Non-dimensional mass m∗ 10

Damping ratio ξ 0.01

Non-dimensional velocity U∗ 4.5

Fluent 6.3. As the reader may note, these three numerical studies offer some variability in the

methods used to solve the same aeroeslastic problem. Despite this variability, the numerical

results of all studies are in very good agreement. This well-documented test case therefore

provides an opportunity to validate the current implementation of the FSI solver, which is

different from any of the previously mentioned studies.

The set of non-dimensional parameters shared by the three numerical studies is shown in

Table 3.4. Recalling notions from Chapter 2, the non-dimensional mass (m∗ = 10) corresponds

to a case where the strength of the FSI is moderate. Using such a value of m∗ is surely more

challenging for the FSI solver, and this particularly puts the FSI coupling scheme to the test.

As a first test, a simulation has been achieved with the same parameters as those shown in

Table 3.4. The calculations on the elastically-mounted cylinder have been performed on a 2D

grid that has approximately 55,000 cells. Further, a non-dimensional time step (∆tU∞/D) of

0.005 has been used. The rest of the numerical methodology is exactly the same as the one

presented in Chapter 2 (i.e., the same frame of reference, the same convergence criteria, the

same boundary conditions, etc.).

The normalized maximum amplitude of motion (A∗max = Amax/D), the maximum force co-

efficient (Cy,max), and the reduced frequency of oscillation (f∗ = f/fN ) of the past and the

current numerical studies are shown in Table 3.5. A very good agreement is observed between

the results from all studies, including the current one, and this provides good confidence in

the FSI solver of this master’s thesis.

To push the validation a step further, it is possible to compare the predicted displacement

history of the cylinder, as computed in this study, with the displacement history predicted

by Morissette (2009). Indeed, he published the displacement history predicted with both

computational methods used within his numerical study, and the comparison is shown in

Figure 3.12. An excellent agreement is observed between the three sets of data. Again, this
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Table 3.5: Results from the numerical studies of the one-degree-of-freedom elastically-mounted
cylinder performed by Yang et al. (2008); Leontini et al. (2006) and Morissette (2009), along
with the results of the present study.

Results A∗max Cy,max f∗

Present 0.50 2.31 0.96

Morissette (2009) (Fluent) 0.49 1.90 0.96

Morissette (2009) (vortex method) 0.49 2.22 0.95

Yang et al. (2008) 0.42 2.25 0.95

Leontini et al. (2006) 0.47 2.37 0.95

reinforces the idea that the FSI solver of this thesis is indeed accurate at the task of predicting

the motion of a solid structure which is elastically supported in a flow.

Another validation is achieved, this time using only the results of Leontini et al. (2006). To

obtain the results of interest here, the same set of non-dimensional parameters as the one

shown in Table 3.4 is used, except for one parameter: the non-dimensional velocity of the

flow is now U∗ = 5.2. The other three parameters are unaffected. The quantitative results of

Leontini et al. and those of the current study are compared in Table 3.6. The same metrics as

those considered previously are used in order to qualify the match, and an excellent agreement

is again observed. Although the displacement histories of the cylinder are not shown here,

they have been qualitatively compared by the author, and a very good agreement is again

observed between both numerical studies.

Comparing Tables 3.5 and 3.6, the reader may certainly note that the amplitudes of motion

of both VIV cases previously considered are somewhat similar, but the values of Cy,max are

significantly different. This obviously suggests that there are significant differences between

the physics at play in both cases. The objective here is not to discuss these differences between

the physical mechanisms involved, but instead to offer a rationale for choosing this second

validation case (i.e., the one with U∗ = 5.2). Indeed, because the aerodynamics is different

in both test cases, they are certainly complementary to each other, and the FSI solver is able

to accurately capture both of them, thus confirming its versatility.

Validation using an experimental study

To further assess the validity of the FSI solver, the numerical predictions obtained with

the solver of this study are compared with the results of an experimental study. Very few

experiments on the elastically-mounted cylinder have been achieved in the laminar flow regime.

Anagnostopoulos and Bearman (1992) published one of the very few studies available in this
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Figure 3.12: Motion history of the elastically-mounted cylinder from Morissette (2009) and
from the current study. The simulations have been performed with the parameters shown in
Table 3.4.

Table 3.6: Results from the numerical study of the one-degree-of-freedom elastically-mounted
cylinder performed by Leontini et al. (2006), along with the results of the present study for
U∗ = 5.2.

Results Amax Cymax f∗

Present 0.43 0.20 1.00

Leontini et al. (2006) 0.43 0.25 1.00
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Figure 3.13: Normalized amplitude of motion (A∗max) and reduced frequency of oscillations
(f∗) for an elastically-mounted cylinder having a damping ratio (ξ) of 0.0012 and a non-
dimensional mass (m∗) of 148.2. Experimental values from Anagnostopoulos and Bearman
(1992).

flow regime, and the authors openly stated in their work that one of the main objectives

of their study was to develop a useful and well-documented benchmark for validating FSI

solvers. In their study, which has been performed in a water-channel, the Reynolds number

has been varied between 90 to 150, the damping ratio (ξ) was equal to 0.0012, and the non-

dimensional mass (m∗) was equal to 148.2. This value of m∗ corresponds to a FSI strength

which is somewhat weak. Nevertheless, this test case offers a great validation opportunity,

and the physics is again different from the previous cases.

A comparison of the normalized maximum amplitude of motion of the cylinder (A∗max) and the

reduced frequency of oscillation (f∗) is shown in Figure 3.13 over the complete range of flow

velocities covered within the experiment. A good match is observed between the experiment

and the current numerical simulations over most of the velocity range. A slight discrepancy

is observed in the vicinity of U∗ = 5.5. From the experimental data, it is observed that the

amplitude of motion quickly drops between U∗ = 5.5 and U∗ = 6.0. However, the FSI solver

predicts that this happens between U∗ = 5 and U∗ = 5.5. Another slight discrepancy is

observed, this time concerning the frequency. The results from the experiment show that the

cylinder oscillates at a frequency very close to the natural frequency for all velocities of the
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flow. However, the FSI solver predicts a larger frequency of oscillation for U∗ > 7.5, and a

lower frequency for U∗ = 5. In fact, further analysis reveals that the frequency of oscillation

predicted through CFD in these two regions is very close to the Strouhal number that has

been measured in the experimental wake.

These results confirm that the 2D predictions made with the FSI solver are in the same range

as the experimentally measured values. Further, the predicted trends are generally in good

agreement with the experiment. This again provides a confirmation that the FSI solver of

this thesis can be used for the sake of studying the aeroelastic problem of a fully-passive,

flapping-airfoil turbine.
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3.2.3 Assessment of the FSI scheme’s limitations

Williamson and Govardhan (2004) gathered and discussed the results of several studies dealing

with the elastically-mounted cylinder. They confirmed that the maximum normalized ampli-

tudes of motion collapse very well when plotted against a mass-damping parameter which is

defined as:

Λ = (m∗ + CA) ξ , (3.13)

where CA is the potential added mass coefficient taking a value of 1.0. The authors of this

study found that whenever m∗ > 2 and Λ > 0.006 simultaneously, the amplitude of motion

is fairly constant when Λ remains constant. This offers a great opportunity for the task of

validating the robustness and the limitations of the FSI coupling scheme implemented within

the FSI solver of the current numerical study. The idea is the following: if Λ remains constant

while m∗ is reduced, the strength of the fluid-structure interaction increases significantly, but

the amplitude of motion is expected to remain constant. As the strength of the FSI increases,

the task becomes more and more challenging for the FSI solver, and it can be increased until

the coupling scheme becomes numerically unstable. This will allow to investigate the accuracy

and the behavior of the solver whenever it is used on the edges of its stability domain.

Using the set of non-dimensional parameters from Table 3.4, except for U∗ which is equal

to 5.2, the mass-damping parameter (Λ) is found to be equal to 0.11. Fortuitously, this falls

into the aforementioned range of validity of the well-verified approximation where a constant

mass-damping (Λ) provides a constant amplitude of motion (A∗max). Using these parameters,

a few computations have been achieved with the FSI solver of this study, and Table 3.7

summarizes the results for the various runs. The results are presented in decreasing order of

m∗, which corresponds to an increasing strength of FSI. As observed, the peak amplitude of

motion remains constant for all values of m∗, just as much as the values of Cy,max and f∗.

However, no result is available for the calculation carried out at m∗ = 2. This is because the

simulation becomes unstable due to a too large interaction between the cylinder and the flow

(due to the added mass effect discussed in Chapter 2).

A very interesting observation can be made from these results. Indeed, the values obtained

with the FSI solver of this thesis remain accurate even if the strength of the FSI is such that

the staggered, explicit coupling scheme is on the edge of its stability domain. Said otherwise,

the FSI solver can be considered accurate for whatever strength of the FSI, as long as an

instability due to the added mass effect is not encountered. Another interesting point that

can be made with the results from Table 3.7 is related to Eq. 2.46. The results of this section

tend to confirm that this equation (ρs/ρf > 1) indeed represents a good approximation of the

stability criterion associated to the staggered, explicit coupling scheme of this study.
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Table 3.7: Results of the computations performed with a constant value of Λ = 0.11 while the
strength of the fluid-structure interaction is increased (i.e., m∗ is decreased). The label N/A
stands for not available, and is used whenever the solver is unable to provide results due to a
numerical instability associated to the added mass effect.

m∗ ξ A∗max Cymax f∗

10 0.010 0.43 0.20 1.00

8 0.012 0.43 0.20 0.99

6 0.016 0.43 0.20 1.00

4 0.022 0.43 0.19 0.99

2 0.037 N/A N/A N/A

Conclusion

To summarize this chapter, the FSI solver implemented within the OpenFOAM-2.1.x CFD

toolbox has been thoroughly validated, and the results obtained provide confidence that the

numerical predictions are accurate for the current task. To reach this conclusion, the predic-

tions of the FSI solver have been put to the test in various complementary ways.

First, the numerical predictions have been compared with the wind tunnel experiments of

the RMC. Overall, a good agreement has been observed between both the experimentally

measured values and those predicted with the FSI solver of this study. Nevertheless, some

slight mismatches are present, and it is believed that they can essentially be explained by

three factors. First, the turbulence model used, namely the Spalart-Allmaras model, has

been developed for high Reynolds number applications. The current simulations have been

performed in the transitional range of Reynolds numbers, and the turbulence model has some

difficulties at predicting accurately some features of the flow. The second factor that could

explain the mismatch is certainly the use of a linear damping model. In fact, the damping of

the aeroelastic device from the RMC is not linear for both degrees-of-freedom. The last factor

is due to the experimental uncertainties on both the structural parameters and the motion of

the airfoil, which have not been addressed in the published work from the RMC. Because the

device considered here is passive, a slight variation of one structural parameter can change

significantly the airfoil’s dynamics.

A second validation has been achieved with a simple aeroelastic problem consisting in the

VIV of a cylinder. The numerical predictions of the current solver compare very well with

the predictions obtained with previous CFD studies. Further, the predicted motion of the

cylinder compares favorably well with the data from an experiment. This case has also been

used in order to investigate the behavior of the FSI solver whenever it is pushed to its limits
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and brought very close to being unstable. It has been found that whenever the solver is not

subject to the added mass instability, the results remain accurate, whatever the strength of

the FSI.

With these very encouraging results in hand, a numerical campaign can safely be started on

the fully-passive, flapping-airfoil turbine. This is the subject of the following chapter, where

the validated solver is used to optimize the aeroelastic device.
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Chapter 4

Optimization of the turbine using

2D simulations

This chapter is really at the heart of this master’s thesis as it encompasses the optimization

and the main physical study of the fully-passive, flapping-airfoil turbine. The information is

organized in the following way. First, a discussion concerning the vast parametric space of

the device is presented. Then, an original methodology developed by the author for the task

of investigating efficiently the parametric space is introduced. The objective of this Reverse

Passive-Airfoil Solver presented in the corresponding section is essentially to find an adequate

set of structural parameters for the fully-passive, flapping-airfoil turbine in order to begin the

optimization process. This in-house solver has indeed permitted to obtain the so-called initial

case about which an optimization of the efficiency and of the total power harvested from

the flow has been achieved. This optimization is the subject of the following section, where

the optimization methodology used is thoroughly described, along with the most important

results obtained. This optimization has provided a set of structural parameters defining the

so-called optimized case of the fully-passive, flapping-airfoil turbine.

Following this crucial step, a study of the physical mechanisms involved within both the

initial case and the optimized case is presented. The main idea here is to better understand

the physical mechanisms involved, and, mainly, to understand how the performances of the

device have been optimized. Next, the optimized case is investigated deeper by conducting a

sensitivity study about each of the seven structural parameters, as well as about the velocity

of the flow. This reveals to be useful for the purpose of understanding the effect of each

parameter on the dynamics of the airfoil, and also on its performances. To end, a special and

intriguing case of the fully-passive flapping-airfoil turbine is presented: the situation where

no spring is present neither in heave nor in pitch. This last section aims at reinforcing our

understanding of the physical mechanisms involved, and it clearly highlights the fact that the

flapping airfoil is undergoing stall flutter.
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4.1 Parametric space and initial case

As previously discussed while working out the equations of motion of the fully-passive,

flapping-airfoil turbine (Eqs. 2.16 and 2.19), a total of seven structural parameters are in-

volved within the equations, each of which may be adjusted as a way to indirectly control the

dynamics of the airfoil in the current modeling of the device. These seven parameters are:

• S, the static imbalance (mpxθ);

• mh, the heaving mass;

• Iθ, the moment of inertia;

• kh, the heave stiffness coefficient;

• kθ, the pitch stiffness coefficient;

• Dh, the heave damping coefficient;

• Dθ, the pitch damping coefficient.

Through astute variations of these structural parameters, the dynamics of the airfoil under-

going LCOs can surely be tuned in order to impact its efficiency and the amount of power

harvested from the flow. Of course, a specific modification may either affect negatively or

positively the metrics used to characterize the performances of the device in this study. How-

ever, through an adequate, well-studied choice of each structural parameter, the efficiency of

the device, along with the total power harvested, can be greatly increased. An optimization

process is required to specifically achieve this.

Two independent performance metrics need to be optimized. They both have been previously

introduced in Chapter 1 of this thesis, and they are the energy harvesting efficiency (η) and

the power coefficient (CP ). As a matter of fact, both of these metrics need to be optimized

in order to obtain an interesting turbine. This is because a very high value of η combined

with small amplitudes of motion would result in a low value of CP . In this scenario, the

device would be very efficient, but very little power would be harvested from the flow. On

the contrary, a fairly low value of η combined with very large amplitudes of motion would

result in a moderate to high value of CP . However, because of its low efficiency, the device

would not be compact at all, and the mechanics could be more complex as a result of the

large amplitude of motion in heave.

Having a total of seven adjustable structural parameters implies that there is hope of having

enough control on the device in order to optimize both of these metrics, but it also implies

that the parametric space of the device is absolutely gigantic. Because a FSI simulation

requires approximately two to three days of computation, it is impossible to explore the entire

parametric space through complete FSI computations. Instead, choosing astutely among the

parametric space the initial case about which the optimization is to be performed turns out
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Figure 4.1: Schematic representation of the flow of power through the fully-passive, flapping-
airfoil turbine using the structural parameters of the low heave-stiffness case from the RMC
experiment at Re = 60,000 (see Figures 3.4 to 3.6).

to be much more judicious. Therefore, it is required to determine a set of seven structural

parameters representing this well-chosen initial case. However, there remains a question: what

are the properties sought for this well-chosen initial case? Unfortunately, a single answer to

this question does not exist. From the author’s point of view, this initial setup should be

as efficient as possible (i.e., maximize η) in order to minimize the total number of numerical

simulations required to complete the optimization process, and this is the main guideline used

as a way to find an adequate initial case.

This initial case could certainly be chosen among the parametric space investigated within

the experimental study of the research group from the RMC (see Chapter 1 and Chapter

3). Indeed, one possible option would be to use a set of parameters that already gave rise

to large-amplitude LCOs in the experiment. Further, these oscillations have already been

simulated with the FSI solver in Chapter 3 dealing with the validation of the numerical

method. However, it turns out that the efficiencies related to the various cases investigated in

this experimental study are very modest (η < 5%). A typical example of such performances

is here provided in Figure 4.1 for the low heave-stiffness case at Re = 60,000 (see Chapter

3), where η takes a value of only 3.1% and CP takes a value of 0.041. Figure 4.1 introduces

the flow of power throughout the turbine using the various coefficients of power previously

introduced in Chapter 2. It can be seen that some power is harvested through the heave

motion, while the pitching motion achieves some work on the flow in the mean. In fact, very

little power is available to the generator as the pitching motion is very costly.

As a matter of fact, such performances are quite far from being optimal when compared

to what can be achieved experimentally and numerically with a kinematically-constrained

flapping-airfoil turbine (see Kinsey and Dumas (2012a) and Kinsey et al. (2011)). As discussed

in Chapter 1, energy harvesting efficiencies as high as 43% have been predicted through two-

dimensional simulations for this non-passive device, and efficiencies as high as 30% have been

experimentally measured. Therefore, using the experimental work from the RMC for choosing

the initial case has rapidly been ruled out.
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Another possible option is to make use of the current knowledge about the kinematically-

constrained, flapping-airfoil turbine. Indeed, this type of flow harvester has been studied

intensively and extensively among the author’s group in the past few years, and it would

certainly make sense to use what is already known about it as a way to adequately select

the initial case. After all, one should recall that optimizing the fully-passive turbine in order

to achieve the same efficiencies as those of the kinematically-constrained turbine is the main

objective of this thesis. This, again, is a convincing rationale for trying to reproduce as closely

as possible the efficient aerodynamics and kinematics of the kinematically-constrained device

at the very beginning of the optimization process. For this reason, all flow and structural

parameters kept constant within this study have been chosen to match the kinematically-

constrained device of the LMFN:

• Re = 500,000;

• The airfoil’s profile is a symmetrical NACA 0015;

• xea = c/3.

However, the set of seven structural parameters involved within the equations of motion re-

mains unknown. This is because they have no direct equivalent in the case of the kinematically-

constrained turbine. For this reason, a particular methodology had to be developed in order

to approximate the initial value of each structural parameter. For this specific task, an in-

house Reverse Passive-Airfoil Solver (RPAS) has been developed by the author of this thesis,

and this is the subject of the following section.

4.2 Reverse Passive-Airfoil Solver (RPAS)

4.2.1 Implementation of the solver

The Reverse Passive-Airfoil Solver (RPAS) is an in-house application written in C++ for

the specific task of finding a set of structural parameters that is well suited for starting the

optimization process of the fully-passive, flapping-airfoil turbine. It has been developed by

the author of this thesis on the Qt-5.1 cross-platform with the interest of implementing a

simple graphical user interface (GUI). In fact, Qt-5.1 offers a very friendly GUI developing

environment, and it is relatively easy to get familiar with the process. Essentially, RPAS has

been designed to solve the reverse mathematical problem of the fully-passive, flapping-airfoil

turbine. To highlight what is meant by solving the reverse problem, the following should

first be recalled concerning the conventional FSI solver (i.e., the solver implemented within

OpenFOAM-2.1.x ). For each run of the conventional solver, the following is achieved:
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• A total of seven structural parameters are chosen (input);

• The flow parameters are chosen (input);

• The equations of the flow and the equations of the solid are solved using OpenFOAM ;

• The results are the kinematics and the aerodynamics (output), thus allowing to calculate

the performances of the turbine.

Therefore, the resulting aerodynamics and the resulting kinematics of the LCOs are an output

of the conventional solver. This is the opposite of what happens with the reverse solver.

Indeed, the information obtained as an output of the conventional solver becomes an input

when the reverse solver is used. The following summarizes the main idea for solving the

reverse problem:

• The airfoil’s kinematics and aerodynamics are chosen, tabulated and provided to RPAS

(input);

• The possible ranges of values of the structural parameters are chosen (input);

• The solver computes the residuals of the equations of motion over all the possible sets

of structural parameters among the allowed range of values, and it records the residuals

pertaining to each equation of motion;

• The set of structural parameters that minimizes the residuals of both equations is ob-

tained (output).

To explain in more details, the RPAS software enables the user to specify a range (i.e., mini-

mum and maximum value) and an increment for each structural parameter. Through this, the

user specifies which portion of the parametric space is investigated, as much as the resolution

used to perform the numerical investigation. The user also provides RPAS with the airfoil’s

tabulated kinematics (y∗(t∗), ẏ∗(t∗), ÿ∗(t∗), θ(t∗), θ̇(t∗) and θ̈(t∗)) along with the correspond-

ing tabulated aerodynamics (CL(t∗) and CM (t∗)) over one complete cycle of oscillation. Of

course, the matching kinematics and aerodynamics may be obtained through experimental

data or CFD. With this in hand, the solver iterates over each possible combination of seven

structural parameters within the specified parametric space. For each set of parameters, all

the variables of the equations of motion (Eqs. 2.20 and 2.21) are known. However, there

is a residual to these equations. In other words, the LHS does not exactly match the RHS

(i.e., the aerodynamics, the kinematics and the structural parameters do not fully satisfy the

equations of motion). The residuals are computed in the following way, where the notation

(∗) over the non-dimensional parameters is dropped to avoid overloading the equations :

RL =
mh ÿ + S

(
θ̇2 sin θ − θ̈ cos θ

)
+ Dh ẏ + kh y − CL

(CL)max
, (4.1)
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Figure 4.2: Graphical user interface (GUI) of the Reverse Passive-Airfoil Solver (RPAS).

RM =
Iθ θ̈ − S ÿ cos θ + Dθ θ̇ + kθ θ − CM

(CM )max
. (4.2)

The reader should make sure to compare the previously introduced equations of motion

(Eqs. 2.20 and 2.21) with the equations for the residuals (Eqs. 4.1 and 4.2) in order to fully

understand the methodology used here. The reader will also notice that the residuals are

normalized with the maximum lift coefficient (CL) and the maximum aerodynamic moment

coefficient (CM ) of a complete cycle of oscillation 1. For each set of structural parameters,

the residuals are computed at various instants throughout the cycle of oscillation. In fact,

the user can specify the number of equally-spaced instants of the cycle for which the residuals

should be computed. The GUI of RPAS is shown in Figure 4.2 to help better understand the

required input, and also to clarify in what form these inputs are provided to the software.

1. This information is readily available from the tabulated aerodynamics.
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4.2.2 Investigation of the parametric space

The objective in mind while developing RPAS was to create a user-friendly tool allowing to

find a set of seven structural parameters that satisfies as closely as possible the equations

of motion of the fully-passive, flapping airfoil over a complete cycle of oscillation. For this

reason, all sets of parameters providing relatively low residuals appear suitable at being the

initial case of the optimization process to be performed. Again, one should recall that the

main idea is to obtain an educated guess of the best initial case minimizing the amount of

required simulations to complete the entire optimization process. Obviously, finding a set of

parameters that exactly matches the equations of motion appears unrealistic, and minimizing

the residuals is sufficient. Nevertheless, this numerical method offers great advantages over

the complete FSI solver for the task of performing a numerical investigation of the parametric

space. As one might expect, computing the residuals over a complete cycle of oscillation for

a given set of structural parameters is very quick. In fact, this reverse solver can iterate over

approximately 104 to 105 sets of parameters per hour. In counterparts, this methodology

requires some previous knowledge of flapping-airfoil turbines because the aerodynamics and

the kinematics must be provided as an input. If the initial guess of the aerodynamics and the

kinematics is too off from the physical reality of an airfoil undergoing LCO, even the lowest

residuals might, in fact, be very large.

This is where the cleverness of this methodology becomes apparent. The idea is to make

use of the well-documented kinematically-constrained, flapping-airfoil turbine in order to pro-

vide this genuine guess for the tabulated aerodynamics and kinematics. For this reason, the

tabulated kinematics provided as an input to RPAS is that of the kinematically-constrained,

flapping-airfoil turbine with an amplitude of motion in pitch (θ0) of 80◦, with an amplitude of

motion in heave (y∗0) of 1 chord length, and with a reduced frequency (f∗) of 0.18. Referring

to the mapping of efficiency from the kinematically-constrained turbine shown in Figure 1.2,

these metrics correspond to the optimal case (i.e., the case with an efficiency (η) of 43%).

Further, the phase between both motions is equal to 90◦, which is again the ideal and most

efficient value used for the kinematically-constrained turbine. The tabulated kinematics can

therefore be summarized with the following equations, where the various variables have been

quantified above:

θ(t∗) = θ0 sin (2πf∗ t∗) , (4.3)

y∗(t∗) = y∗0 sin
(

2πf∗ t∗ +
π

2

)
. (4.4)

The aerodynamic forces and moments provided as an input to RPAS have been obtained

through CFD. OpenFOAM-2.1.x has been used for the task of predicting the forces and

moments on the NACA 0015 airfoil undergoing the motion described with Eqs. 4.3 and 4.4.

The corresponding tabulated aerodynamics has been plotted, and it is shown in Figure 4.3.
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Figure 4.3: Plot of the tabulated aerodynamics provided to the Reverse Passive-Airfoil Solver
(RPAS) for a NACA 0015 airfoil oscillating with a reduced frequency (f∗) of 0.18, with a pitch-
ing amplitude (θ0) of 80◦, and with a heaving amplitude (y∗0) of 1 chord length (Re = 500,000).

The drag is not shown on this figure as it is obviously not involved within the equations of

motion. Also, the forces and moments shown on this plot have been compared with those of

Kinsey from the LMFN (private communication and Kinsey and Dumas (2014)), and they

match very closely the forces and moments that have been computed in the past using the

commercial CFD code ANSYS Fluent.

The last inputs needed by RPAS to perform the residuals scan are the range and increment

for each structural parameter. First, a raw and fairly permissive estimation of the realistic

range of values pertaining to each parameter has been proposed. This has been done through

dimensional considerations of a turbine in both air and water. The resulting permissive

range of non-dimensional values, with some emphasis on the word permissive, is summarized

in Table 4.1. This parametric space has first been investigated with RPAS using a coarse

increment between each successive value taken by a given parameter. Following this first

swept, some regions of the parametric space where the residuals of both equations proved

to be lower have been identified. Within these regions, a second swept making use of a

refined increment between successive values has been carried out. The complete process took

approximately 45 days of computation on four processors (in serial).
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Table 4.1: Range of non-dimensional parameters used for the permissive initial investigation
of the parametric space using the Reverse Passive-Airfoil Solver (RPAS).

Parameter Minimum value Maximum value

m∗h 1 600

S∗ -60 450

k∗θ 0 90

k∗h 0.004 3000

D∗θ 0 2

D∗h 0 4

I∗θ 0 300

Table 4.2: Set of non-dimensional parameters that minimizes the residuals of both equations
of motion within the Reverse Passive-Airfoil Solver.

Parameter Value Parameter Value

m∗h 2.281 S∗ -0.041

k∗θ 0 k∗h 1.654

D∗θ 0.182 D∗h 1.393

I∗θ 0.130

After a thorough analysis of the results, one particular set of parameters has drawn more

attention than the others. Its cycle-averaged residuals on both equations of motion were

in the range of 8%, and the maximum residuals within a cycle were in the range of 20%.

The numerical value of each non-dimensional parameter pertaining to this set is shown in

Table 4.2.

Using this set of parameters, the conventional FSI solver implemented within the OpenFOAM

CFD toolbox has been used to validate whether or not it constitutes an interesting starting

point for the optimization process to follow. To achieve this, a complete FSI simulation

has been performed with the parameters given in Table 4.2. The results are presented in

Table 4.3, together with the values initially used to run RPAS for comparison. It should be

clear to the reader that the values under the column RPAS have been provided as inputs to

the reverse solver, while the values below the column OpenFOAM are outputs of a complete

FSI simulation. In other words, the targeted motion and performances of the kinematically-

constrained turbine are represented with the values below the column RPAS.
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Table 4.3: Frequency, amplitudes of motion and performances predicted with OpenFOAM for
the case minimizing the residuals of both equations of motion in the Reverse Passive-Airfoil
Solver (RPAS). The values provided as inputs to RPAS (optimal kinematically-constrained
turbine) are also indicated for comparison.

Parameter RPAS OpenFOAM

(input values) (output values)

f∗ 0.180 0.064

θ0 80◦ 62◦

y∗0 1.00 0.94

η 0.430 0.123

CP 1.17 0.30

It should be noted here that if a set of structural parameters matching exactly the equations

of motion had been found (i.e., null residuals at all instants of the cycle), the same kinematics

and performances as the kinematically-constrained flapping foil would have been expected for

the fully-passive, flapping airfoil. Because such an exact match has not been obtained (and

probably does not even exist), the performances and the motion of the fully-passive flapping

airfoil do not correspond exactly to the values inputed into RPAS. The results indicate that

the predicted amplitude of motion for this set of structural parameters is relatively large in

both pitch and heave. Nevertheless, both amplitudes remain slightly below the ideal values

provided as an input to RPAS. The frequency of oscillation is also significantly different from

that of RPAS. As a matter of fact, the predicted frequency is 2.8 times lower than the frequency

associated to RPAS. Last, the metrics quantifying the performances of the fully-passive device,

η and CP , are 3.5 to 4 times smaller than those of the kinematically-constrained device.

Nevertheless, these results prove that the set of structural parameters described in Table 4.2

allows the existence of large-amplitude LCO. Further, and this is the most important point

here, the metrics characterizing the performances of the device are 2 to 4 times greater than

those of the RMC experiment. This surely makes this set of parameters very attractive for

the task of conducting an optimization of η and CP . Further increasing the performances

by a factor of 3 would result in a very interesting flow harvester. This set of parameters

is therefore chosen as the initial case of the optimization process which will be described in

the next section of this chapter. Also, the physics involved in this initial case will later be

investigated in more depth when a comparison with the optimal case will be presented.
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4.3 Optimization methodology and results

A gradient-like optimization has been performed about the initial case introduced in the

previous section of this chapter. This procedure is very systematic and straightforward.

Obviously, more refined and elaborate optimization algorithms could have been used for this

task, but the simple method presented here proved to be sufficiently efficient. The procedure

can be summarized as follows:

1. Individual variations of ± 10% of each structural parameters are prescribed sequentially

about the baseline case, and a complete FSI simulation is performed for each. This

implies a total of 14 simulations.

2. The values of η and CP are calculated for each one of the 14 simulations.

3. The variations are split into two categories: those which affected positively the perfor-

mances, and those which affected negatively the performances.

4. A simulation combining together all the individual variations which affected positively

the performances is carried out. This set of parameters forms the so-called refined case.

5. The values of η and CP are calculated for the refined case.

6. If η and CP of the refined case are greater than the values of η and CP pertaining to the

baseline case, the optimization process is performed one more time (proceed to step 1)

starting with the refined case becoming the new baseline case. If this is not the case,

the optimization process is over (proceed to step 7).

7. The gradient-like optimization is over and a local extrema of η and/or CP has been

found.

To make this optimization process as clear as possible, an example is here provided. This

example corresponds to the first round of optimization performed about the initial case,

here becoming the first baseline case of the previously introduced gradient-like optimization

method. As it has been explained, a total of 14 simulations, each showing a single difference

from the baseline case, are performed. The results of each one of these simulations is presented

in Table 4.4. The column labeled as Variation indicates which parameter has been varied,

in what direction, and by what amount. For example, the label m∗h + 10% indicates that

the value of the non-dimensional mass is equal to the baseline value of Table 4.2 increased by

10%. It is to be noted that the initial case features a null rigidity in pitch (k∗θ = 0). Therefore,

the variation is not indicated in percentage for this structural parameter. Further, a lower

value has not been investigated as this would make no physical sense.

In light of these results, it is found that the individual variations performed in cases 2, 4, 5,

6, 7, 9, 12 and 13 provide an increase of the turbine’s performances. The individual increases

of η and CP are not substantial, but the performances are at least changing in the desired

direction. The next step is to combine the variations of all these cases providing better

97



Table 4.4: Effect of varying each structural parameter individually on the motion and on
the performances of the flapping airfoil. These numerical values are for the 14 variations
performed within the first round of optimization (i.e., the baseline case is the initial case
shown in Table 4.2).

Case Variation f∗ θ∗0 y∗0 η CP

Baseline 0.064 62◦ 0.94 0.1230 0.3000

1 m∗h − 10% 0.064 62◦ 0.93 0.1151 0.2788

2 m∗h + 10% 0.064 61◦ 0.94 0.1291 0.3124

3 S∗ − 10% 0.064 62◦ 0.94 0.1230 0.2985

4 S∗ + 10% 0.064 62◦ 0.94 0.1241 0.3021

5 k∗θ + 0.0128 0.075 57◦ 0.90 0.1361 0.3201

6 k∗θ + 0.0255 0.075 56◦ 0.91 0.1472 0.3201

7 k∗h − 10% 0.064 62◦ 1.01 0.1293 0.3317

8 k∗h + 10% 0.064 59◦ 0.88 0.1168 0.2706

9 D∗θ − 10% 0.064 65◦ 0.96 0.1280 0.3194

10 D∗θ + 10% 0.064 59◦ 0.92 0.1174 0.2787

11 D∗h − 10% 0.064 63◦ 0.99 0.1166 0.2954

12 D∗h + 10% 0.064 61◦ 0.90 0.1297 0.3057

13 I∗θ − 10% 0.064 61◦ 0.93 0.1282 0.3088

14 I∗θ + 10% 0.064 62◦ 0.95 0.1184 0.2902

performances, and carry out a new simulation. For this task, a simulation is performed using

the structural parameters shown in Table 4.5.

The results are encouraging, and the performances are definitely improving. The metrics

qualifying the motion of the flapping airfoil, along with those quantifying the performances of

the first optimized case, are shown in Table 4.6 and they are labeled Optimization 1. A relative

increase of approximately 50% of both η and CP compared to the initial case is noticeable, and

this is only after a single round of optimization. Therefore, this optimized case described in

Table 4.5 becomes the new baseline case, and the same optimization procedures is performed

once more. In fact, the procedure is performed four more times before the values of η and CP

saturates, suggesting that a local extrema has been reached.
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Table 4.5: Set of non-dimensional parameters forming the partially-optimized case resulting
from the first round of optimization.

Parameter Value Parameter Value

m∗h 2.509 S∗ -0.037

k∗θ 0.026 k∗h 1.488

D∗θ 0.164 D∗h 1.532

I∗θ 0.117

The results for each solution emerging from the various rounds of optimization are also shown

in Table 4.6. As the reader may notice, the results are absolutely great and very promis-

ing. Indeed, after performing the optimization process only five times, which implies a total

of only 75 calculations, the efficiency and the total power harvested with the fully-passive,

flapping-airfoil turbine have been respectively increased by a factor of 2.7 and 3.5. The

amplitude of motion and the frequency of oscillation are now much closer to the values of

the kinematically-constrained turbine. Further, the values of η and CP drastically increased

with each successive optimization, thus leading to performances not so far behind those of

the kinematically-constrained, flapping-airfoil turbine. The set of structural parameters corre-

sponding to this last optimized case, labeled as Optimization 5, is described in Table 4.7. These

interesting results tend to prove the feasibility and the great potential of using fully-passive,

flapping-airfoil turbines as wind or hydrokinetic turbines, just as much as the non-passive,

kinematically-constrained device.

Another interesting observation can be made if the optimized case found here is located on the

mapping of efficiency shown in Figure 1.2. In fact, for the same amplitude of motion and for

the same frequency of oscillation, the efficiency (η) of the kinematically-constrained turbine

is around 35%, which is very close to the efficiency of the optimized case. This suggests

that this mapping of efficiency could be used as a guideline in order to further increase the

performances of the fully-passive turbine.

Within the next sections, a deeper physical analysis of this optimized case is presented. Fur-

ther, a comparison with the physics of the initial case is also presented in order to better

understand the mechanisms through which the performances have been so drastically im-

proved.
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Table 4.6: Frequency, amplitude of motion and efficiency predicted with OpenFOAM for the
initial case and for the subsequent optimized cases.

Case f∗ θ∗0 y∗0 η CP

Initial case 0.064 62◦ 0.94 0.1230 0.300

Optimization 1 0.080 61◦ 1.02 0.182 0.474

Optimization 2 0.086 68◦ 1.11 0.242 0.675

Optimization 3 0.090 75◦ 1.10 0.319 0.896

Optimization 4 0.096 80◦ 1.27 0.318 0.929

Optimization 5 0.096 83◦ 1.26 0.336 1.079

Table 4.7: Set of non-dimensional parameters forming the optimized case resulting from the
last round of optimization (optimization 5).

Parameter Value Parameter Value

m∗h 3.036 S∗ -0.029

k∗θ 0.031 k∗h 1.206

D∗θ 0.119 D∗h 1.501

I∗θ 0.095
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4.4 Physics of the initial and the optimized case

The objective of this section is to develop a better understanding of the fundamental dif-

ferences between the initial and the optimized case in order to highlight what permitted to

significantly increase the performances. For this purpose, each of these two cases needs to be

investigated with more depth. To achieve this, several key results are thoroughly presented

below, and an explanation to the considerably better performances of the optimized case is

then formulated.

4.4.1 Initial case

As previously described, the fully-passive, flapping-airfoil turbine making use of the structural

parameters forming the initial case oscillates with a reduced frequency (f∗) of 0.064, an

amplitude of motion of 62◦ in pitch (θ0), and an amplitude of motion of 0.94 chord length

in heave (y0/c). A complementary information to these results and an interesting feature

to analyze is the motion history over one complete cycle of oscillation. Note here that the

numerical simulations have been computed over enough periods of oscillations so that no

distinctive variations are observed from one cycle to the other. For this reason, only the last

cycle of oscillation is here considered. This motion history in pitch and in heave is shown in

Figure 4.4. The effective angle of attack is calculated as before, specifically:

α = θ − arctan

(
ẏ

U∞

)
, (4.5)

and it is also shown on this figure. A noticeable feature of the motion is surely that it is not

sinusoidal either for the pitching nor the heaving motion. Indeed, it has been found through

spectral analysis that the second harmonic is very present within both degree-of-freedom

signals, a feature that is clearly visible on the motion history. A second noticeable feature is

the lack of symmetry between the upstroke and the downstroke motion of the airfoil 2. This

will be further analyzed when considering the forces and moments experienced by the airfoil.

Concerning the effective angle of attack, this quantity will later become useful when analyzing

some important features of this case. For the moment, the reader should mostly pay attention

to the fact that the peaks of the effective angle of attack and the peaks of the position in

heave almost happen at the same moments (i.e., they are in phase).

As previously introduced, the energy harvesting efficiency of the initial case (η) has been

found to take a value of 12.3%, while the coefficient of power (CP ) has been found equal to

0.30. These last two metrics are used to quantify the general aerodynamic performances of the

device, but some other metrics reveal to be very useful for the task of understanding in more

2. The upstroke is considered to be the part of the cycle where ẏ > 0, and the downstroke is the portion of
the cycle where ẏ < 0. Also, the beginning of the downstroke formally represents the beginning of a cycle of
oscillation (t/T = 0).
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Figure 4.4: Motions history and effective angle of attack of the fully-passive, flapping-airfoil
turbine using the structural parameters of the initial case (see Tables 4.2 and 4.3).

details how the turbine operates. More specifically, η corresponds to the total aerodynamic

efficiency of the flapping-airfoil turbine: it is a measure of the power transferred to the device

over the power available through the flow window of the device. Recalling that the effect

of a generator connected to the flapping airfoil is modeled here through a linear damping

coefficient in heave (Dh), it is very useful to define another efficiency based on the power

dissipated through that linear damper (per unit depth):

ηy,damp =
1

T

T∫
0

Dhẏ
1
2 ρU

3
∞ bd

dt . (4.6)

The interpretation of this last parameter is very analog to that of η, except that it provides a

performance metric for the useful power only. It corresponds to the ratio of the power available

to the generator over the total power available to the turbine. This is a very important metric:

a high value of η with a low value of ηy,damp would imply that most of the power harvested

with the device is essentially a loss (i.e., it is dissipated through the pitch damper). The value

of ηy,damp should therefore remain as close as possible to the value of η. However, ηy,damp can

obviously never be greater than η.

Using this new definition, a value of ηy,damp = 10.3% has been calculated for the current

configuration of the turbine. Remembering the value of η to be 12.3%, this indicates that
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Figure 4.5: Schematic representation of the flow of power through the fully-passive, flapping-
airfoil turbine using the structural parameters of the initial case (Table 4.2).

some power is dissipated through the pitch damper, but this represents only a small fraction

of the power harvested from the flow. Most of the harvested power is therefore provided to the

generator. This observation is further confirmed when considering the various coefficients of

power previously introduced in Chapter 2 (Eqs. 2.26 to 2.29), the values of which are shown

within the schematic representation of Figure 4.5. As shown, the heaving motion accounts for

over 80% of the harvested power. Furthermore, over 80% of the harvested power is provided

to the generator 3 4. It should also be mentioned that there is a slight internal transfer of

energy between both degrees-of-freedom: the pitching motion feeds the heaving motion with

some weak power (CP,tr = 0.003).

The instantaneous coefficients of power can also be analyzed throughout a complete cycle

of oscillation in order to obtain a complete picture of the flow harvesting mechanisms. The

instantaneous values of CP , CPy, CPθ and CPy,damp are plotted in Figure 4.6. Again, the

asymmetry between the upstroke and the downstroke of the airfoil is greatly noticeable. It

appears that the flow is doing much more work on the airfoil during the downstroke than it

does during the upstroke. This is noticeable on the curve of CP , which exhibits larger values

during the downstroke. The same conclusion holds true concerning the generator: it receives

more power during the downstroke.

Another noticeable feature is certainly that the airfoil harvests the flow through the heaving

motion for most of the cycle, except for two periods of time: approximately t/T = 0 to

t/T = 0.07 and t/T = 0.33 to t/T = 0.47. These moments correspond to both transitions

between the upstroke and the downstroke. During these, the airfoil is in fact doing some work

on the flow through its heaving motion. This, of course, is very costly from a performance

point of view. Nevertheless, the observed behavior is very different in pitch. Most of the time,

3. It has been verified that CPy + CPθ = CPy,damp + CPθ,damp. However, this condition is not strictly
respected on the schematic due to the rounding of numerical values.

4. It is interesting to mention that verifying if the condition CPy+CPθ = CPy,damp+CPθ,damp is respected
offers a way to determine if the simulation has been carried out for long enough. Indeed, if this condition is
not respected, this indicates that the airfoil has not reached its permanent regime yet.

103



0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Figure 4.6: Instantaneous coefficients of power for the fully-passive, flapping-airfoil turbine
using the structural parameters of the initial case (Table 4.2).

no power is harvested from the flow, nor does the airfoil do some work on the flow. However,

during both transitions between the upstroke and the downstroke, some power is harvested

from the flow through the pitching motion. In other words, when no power is harvested

through the heave, the pitching motion takes over and harvests the flow. As it will soon be

highlighted, this is due to the deep dynamic stall of the airfoil. Nonetheless, the contribution

of the pitching motion is not always high enough to fully compensate for the work the airfoil

is doing on the flow through its heaving motion. This is what happens during the transition

between the downstroke to the upstroke (t/T = 0.33 to t/T = 0.47), thus leading to negative

instantaneous values of CP .

The stalling of the airfoil during its transition from the downstroke to the upstroke (t/T = 0.33

to t/T = 0.47) can be observed in Figures 4.7 and 4.8 with the frames corresponding to

t = 4T/12, t = 5T/12 and t = 6T/12. These figures show the normalized pressure fields

and the normalized z -vorticity fields in the vicinity of the airfoil at various equally-spaced

moments of the cycle. A large eddy shed from the leading edge of the airfoil is clearly present.

Remembering the theoretical notions of Chapter 1, this is a typical characteristic of deep
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dynamic stall. Whenever a vortex is shed, the low pressure at its core has an influence on

the aerodynamic forces experienced by the airfoil. However, the motion of the airfoil during

the transition between the downstroke to the upstroke is such that the airfoil’s surface does

not remain close to the vortex as it is convected downstream. This is particularly clear when

the pressure field is examined: the low pressure originating from the eddy is mitigated on

the airfoil’s surface due to the large distance between the foil and the core. In fact, the

motion of the airfoil is such that once the eddy is shed, it starts moving very quickly in the

opposite direction due to the effect of the spring in heave, thus taking the airfoil away from

the vortex. This certainly restrains the level of interaction between the vortex and the airfoil,

thus reducing the work achieved by the vortex on the airfoil.

Although, the vortex does very little work on the airfoil, it does achieve some work on it:

because no spring is present in pitch (see Table 4.2), the pitching of the airfoil during the

transition from the downstroke to the upstroke is mostly due to this airfoil-vortex interaction.

The reader should now return briefly to Figure 4.4 and consider the curve for the effective

angle of attack and the curve for the heave position around t/T = 0.33 to t/T = 0.47. Because

the large vortex is approximately shed when the maximum effective angle of attack is reached,

it clearly appears that the airfoil is already moving upward when the shedding happens. This

can be thought of as being an inadequate synchronization between the heaving motion and

the pitching motion 5.

Conversely, during the transition of the airfoil from the upstroke to the downstroke (t/T = 0

to t/T = 0.07), the large vortex shed at the leading edge remains closer to the airfoil’s surface

as it is convected downstream. This is observed with the frames corresponding to t = 11T/12,

t = 0 and t = T/12 in Figures 4.7 and 4.8. This can also be observed by considering the

effective angle of attack and the heave position shown in Figure 4.4. Again, the shedding of

the vortex approximately occurs at the extremum value of the effective angle of attack. As

this happens, the airfoil continues to move upward for some time, towards the vortex itself,

before to start moving in the opposite direction, away from the vortex. The airfoil-vortex

interaction is therefore greater than what has been observed during the transition from the

downstroke to the upstroke, and this has positive effects overall. Indeed, as the vortex remains

closer to the leading edge and moves downstream, the low pressure it causes on the airfoil’s

surface past the elastic axis leads to a fairly large pitching moment. This, combined with a

fairly large pitching rate at the same moment, results in a relatively large power harvested

from the flow through the pitching motion. In fact, the harvesting of the flow through the

pitching motion is large enough to fully compensate for the work done on the flow through

the heaving motion of the airfoil at the same moment, thus leading to an overall positive

instantaneous value of CP during this transition.

5. It is somewhat difficult to talk of an inadequate phase lag between both motions. Because of the non-
sinusoidal motions, a phase lag would have to be calculated for each of the Fourier modes present in the
motions.
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Figure 4.7: Fields of normalized pressure (p/1
2ρfU

2
∞) in the vicinity of the flapping airfoil at

various instants throughout one complete period of oscillation (T ) for a fully-passive, flapping-
airfoil turbine using the structural parameters of the initial case (Table 4.2).
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Figure 4.8: Fields of normalized z -vorticity (ωzc/U∞) in the vicinity of the flapping airfoil at
various instants throughout one complete period of oscillation (T ) for a fully-passive, flapping-
airfoil turbine using the structural parameters of the initial case (Table 4.2).
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The fact that the airfoil is doing some work on the flow through its heaving motion at both

the upstroke and the downstroke extrema is also associated to an inadequate synchronization

between the heaving and the pitching motions: as the airfoil reverts direction in heave, the

lift is such that it is opposed to the airfoil’s motion. This explains why a phase of 90◦ has

been used for the kinematically-constrained device presented in Chapter 1: when the airfoil

reaches its maximum and its minimum position in heave, the effective angle of attack is null.

This scenario is believed to correspond to the ideal synchronization between both motions.

To summarize, in the current case the airfoil changes direction in heave mainly as a result of

the structural stiffness in heave. This can be seen on Figure 4.9 which will soon be discussed.

In the best case, the reason for the change in the heaving direction should be shared by both

the aerodynamics and the heave structural stiffness: the sign of the lift and the sign of the

heaving velocity should change at the same moment.

The asymmetry between the upstroke and the downstroke is also very clear when considering

the budget of all terms involved within the equations of motion. This is shown in Figures 4.9

and 4.10 where each term has its own curve. The value of each term is computed according

to the following equations:

CL − m∗h ÿ
∗ − S∗

(
θ̇2 sin θ − θ̈ cos θ

)
− D∗h ẏ

∗ − k∗h y
∗ = 0 , (4.7)

CM − I∗θ θ̈ + S∗ÿ∗ cos θ − D∗θ θ̇ − k∗θ θ = 0 . (4.8)

These are simply the equations of motion where all terms have been switched to the left-hand

side. As a result, the summation of all contributions, at any moment of the cycle, is equal to

zero.

The effect of deep dynamic stall is visible on both CL and CM . As previously mentioned, the

effect of the shed vortex is mitigated for t/T = 0.33 to t/T = 0.47. However, the vortex has a

relatively large impact on the aerodynamics in the vicinity of t/T = 0 to t/T = 0.07, and this

is especially clear when considering the aerodynamic moment where a sharp peak is observed.

However, it is worth repeating that the pitching of the airfoil at the end of both the upstroke

and the downstroke is attributed to the interaction between the vortex and the airfoil, which

means that although the interaction is weaker for t/T = 0.33 to t/T = 0.47, there is obviously

one, and it is not negligible. Indeed, it is precisely when the vortex generates a fairly low

pressure on the airfoil, close to the trailing edge, thus giving rise to a moderate/strong aerody-

namic moment, that the airfoil starts pitching in the opposite direction. This synchronization

can be observed if the reader compares the motion history of Figure 4.4 with the history of

CM from Figure 4.10. This highlights the large impact of the vortex shed during the deep

dynamic stall event. The fact that the airfoil-vortex interaction is so important indicates that

the airfoil is undergoing LCO as a result of stall flutter: it is the periodic stalling of the airfoil
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Figure 4.9: Budget of the terms involved within the equation of motion in heave of the fully-
passive, flapping-airfoil turbine using the structural parameters of the initial case (Table 4.2).
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Figure 4.10: Budget of the terms involved within the equation of motion in pitch of the fully-
passive, flapping-airfoil turbine using the structural parameters of the initial case (Table 4.2).
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that prevents the motion from simply diverging from the equilibrium position, thus leading

to the observed cyclic motion.

Another interesting feature observed with Figures 4.9 and 4.10 is certainly that the forces

and moments resulting from the inertial coupling are not significant when compared to all the

other terms. This is because the static imbalance of the current case is small.

As a last comment on the initial case, one could legitimately ask what mechanism is responsible

for the observed asymmetry between the upstroke and the downstroke, some sort of hysteresis

behavior. This is a very complex question to answer, and formulating an explanation is not

the main focus of this work. The reason why it is so difficult to formulate an answer is

certainly a result of this complex two-way interaction between the flow and the aeroelastic

structure.

4.4.2 Optimized case

Moving on with the optimized case (see Table 4.7), a reduced frequency (f∗) of 0.096 has been

obtained, combined with amplitudes of motions in pitch (θ0) and in heave (y0/c) of respectively

83◦ and 1.26 chord length. The corresponding motion history is shown in Figure 4.11. For

the same reasons as before, only one cycle is shown. It is noticeable that the motion in heave

is very close to being sinusoidal. Nevertheless, this is not the case for the pitching motion.

Indeed, the pitching motion happens in three distinctive phases throughout the cycle. For

both the upstroke and the downstroke of the airfoil, there is a phase where the pitching rate is

relatively constant and takes a fairly high value. This is referred to as being the “fast pitching

regime” (an example of such regime is observed on Figure 4.11 for t/T = 0.45 to t/T = 0.55).

Further, there is another phase where the pitching rate is again relatively constant, but takes

a much lower value than previously. This is referred to here as the “slow pitching regime”

(an example of such regime is observed on Figure 4.11 for t/T = 0.60 to t/T = 0.85). Lastly,

there is another phase where the pitching rate is not constant. This happens during both

transitions between the upstroke and the downstroke. This is referred to as the “transitional

pitching regime”. This nomenclature will be used later in this subsection. Another feature

that can be observed on Figure 4.11 is the great symmetry between the downstroke and the

upstroke. This is obviously in contrast with the results of the previously analyzed initial case.

As a matter of fact, no distinctive variations are here observed between the downstroke and

the upstroke.

For this optimized configuration of the fully-passive, flapping-airfoil turbine, a value of 33.6%

has been found for η, and a value of 1.079 has been found for CP . The same metrics as those

used within the previous subsection can also be used in order to better understand how the

turbine is harvesting the flow. It is found that ηy,damp takes a value of 29.1%, which means

that most of the harvested power is again provided to the generator and very little is lost in
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Figure 4.11: Motion history and effective angle of attack of the fully-passive, flapping-airfoil
turbine using the structural parameters of the optimized case (see Tables 4.6 and 4.7).

the pitch damper. Again, this is the desired behavior since only the power available to the

generator is considered as being useful. The fact that most of the harvested power is indeed

useful is further highlighted with a schematic of the coefficients of power characterizing the

turbine. This is shown in Figure 4.12. It can be observed that over 85% of the power is

harvested through the heaving motion of the turbine. Furthermore, over 85% of the total

harvested power is useful and available to the generator. A very small value of CP,tr = 0.009

has been calculated. Again, this corresponds to what is transferred from the pitch degree-of-

freedom to the heave degree-of-freedom. This is the same situation as the one observed for the

initial case: the pitch degree-of-freedom feeds very little power to the heave degree-of-freedom,

thus providing only slightly more power to the generator than what is harvested through the

heave motion. Furthermore, these results demonstrate that the pitching motion can be fully

autonomous from an energetic point of view, which has been stated as the expected or ideal

behavior within the introduction of this thesis. Indeed, the power dissipated within the pitch

damper is fully compensated by the power harvested through the pitch motion.

The instantaneous values of the most important coefficients of power, namely CP , CPy, CPθ

and CPy,damp, have also been computed and plotted throughout a complete cycle of oscillation.

This is shown in Figure 4.13. The first noticeable difference from the initial case certainly

resides in the far larger values of the power coefficients that are attained with the optimized
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Figure 4.12: Schematic representation of the flow of power through the fully-passive, flapping-
airfoil turbine using the structural parameters of the optimized case (Table 4.7).

turbine. This, of course, is in agreement with the fact that more power is harvested with the

optimized turbine. Note that the same scales have been used for the plots of the initial case

(Figure 4.6) and the optimized case in order to allow an easier comparison of the values and

trends. Figure 4.13 also shows the great symmetry previously found between the upstroke

and the downstroke.

Further, the curve of CP indicates that the device harvests the flow at all moments throughout

its cycle: there is no portion of the cycle where the flapping airfoil is doing some work on

the flow (negative CP ). This is in contrast with the initial case, where the airfoil did expend

some work on the flow at some moments of the cycle. In addition, the curve of CP exhibits

four distinctive peaks. Two of them are identical and of lower amplitude (peak value of 1.3),

and two of them are identical and of larger value (peak value of 2.05). The two peaks with a

larger amplitude correspond to the portion of the cycle where the airfoil is approximately in

the middle of its downstroke or its upstroke and has a large heaving velocity. The curves of

CP and CPy are very close to each other near these two peaks. During these moments where

the airfoil’s heaving velocity is great, the pitching motion, in counterpart, does not contribute

at harvesting the flow significantly, nor does it achieve some work on the flow. It is therefore

the heaving motion that accounts for these peaks of large amplitude.

In contrast, the peaks of lower amplitude happen when the airfoil is transitioning from the

downstroke to the upstroke, and vice versa. The peaks are associated to the deep dynamic

stall events happening at both extrema of the heaving motion. It can be observed that in

the vicinity of t/T = 0.45 to t/T = 0.55 and t/T = 0.95 to t/T = 0.05 the curves of CP

and CPθ are very close to each other, thus indicating that very little or no harvesting of

the flow is achieved through the heaving motion. This makes physical sense as the heaving

velocity is relatively small during these transitions between the downstroke and the upstroke.

It is indeed the pitching motion alone that accounts for these two smaller peaks on the curve

of CP . The effect of the dynamic stall happening at these moments can also be seen in

Figures 4.14 and 4.15 where the pressure and the z -vorticity fields are shown in the vicinity of
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Figure 4.13: Instantaneous coefficients of power for the fully-passive, flapping-airfoil turbine
using the structural parameters of the optimized case (Table 4.7).

the airfoil at various moments within a complete cycle of oscillation. The first stalling event,

corresponding to the transition between the downstroke to the upstroke, can be visualized

with the frames for 4T/12, 5T/12 and 6T/12. The second stalling event, corresponding to

the transition between he upstroke to the downstroke, can be observed with the frames for

10T/12, 11T/12 and 0.

As it may be observed, the interaction of the shed vortex with the airfoil is very important

during the deep dynamic stall events. As the eddy travels downstream, it remains very close

to the airfoil’s surface, thus generating a relatively intense low pressure on one side of the

airfoil. This low pressure on the airfoil’s surface is very clear when considering the pressure

fields. This is also visible when considering the aerodynamic forces and moments on the airfoil,

which are shown in Figures 4.16 and 4.17. These figures show the budget of all terms involved

within both equations of motion, just as for Figures 4.9 and 4.10 of the previous subsection.

Following the deep dynamic stall event, the value of CL drops significantly, followed by a

partial and momentarily re-augmentation. This re-augmentation of the lift force is due to

the low pressure that exists within the core of the vortex. The interaction between the eddy
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Figure 4.14: Fields of normalized pressure (p/1
2ρfU

2
∞) in the vicinity of the flapping airfoil

at various instants throughout one complete period of oscillation (T ) for the fully-passive,
flapping-airfoil turbine using the structural parameters of the optimized case (Table 4.7).
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Figure 4.15: Fields of normalized z -vorticity (ωzc/U∞) in the vicinity of the flapping airfoil
at various instants throughout one complete period of oscillation (T ) for the fully-passive,
flapping-airfoil turbine using the structural parameters of the optimized case (Table 4.7).
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and the airfoil is also very clear from the curve of CM . The large peaks are again due to the

airfoil-vortex interaction. As the eddy travels downstream, the arm of the forces generated

by the eddy on the airfoil increases, and it generates a fairly large aerodynamic moment on

the airfoil.

This strong interaction between the airfoil and the vortex is the result of an adequate syn-

chronization between the pitching and the heaving motions, which is very different from what

has been observed for the initial case. Indeed, the current motion is such that the vortex

remains close the the airfoil’s surface for both the upstroke and the downstroke. When the

vortex is shed, the airfoil continues to travel towards the vortex, thus keeping it close enough

to interact greatly with it. By considering the heave position in time and the effective angle

of attack in time, which are shown in Figure 4.11, this becomes obvious. Because the vortex

is approximately shed when the airfoil reaches its peak value of the effective angle of attack,

it is clear that the airfoil travels for some time towards the vortex after it is shed. This is

because the peak values of the effective angle of attack happen significantly before the peak

values of the heave position.

This strong interaction with the vortex allows the airfoil to use the low pressure at the core of

the eddy to passively pitch the airfoil and to extract more power from the flow. One could have

believed that the presence of a spring in pitch is the governing agent of the airfoil’s pitching

motion, but it turns out that this is clearly not the case. It is obvious from Figure 4.17 that

it is the interaction with the vortex that is mainly responsible for the pitching of the airfoil

at the extrema of the upstroke and the downstroke. Indeed, the moments generated by the

spring are approximately one order of magnitude smaller than the moments associated to the

airfoil-vortex interaction. Further, the reader can verify that the large aerodynamic moment

corresponds precisely to the moment where the airfoil is in this fast pitching regime previously

described. Again, this confirms that stall flutter is definitely the physical mechanism through

which the amplitude of motion of the airfoil is limited, thus leading to a periodic motion.

The adequate synchronization between both motions also has another positive effect on the

efficiency of the device. Returning to Figure 4.13, it is observed that the heaving motion of

the airfoil never actually does work on the flow. In the analysis of the initial case, it had

been found that the airfoil was indeed doing some work on the flow at some moments. In

the current case, the moment when θ = 0◦ is well synchronized with the moment where the

airfoil is at its extrema in heave, and this does not permit such a detrimental situation as

doing some work on the flow to occur. This is because the effective angle of attack passes

through a null value at the same time the heaving velocity passes through a null value. This

means that the lift coefficient and the heaving velocity change sign at the same moment, and

this does not lead to the detrimental situation where the lift and the heaving velocity are in

opposite directions. This adequate synchronization can be appreciated from Figure 4.11.

Returning to the fast and the slow pitching regimes of the airfoil, these turn out to have a
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Figure 4.16: Budget of the terms involved within the equation of motion in heave of the
fully-passive, flapping-airfoil turbine using the structural parameters of the optimized case
(Table 4.7).
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Figure 4.17: Budget of the terms involved within the equation of motion in pitch of the
fully-passive, flapping-airfoil turbine using the structural parameters of the optimized case
(Table 4.7).
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very significant and positive impact on the performances of the turbine. Indeed, the curve of

CL , which is shown in Figure 4.16, is very different from that of the initial case shown in

Figure 4.9. Because the airfoil exhibits a fast pitching regime right after it has transitioned

from the upstroke to the downstroke, or vice versa, the lift coefficient quickly reaches fairly

high values, thus maximizing the power harvested through heaving. If the pitching of the

airfoil were to happen slowly at the beginning of the upstroke or the downstroke, such as if

the pitching was sinusoidal in time, the value of the lift coefficient would remain much lower

for a significant portion of the cycle, which would necessarily imply a lower value of the power

extracted from the flow. To make this point clear, the idea here is that the fast pitching

regime minimizes the impact of the transition from the upstroke to the downstroke, and vice

versa. Obviously, the lift force has to take a null value at some point during this transition,

but the lift should not remain close to this value for long. The fast pitching regime achieves

exactly this task by increasing the lift very quickly.

As a last comment, it is interesting to note that the inertial coupling term shown in Fig-

ures 4.14 and 4.15 is again of mitigated importance when compared to all other terms involved

within both equations of motion of the fully-passive, flapping-airfoil turbine. This suggests

that this coupling term did not play a significant role in the optimization process.

4.4.3 Summary of the physical mechanisms enhancing the turbine’s

performances

In light of the previous results, two key mechanisms have been identified as being responsible

for the significant optimization of the turbine’s performances. The first of these mechanisms

is the adequate synchronization between both the pitching and the heaving motions, while

the second mechanism is the presence of a fast and a slow pitching regime. Both mechanisms

are here briefly summarized.

Concerning the first mechanism, namely the adequate synchronization of both degrees-of-

freedom, the pitching and the heaving have been observed to be almost in phase for the initial

case. This has two detrimental consequences. One is that the airfoil necessarily experiences,

momentarily, a lift force which is in opposite direction to the heaving velocity, thus implying

that the airfoil is doing some work on the flow (i.e., it returns some power to the flow). The

other consequence is that the airfoil does not remain close to the vortex shed at its leading

edge during the deep dynamic stall event. Indeed, this vortex plays a key role in the dynamics

of the airfoil, and it has the potential of enhancing the power harvested from the flow. The

synchronization between both motions is adequate in the case of the optimized turbine. In

some sense, this observed adequate synchronization is similar to the prescribed phase lag of

90◦ between the pitching and the heaving motions of the kinematically-constrained, flapping-

airfoil turbine: θ = 0◦ when the airfoil is at an extrema in heave (ẏ∗ = 0).
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Concerning the second mechanism, the presence of a fast pitching regime followed by a slow

pitching regime has been found to be very beneficial. Indeed, this affects the shape of the

lift curve. Instead of having a single isolated peak in the lift force, such as for the initial

case (Figure 4.9), the value of the lift force remains close to this peak value over a much

larger portion of the cycle. This larger lift force is, of course, fully correlated to an increase

of the power extracted from the flow. In fact, this fast pitching regime minimizes the effect of

the airfoil changing direction when it reaches the extrema of its upstroke or its downstroke.

During this transition the airfoil must necessarily pass through a value of α = 0, and the lift

must therefore pass through a null value. The effect of this fast pitching regime is to pass

very quickly over these effective angles of attack associated to small values of the lift force,

which are necessarily associated to small values of the instantaneous harvested power.

Lastly, the reader should now be fully convinced that the LCO of the airfoil are the result

of stall flutter. The periodic encounter of deep dynamic stall introduces the nonlinearities

required in the aerodynamics as a mean of limiting the growth of the airfoil’s amplitude of

motion. The reader may return to Table 1.2 and Figure 1.9 to find out that the main features

of the flow and the trends of the aerodynamic forces and moments described and presented

within this section are in excellent agreement with the general picture drawn of deep dynamic

stall within Chapter 1.

4.4.4 Theoretical analysis of the airfoil’s loss of stability

As discussed in Chapter 1 of this thesis, clever analytical tools have been developed over

the years in order to theoretically predict the flutter phenomena. This is generally achieved

with the so-called flutter matrix, which is obtained using the equations of motion of the

studied device together with an aerodynamic theory (i.e., one of the steady, quasi-steady or

unsteady potential theories). Using such a powerful tool for better understanding the current

flapping-airfoil turbine would, of course, be attractive. However, it is not possible to study

the dynamical loss of stability of the airfoil. This is because in both the initial case and the

optimized case, the actual dynamic pressure is well above the divergence value of the system.

Recalling notions of Chapter 1, divergence is a static instability which happens whenever the

torsional restoring moment is not large enough to counteract the aerodynamic moment. Said

otherwise, the aerodynamic moment grows faster than the restoring moment from the spring.

Using the non-dimensional formulation of this thesis, the ratio of the dynamic pressure at

divergence (see Eq. 1.19) over the dynamic pressure is:

qdiv
q

=
2 c k∗θ

e

(
∂CL
∂θ

) , (4.9)

which is formally equal to 0 for the initial case, and approximately equal to 0.12 for the
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Figure 4.18: Instantaneous position in both pitch (θ) and heave (y/c) following the beginning
of a run for the optimized case where no external initial perturbation is applied on the airfoil.

optimized case. This means that the airfoil is statically unstable due to the divergence phe-

nomena. Therefore, as mentioned in Chapter 1, using a linear stability analysis would fail at

predicting the onset of classical flutter, as well as the frequency of oscillation.

However, this last result suggests that the LCO of the airfoil are not only self-sustained, but

they are also self-induced. Indeed, following any perturbation, as small as it can be, the

airfoil starts diverging from its equilibrium position. Once it reaches a large amplitude in

both pitch and heave, a deep dynamic stall event occurs, thus limiting the divergence of the

airfoil by forcing it to start moving in the opposite direction. This is the process through

which the cyclic motion is initiated, and this is clearly illustrated in Figure 4.18 showing the

instantaneous position in both pitch (θ) and heave (y/c) following the beginning of a run for

the optimized case where no external perturbation is applied on the airfoil.
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4.5 Sensitivity study

4.5.1 Sensitivity to the structural parameters

Now that an optimal case has been found, analyzed and well understood from a physical point

of view, each one of the seven structural parameter can be varied over a larger range of values.

This proves to be very useful in order to study the individual effect of each parameter, and

also to determine the sensitivity of the device towards each parameter. The results of the

numerous simulations performed for this specific task are presented within Figures 4.19 to

4.24, where each of the seven structural parameters has its own corresponding figure except

for Iθ. The reason for that will be given shortly.

For Figures 4.19 to 4.24, each structural parameter has been varied over the following range

of non-dimensional values (the values are also indicated in the figures’ captions):

• m∗h : between 2.04 and 6.12; optimized case: m∗h = 3.036;

• S∗ : between -0.165 and 0.165; optimized case: S∗ = -0.029;

• k∗h : between 0 and 3; optimized case: k∗h = 1.206;

• k∗θ : between 0 and 0.056; optimized case: k∗θ = 0.031;

• D∗h : between 0 and 3.57; optimized case: D∗h = 1.501;

• D∗θ : between 0 and 0.68; optimized case: D∗θ = 0.119;

• I∗θ : between 0.065 and 0.1302; optimized case: I∗θ = 0.095.

For each figure, the x -axis corresponds to the relative variation, in percents, of the structural

parameter from the baseline case. For all figures, the baseline case is the set of structural

parameters forming the optimized case which has already been presented in Table 4.7. Further,

the y-axis corresponds to the relative variation of the reduced frequency (f∗), the amplitude

of motion in pitch (θ0), the amplitude of motion in heave (y0/c), the efficiency (η) and the

coefficient of power (CP ). Again, their variation is expressed as a relative difference, in

percents, from the values pertaining to the optimized case, values which have been presented

in Table 4.6 (last line of the table). To complete this brief description on the methodology

used to present the results, the legend of each figure incorporates the minimum value and

the maximum value taken by each parameter within the range over which the structural

parameter has been varied.

As previously mentioned, there is no figure showing the effect of varying Iθ. This is because

the variations of the recorded parameters over the range of values taken by Iθ throughout

the sensitivity study only showed very minor changes: variations of only 2% or less from

the baseline values. The author has also tried varying Iθ over a larger range of values, but

numerical instabilities have been encountered. Obviously, reducing Iθ is analog to decreasing

the mass of the airfoil, and this leads to an instability associated to the added mass effect.
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Figure 4.19: Effect of varying m∗h between values of 2.04 and 6.12 on f∗, θ0, y0/c, η and CP
(baseline: m∗h = 3.036).

However, no explanation is available at the moment concerning the numerical instability

observed while increasing the moment of inertia of the airfoil beyond the range indicated

above. This will have to be investigated in the near future. Now that the figures have been

introduced, each of the structural parameters can be analyzed.

Heaving mass

Concerning the heaving mass, it has not been possible to reduce m∗h by more than 40% from

its original value. This is because the added mass effect did lead to an expected numerical

instability. This is of course a limitation of the current solver, but it only has a minor impact

in the current investigation. One noticeable feature of Figure 4.19 is certainly the variation of

the reduced frequency. This is because increasing and decreasing the mass both have the same

effect on f∗: it is slightly reduced. This is obviously not a surprising finding for the situation

where the mass is increased. As a matter of fact, the decoupled natural frequency in heave

of the device decreases as the mass in heave is increased. On the other side, the frequency

is also decreased as the mass of the device is reduced. This suggests that the aerodynamic

plays a significant role concerning the frequency at which the airfoil oscillates. However, the

effect of the mass on the reduced frequency is not major, and the observed variations are

within ± 10%.
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Figure 4.20: Effect of varying S∗ between values of -0.165 and 0.165 on f∗, θ0, y0/c, η and
CP (baseline: S∗ = -0.029).

Another finding is that the heaving mass has a significant impact on the heaving amplitude. In

fact, increasing/decreasing the mass of the heaving components permits to increase/decrease

the amplitude of motion in heave, thus proving to offer a certain degree of control on y0/c.

However, changing the heaving mass leads to a loss in efficiency. Even so, the augmented

amplitude of motion can fully compensate for the loss in efficiency when m∗h is increased, and

the device can maintain high values of CP . For example, when the mass is increased by 100%

from its baseline value, the efficiency is reduced by approximately 20%, but the value of CP

is unchanged. This indicates that in order to achieve a certain value of CP , one can either

choose to conceive an efficient and lighter device having a limited amplitude of motion, or

conceive a heavier machine that is less efficient and has a greater amplitude of motion.

Static imbalance

The first feature that is very obvious when considering Figure 4.20 for the variations of the

static imbalance is certainly that its largest impact is on the reduced frequency. Indeed,

this structural parameter seems to offer a good way of varying the frequency of oscillation of

the airfoil. Changing the value of the static imbalance also has some impact on the heaving

amplitude of motion, especially if the static imbalance varies towards larger positive values.
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Nevertheless, keeping the static imbalance close to zero seems to offer the best performances.

In fact, decreasing S∗ leads to a relatively rapid decrease of the efficiency, which also quickly

drags the value of CP down. Conversely, increasing S∗ does not change significantly the

efficiency, but the amplitude of motion decreases relatively fast, which again decreases the

total power harvested with the turbine.

Recalling the discussion concerning the budget of the terms contained within the equations of

motion (Figures 4.9, 4.10, 4.16 and 4.17), it had been found that the coupling terms, which are

directly proportional to the static imbalance, remain very small throughout the cycle when

they are compared to all other terms involved within the equations. Nevertheless, it appears

inadequate to conclude that the effect of such a parameter is unimportant as Figure 4.20

definitely tells the opposite. This is such because the device is passive and all terms, even if it

remains relatively small, can lead to differences that are larger than expected. This is a direct

consequence of this complex two-way interaction between the flow and the structure, which

has the effect of amplifying the impact of a slight variation within the equations of motion.

As a last comment, Figure 4.20 should be interpreted with care: the baseline value of S∗ (i.e.,

the value of the optimized case), is relatively small. Because of that, even small absolute

variations of S∗ will appear as fairly large relative variations. Although the fully-passive

device is sensitive to the static imbalance, this makes it look more sensitive than it is in

reality.

Heave stiffness

Figure 4.21 showing the effect of the heave stiffness exhibits some very intriguing features.

The first feature, which may appear strange at first, is the fact that reducing the stiffness of

the spring in heave by 100% from its baseline value still leads to oscillations of large amplitude,

and they are still relatively efficient. It should be stressed that this case corresponds to the

situation where there is no spring in heave at all! This situation is intriguing enough to be

further investigated, and a complete section of this chapter will be devoted to this matter.

Apart from this interesting finding, the heave stiffness offers a considerable degree of control

over the amplitude of motion in heave. However, the efficiency also appears to be significantly

dependent upon the heave stiffness. This is because this parameter greatly affects the syn-

chronization between the pitching and the heaving motions, and this has been highlighted as

being a key physical mechanism, if not the most important, in order to control the efficiency

of the device. Whatsoever, reducing slightly the heave stiffness reduces the efficiency, but

the amplitude of motion increases enough to result in an augmentation of the total power

harvested from the incoming flow. This makes the fully-passive turbine harvest essentially as

much power as the kinematically-constrained turbine.
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Figure 4.21: Effect of varying k∗h between values of 0 and 3 on f∗, θ0, y0/c, η and CP (baseline:
k∗h = 1.206).

Figure 4.22: Effect of varying k∗θ between values of 0 and 0.056 on f∗, θ0, y0/c, η and CP
(baseline: k∗θ = 0.031).
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Pitch stiffness

As shown in Figure 4.22, the stiffness of the spring in pitch does not affect very much the

amplitude of motion in pitch. This is in good agreement with the previous discussion on the

large importance of the interaction between the airfoil and the vortex shed during the deep

dynamic stall event. Indeed, if the pitching motion of the airfoil was governed by the spring

in pitch, varying the value of its stiffness would considerably affect the amplitude of motion in

pitch. This finding that the spring in pitch is not as significant as the airfoil-vortex interaction

has been confirmed with the budget of the terms involved in the equation of motion for the

pitch degree-of-freedom (Figures 4.10 and 4.17), where the term resulting from the spring

stiffness was found to be approximately one order of magnitude smaller that the aerodynamic

moment.

In fact, the fully-passive turbine appears relatively insensitive to variations of ± 50% of k∗θ .

When the stiffness is further reduced, the amplitude of motion quickly drops. This is because

although the spring in pitch is not the key element governing the pitching motion, it does

play a role on the synchronization between the pitching and the heaving motions, and it is

already known that the turbine is quite sensitive with respect to that synchronization. This

conclusion becomes clear when the ratio of the decoupled natural frequencies associated to

both degrees-of-freedom is calculated:

fNh
fNθ

=

√
k∗h /m

∗
h√

k∗θ / I
∗
θ

. (4.10)

The efficiency of the turbine has been found to be maximum when this ratio takes values

between 1.0 and 1.1, and this is not only true for the optimized case. Interestingly enough, the

efficiency of the turbine seems to be more sensitive to the relative choice of k∗h and k∗θ than to

their individual values. This confirms the importance of having an adequate synchronization

between both motions as this is essentially the main feature that is affected when varying the

ratio of the decoupled natural frequencies.

Further, simply removing the spring in pitch still gives rise to large amplitude LCO, just as in

the case of the heave stiffness. This will later be investigated in more details, but this again

indicates that the pitching motion can be fully governed by the interaction between the airfoil

and the vortex originating from deep dynamic stall.

Heave damping (generator)

The effect of varying the linear damping coefficient in heave, which accounts for the effect

of a generator connected to the turbine, is shown in Figure 4.23. The main impact of this

parameter is relatively intuitive: increasing the damping reduces the amplitude of motion,
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Figure 4.23: Effect of varying D∗h between values of 0 and 3.57 on f∗, θ0, y0/c, η and CP
(baseline: D∗h = 1.501).

and vice versa. As a matter of fact, the damping in heave can be used to control the amplitude

of motion in heave of the flapping airfoil. Nevertheless, the effect of this parameter on the

power harvested from the flow might not reveal to be as intuitive: decreasing the damping

coefficient increases the harvested power, just as much as the power available to the generator

(this is not shown on the figure, but the power available to the generator is approximately

80% of the harvested power for all cases). This is because the power harvested from the flow is

proportional to the square of the heaving velocity. Because decreasing the damping coefficient

increases the amplitude of motion as the reduced frequency essentially remains constant, the

heaving velocity is increased by such a modification of the damping. This, in turns, accounts

for the increase of the total power harvested from the flow.

Reducing the heave damping coefficient further than 40% has also been investigated. However,

the motion of the airfoil becomes more chaotic when this is done. The amplitude of motion

becomes variable from one cycle to the other, and this is certainly not interesting for a turbine

application of the fully-passive, flapping airfoil. Indeed, some damping in heave is required

to stabilize the amplitude of motion, but also because it is mandatory to avoid amplitudes so

large that the structural integrity of the device could be impaired.
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Figure 4.24: Effect of varying D∗θ between values of 0 and 0.68 on f∗, θ0, y0/c, η and CP
(baseline: D∗θ = 0.119).

Concerning the efficiency, it is interesting to note that varying the damping does not affect

significantly this performance metric. This is a very interesting finding because the ampli-

tude of motion of the fully-passive, flapping-airfoil turbine could easily be controlled through

the damping coefficient of the generator without changing the efficiency of the turbine at

harvesting the flow. As a matter of fact, changing the damping of the generator can easily

be done (see Chapter 5), thus providing a way of affecting the airfoil’s dynamics without

changing the device itself, and without changing significantly its efficiency. This means that

the heave damping is one of the very few parameters that could be conveniently varied once

the fully-passive, flapping airfoil is built and deployed.

Pitch damping

So far, no structural parameter has really provided a good way of affecting the amplitude

of motion in pitch. This situation changes with the pitch damping coefficient now offering

a certain degree of control over the amplitude of motion in pitch. Its effect is probably as

intuitive as it was for the heave damping: increasing the damping reduces the amplitude of

motion, and vice versa. However, changing the pitch damping coefficient also affects greatly

the amplitude of motion in heave. This is because the heaving motion is greatly dependent
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upon the amplitude of motion in pitch, which affects the value of the instantaneous lift

coefficient. However, the inverse is not true, and this explains why changing the heave damping

coefficient did not affect significantly the amplitude of motion in pitch. The reduced frequency

is also greatly sensitive to the pitch damping, and it is observed that reducing the value of

D∗θ by 100% (i.e., no damping in pitch) did not lead to non-constant amplitudes of motion.

Instead, the simulation without pitch damping showed to be well-behaved, with oscillations

of the airfoil that could certainly be used for a turbine application. Nevertheless, this is

somewhat conceptual since a device without any damping in pitch is hardly conceivable. The

important point here is to realize that the optimal value of the turbine’s efficiency, as much

as the maximum coefficient of power, is for a case where some damping is present. This is

good news as a realistic turbine will include some damping. However, the efficiency and the

coefficient of power are greatly dependent upon that specific value of the damping in pitch,

thus suggesting that care would be needed, from a mechanical design point of view, in order

to respect very carefully the required damping coefficient.

Summary

Following this analysis of the structural parameters, it appears that the parameter having

the least impact over the studied range of variations is the moment of inertia of the airfoil.

Nevertheless, it should be recalled that some limitations with the FSI solver restricted the

range of the possible values taken by this parameters.

For the rest of the structural parameters, none of them proved to be ineffective at changing

the airfoil’s dynamics or performances. Each parameter offers some degree of control over

the performances and/or the dynamics, but each seems to affect more than one of the key

parameters recorded during the sensitivity analysis. This testifies of the complex interaction

between the structure and the flow. For example, if one wishes to reduce the frequency of the

device, one could decide to decrease S∗ or increase D∗θ . This, in turns, will have some impact

on the efficiency of the turbine.

The only parameter offering more control than the others is probably the heave damping

coefficient, and this is not because the airfoil is more sensitive toward this parameter. This is

more because all structural parameters, except for D∗h, are fixed and chosen when designing

the turbine. In the case of D∗h, this parameter can be varied without changing the turbine

itself: it can be adjusted by affecting the behavior of the generator connected to the turbine.

More details will be provided on this in the next subsection and in the next chapter.
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Figure 4.25: Effect of varying U∞ up to ± 40% from the optimized case on f∗, θ0, y0/c, η
and CP .

4.5.2 Sensitivity to the freestream velocity

A deployed fully-passive, flapping-airfoil turbine would obviously be exposed to a time-varying

freestream velocity. The sensitivity of the device towards U∞ is therefore of great interest. To

study this sensitivity, numerical simulations have been performed while varying the freestream

velocity of the optimized case up to ± 40%. Because the Reynolds number would vary, in

reality, when the velocity of the flow changes, its value has also been varied in the same

proportion as U∞. For example, a reduction of 40% of U∞ was accompanied by a reduction

of 40% of Re.

The effect of such variations is shown in Figure 4.25 where the relative variations of the

freestream velocity, in percents, is calculated using the velocity of the baseline case as the

reference value. Further, the variations of f∗, θ0, y0/c, η and CP are plotted, and the values

again correspond to the relative variation from the values of the optimized case previously

analyzed. The information is here presented in the same format as it was done in the previous

subsection dealing with the sensitivity of the turbine towards the structural parameters.

From Figure 4.25, reducing the velocity of the flow appears to have significantly more impact

on the metrics of interest when compared to the situation where the velocity of the flow is
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increased. The frequency of oscillation appears not to be very sensitive to the velocity of

the flow, but all other parameters exhibit a great sensitivity with respect to this parameter.

Reducing U∞ diminishes considerably both amplitudes of motion, the efficiency, and the total

power harvested. Of course it had been expected that reducing the velocity would significantly

reduce the amplitudes of motion. This is because the aerodynamic forces and moments on the

airfoil are proportional to U2
∞. Therefore, reducing by 40% the velocity of the flow reduces

the aerodynamic forces and moments by approximately 65%. Further, a significant reduction

of the amplitudes of motion, especially in heave, must necessarily lead to a reduction of CP , a

fact that is also observed in Figure 4.25. Nevertheless, it had not been possible to anticipate

the effect of the velocity on the efficiency, and a significant loss of efficiency is observed as U∞

decreases. This means that whenever the velocity of the flow is reduced, the device not only

extracts power over a reduced flow window, but it extracts less of the total power available

within that reduced flow window. As a result, the performances of the turbine are seriously

impaired whenever U∞ diminishes.

Inverse to that, increasing the velocity of the flow has a very different impact on the recorded

metrics. Again, the frequency is relatively unchanged, but the relative variation of all other

parameters is less significant than it was while reducing the velocity of the flow. This time,

the amplitudes of motion are greater, and this makes physical sense as a result of the in-

creased aerodynamic forces and moments on the flapping airfoil. For example, increasing the

velocity of 40% almost increases the aerodynamic forces and moments by 100%. The total

power harvested from the flow also increases with the flow velocity, which is associated to the

enlargement of the harvested flow window. However, the efficiency of the device is reduced by

approximately half the relative increase of the flow velocity: increasing U∞ by 20% engenders

a decrease of 10% of the efficiency. This means that the performances of the device are not

seriously impaired when U∞ is increased. This is contrasting with the previous conclusion

concerning a reduction of U∞.

It has already been mentioned that varying the damping coefficient associated to the generator

connected to the airfoil would allow to control the amount of power dissipated though the

generator. Again, the ways in which this equivalent damping coefficient could be affected by

changing the behavior of the generator will be discussed in the next chapter. Nevertheless,

it will be seen that Dh could indeed be varied after the fully-passive flapping-airfoil turbine

is built and deployed. As a direct result, it appears interesting to verify if a modulation of

Dh would allow to fully or partially compensate for a reduction or an increase of U∞. Said

otherwise, the idea here is to determine if varying the heave damping coefficient would allow

to maintain approximately the same performances as the optimized case, thus making a single

fully-passive, flapping-airfoil turbine adapted for a large range of flow velocities.

In the first place, simulations have been performed in order to determine if variations of the

heave damping coefficient can compensate for a velocity of the flow that is reduced by 40%. For
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Figure 4.26: Effect of varying D∗h up to 100% from the optimized case on f∗, θ0, y0/c, η and
CP for the case where the freestream velocity has been increased of 40%.

this purpose, a few simulations making use of this reduced velocity have been achieved where

the heave damping has been reduced up to 60% compared to the optimized case. Reducing

the damping coefficient appears to be the most logical choice due to the smaller forces and

moments on the airfoil in such circumstances. This means that less power is available for

the flapping airfoil, which directly suggests that less power should be dissipated through the

generator. That being said, reducing the damping coefficient did not prove to be a successful

remedy to the lack of dynamic pressure. In fact, it turns out that it only makes matters worse.

The amplitudes of motion remained relatively unchanged with moderate values (θ0 ≈ 36◦ and

y0/c ≈ 0.4), but such modifications of the damping have further reduced the efficiency (η)

and the total power harvested from the flow (CP ).

In the second place, simulations have been performed for the case where the velocity of the

flow is increased by 40% relatively to the optimized case. This time, because more power is

available to the oscillating airfoil, the heave damping has been increased in order to dissipate

more power within the generator. The value of Dh has been increased up to 100% relatively

to the baseline value from the optimized case, and the results, which are shown in Figure 4.26,

are actually very interesting. Again, the variations of f∗, θ0, y0/c, η and CP are plotted, and

the values shown, in percents, correspond to the relative variation from the original optimized

132



case (i.e., without any variation of the freestream velocity). With this way of presenting the

data, whenever a parameter reaches a value of 0%, this indicates that it is equal to its original

value where the velocity of the flow is not increased, nor decreased (i.e., the same value as

the optimized case).

The results again suggest that varying Dh does not provide much control over the frequency

of oscillation. The situation is somewhat very different concerning the amplitudes of motion.

Increasing the heave damping by approximately 60% provides the same amplitude in pitch as

the original optimized case, and increasing the heave damping of approximately 30% provides

the same amplitude in heave as the original optimized case. This means that it is possible to

restrain the growth of both amplitudes of motion through the use of the generator connected

to the device. Again, it should be clear that this would not require any modification of the

structural components forming the fully-passive turbine.

Concerning the efficiency, increasing the damping in heave does provide a gain. Nevertheless,

this gain is not sufficiently high to fully recover from the loss of efficiency attributed to the

increase of the flow velocity. At best, the efficiency is approximately 13% below that of the

original optimized case (η = 29.1%). It should be noted that the resulting efficiency is still

high enough to make a fully-passive turbine attractive. Last, the coefficient of power is of

course reduced while the heave damping is increased. This is a direct consequence of the

reduced flow window when Dh is increased.

In conclusion, exposing the turbine to an increased velocity of the flow appears to be far less

detrimental than the inverse. Further, there is a possibility to partially compensate for an

increase of U∞ by making use of the electrical generator connected to the device, which is

an interesting finding. These results suggest that if a fully-passive, flapping-airfoil turbine

was built by making use of the non-dimensional parameters pertaining to the optimized case,

the reference velocity (U∞) used to scale the structural parameters should correspond to the

lower range of velocities encountered at the location where the turbine is to be deployed. To

be more precise, if a location where the velocity of the flow is expected to vary between 2 m/s

and 3 m/s was chosen to deploy such a turbine, it would be better to scale the components

using a reference velocity of 2 m/s 6. As a result, variations of the velocity of the flow would

most often be positive, thus minimizing the impact of such a change on the performances of

the turbine.

6. Because we are here working with non-dimensional parameters, there is a need to revert back to the
dimensional space whenever a realistic turbine is designed. To achieve this, the definition of the non-dimensional
coefficients must be used (see Chapter 2). For this purpose, a velocity of the flow must be chosen, and the
dimensional value of some parameter will depend upon that selected value of U∞. The important point to note
here is that all components can be scaled according to any velocity of the flow, and that value of the velocity
should be conveniently chosen in order to minimize the occurrence where the velocity of the flow is below its
design value.
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Table 4.8: Set of non-dimensional parameters forming the case without any spring in heave
and in pitch.

Parameter Value Parameter Value

m∗h 3.036 S∗ -0.029

k∗θ 0 k∗h 0

D∗θ 0.119 D∗h 1.501

I∗θ 0.095

4.6 Case without springs

As previously observed, the fully-passive, flapping airfoil turbine may undergo large-amplitude

LCOs when either the spring in heave or the spring in pitch is absent. This finding leads to

the idea of simultaneously removing the springs in pitch and in heave. Such a case remains

somewhat conceptual as the airfoil does not have a fixed equilibrium position anymore. Nev-

ertheless, this greatly helps at understanding the physics involved, especially concerning the

interaction between the airfoil and the vortex associated to the deep dynamic stall events.

Indeed, the main idea here is to demonstrate, without doubts, that the vortex is responsible

for the cyclic motion of the airfoil.

The non-dimensional structural parameters used for the simulation discussed here are shown

in Table 4.8. In fact, this case corresponds to the optimized case previously studied, except

that both spring stiffness coefficients have been set to zero. Although there is no restoring force

or moment, a well-behaved, cyclic motion is still observed, and the resulting performances

of the turbine are very interesting. The frequency of oscillation (f∗) is equal to 0.091, and

the amplitudes of motion are 79◦ in pitch (θ0) and 1.16 chord length in heave (y0/c). As

there is no spring at all, this frequency of oscillation is purely and undoubtedly the result

of aerodynamic forces and moments. Concerning the amplitudes of motion, they are only

slightly lower than what has been predicted for the optimized case, and they can obviously

still be qualified as being large amplitudes of motion.

The motion history of the turbine is shown in Figure 4.27. Again, the heaving motion is

quite sinusoidal, while the pitching motion is characterized by three distinct phases: the

fast pitching regime, the slow pitching regime and the transitional pitching regime. In other

words, the observed motion is very analog to that of the flapping airfoil making use of the

non-dimensional parameters forming the optimized case. The main difference is probably the

synchronization between the heaving and the pitching motion, which is somewhat different

but expected. As a matter of fact, when the airfoil reaches both of its extrema in heave, θ is

134



Figure 4.27: Motion history and effective angle of attack of the fully-passive, flapping-airfoil
turbine using the structural parameters of the optimized case without any spring in heave
and in pitch (Table 4.8).

not equal to 0◦. Instead, the airfoil has already past this angle. What this specifically means

is that, for example, when the airfoil is switching between its upstroke to its downstroke,

when the heaving velocity is null, the angle θ is already negative. Although this may seem

surprising at first, this is normal and totally expected. Because no spring is present, the

device does not have the capacity of transforming its kinetic energy into potential energy. As

a direct result, decelerating the airfoil in order to switch direction in heave essentially has to

be done through aerodynamic forces. Indeed, the airfoil must return its kinetic energy to the

flow in order to reach a null velocity. To achieve this, the aerodynamic forces must become

opposite to the heaving direction before the airfoil reaches its extrema in heave. This should

not be confused with the initial case where the lift and the heaving velocity were in opposite

direction after the airfoil had reached its extrema in heave. This finding suggests that one of

the main purposes of the spring in heave is to stock the potential energy of the device and

reconvert it into kinetic energy at the appropriate moment of the cycle.

This previous observation is confirmed with Figure 4.29 showing various instantaneous coef-

ficients of power. The transition between the upstroke to the downstroke, and vice versa, is

accompanied by a fairly large negative peak of CP . As it can be seen, these large negative

peaks are essentially due to the heaving motion. This confirms that decelerating the airfoil in
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Figure 4.28: Schematic representation of the flow of power through the fully-passive, flapping-
airfoil turbine using the structural parameters of the optimized case without any spring in
heave and in pitch (Table 4.8).
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Figure 4.29: Instantaneous coefficients of power for the fully-passive, flapping-airfoil turbine
using the structural parameters of the optimized case without any spring in heave and in
pitch (Table 4.8).
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order to revert its heaving direction is performed by having the airfoil do some work on the

flow to reduce its kinetic energy. Although there are large negative peaks of CP , there are also

four positive peaks. Two of them are associated to the pitching motion, and two of them are

associated to the heaving motion. Again, the peaks due to the pitching motion are associated

with the interaction between the airfoil and the vortex shed during the dynamic stall events.

This large vortex is undoubtedly doing the required work on the airfoil to produce the fast

pitching regime previously observed. This large airfoil-vortex interaction can be observed on

Figures 4.30 and 4.31 where the pressure fields and the z -vorticity fields in the vicinity of the

airfoil are shown at several moments throughout a complete cycle of oscillation. The frames

9T/12, 10T/12 and 11T/12 correspond to the dynamic stall event as the airfoil switches from

the upstroke to the downstroke, while the frames 3T/12, 4T/12 and 5T/12 correspond to the

dynamic stall event when the airfoil switches from its downstroke to its upstroke. This large

interaction is again due to the fact that the airfoil travels towards the eddy once it is shed,

thus keeping it close to the airfoil’s surface.

Although the curve for CP exhibits large negative peaks, the cycle-averaged value is obviously

positive. In fact, a value of CP = 0.765 has been calculated, with an efficiency η = 24.3%.

Figure 4.28 shows the various cycle-averaged coefficients of power. Again, close to 85% of the

harvested power has been extracted through the heaving motion, and 85% of the harvested

power is available to the electrical generator (i.e., is useful).

Figures 4.32 and 4.33 show the budget of all terms involved within both equations of motion.

Necessarily, the terms associated to the heave and the pitch stiffnesses are null at all time. The

interaction between the airfoil and the vortex can again be observed through a slight increase

of the lift, and also through a large increase of the aerodynamic moment. If Figure 4.27 is

compared with Figure 4.32, the reader may note that there are two portions of the cycle

where the lift is of opposite sign to the heaving velocity, and this happens before the airfoil

reaches its extrema in heave. Figure 4.32 indicates that the inertial term (m∗hÿ
∗) becomes

large when there is a change in the sign of the lift force. This is in agreement with the previous

assessment that the airfoil is decelerated by returning its kinetic energy to the flow due to the

absence of a mean for stoking potential energy within the device itself. As a last comment,

the inertial coupling term is found, again, to remain very small compared to the other terms

involved within the equations of motion, and this is of course a result of the fairly low static

imbalance of this case.

With these results, the reader should now be convinced that the interaction between the

vortex and the airfoil is responsible for the limit-cycle oscillations that have been studied in

this master’s thesis. Alone, the interaction between the airfoil and the vortex can fully account

for the pitching motion happening at the extrema of the cycles in heave, thus highlighting

that the spring is not playing a key role when one is indeed present.
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Figure 4.30: Fields of normalized pressure (p/1
2ρfU

2
∞) in the vicinity of the flapping airfoil

at various instants throughout one complete period of oscillation (T ) for the fully-passive,
flapping-airfoil turbine using the structural parameters of the optimized case without springs
in heave and in pitch (Table 4.8).
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Figure 4.31: Fields of normalized z -vorticity (ωzc/U∞) in the vicinity of the flapping airfoil
at various instants throughout one complete period of oscillation (T ) for the fully-passive,
flapping-airfoil turbine using the structural parameters of the optimized case without springs
in heave and in pitch (Table 4.8).
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Figure 4.32: Budget of the terms involved within the equation of motion in heave of the
fully-passive, flapping-airfoil turbine using the structural parameters of the optimized case
without springs in heave and in pitch (Table 4.8).

Figure 4.33: Budget of the terms involved within the equation of motion in pitch of the fully-
passive, flapping-airfoil turbine using the structural parameters of the optimized case without
springs in heave and in pitch (Table 4.8).
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The strong interaction between the vortex and the airfoil being highlighted, this suggests

that three-dimensional simulations of the fully-passive, flapping-airfoil turbine should be per-

formed. This is to make sure that the effect of the vortex on the airfoil is not overestimated

through the current numerical simulations. In fact, in the three-dimensional reality, this vor-

tex would have the possibility to break into smaller structures, and therefore not to remain

as coherent as it is forced to be with the current two-dimensional simulations.

Nevertheless, there is a well-known aeroelastic effect that could be of great help on this mat-

ter. When a cylinder, circular or not, oscillates in a flow as a result of the fluid-structure

interaction, the correlation of the pressure along the span of the structure is significantly in-

creased (see Dowell et al. (2005); Dyrbye and Hansen (1997) and Simiu and Scanlan (1996)).

In fact, as the amplitude of motion becomes greater, the correlation length 7 increases signif-

icantly. One could believe this is only due to the motion of the cylinder, but this is not the

case. Indeed, when the oscillation of the cylinder is forced, there is an increase of the pressure

correlation length, but it is far less significant than it is when the motion is emerging from

the fluid-structure interaction.

Most of the results available in the literature on this matter are for circular and rectangular

cylinders. An example of such results, and also a convincing proof of this effect, can be found

in a paper from Ricciardelli (2010). In this paper, it is clearly shown that the correlation length

increases very significantly as the amplitude of motion of a rectangular cylinder increases. It

is believed that the same aeroelastic effect can be expected for fully-passive, flapping airfoils

such as those considered in this thesis. This is because the physics of the flow around an

airfoil undergoing motions of large amplitudes is very similar to that of VIV observed on a

cylinder where the vortex shedding plays a crucial role.

Conclusion

In this chapter, an original methodology developed by the author in order to find a well-chosen

initial guess for conducting an optimization of a fully-passive, flapping-airfoil turbine has first

been presented. Using the in-house solver implementing this methodology (RPAS), a set

of structural parameters providing large-amplitude LCO of the fully-passive, flapping-airfoil

turbine has been obtained. The corresponding efficiency was approximately 12%. Following

a gradient-like optimization, the turbine has been effectively optimized, thus providing a new

efficiency of approximately 34%. This demonstrates that there is surely some potential at

using a fully-passive, flapping airfoil as an efficient wind or hydrokinetic turbine.

Further, the physics of both the initial and the optimized cases has been studied, and it has

been found that the airfoil is undergoing stall flutter. Indeed, the structure undergoes deep

dynamic stall twice per cycle, and the strong interaction between the airfoil and the vortex

7. The correlation length is a measure of the spanwise distance over which a specific physical parameter
can be considered fully correlated.
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shed from the leading edge is responsible for the cyclic motion of the airfoil. This idea has

been reinforced by studying the physics of a fully-passive, flapping airfoil where no spring is

present in both heave and pitch.

The synchronization between the pitching and the heaving motions has also been investigated,

and it proved to be a key element in order to obtain an efficient turbine. In fact, this

synchronization is crucial for the purpose of efficiently using the low pressure at the core

of the shed eddy in order to passively pitch the airfoil. This also enhances the total power

harvested from the flow with the turbine.

Furthermore, a sensitivity study of the device towards some structural and flow parameters

has been carried out. It has been found that all of these parameters have an effect on the

metrics characterizing the turbine, except for the moment of inertia about the pitching axis.

The effect of this last parameter remains fairly insignificant. Nevertheless, a key finding is that

the heave damping coefficient, which here accounts for the effect of the generator connected

to the turbine, enables to partially compensate the effect of increasing the velocity of the flow

above the design value. However, reducing the velocity of the flow below the design value is

highly detrimental for the turbine’s performances, and this suggests that the design of such a

passive turbine should be based on the lower range of expected velocities of the flow.
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Chapter 5

Feasibility of the concept

The scope of this chapter is to investigate the feasibility of a fully-passive, flapping-airfoil

turbine. In the first section, the effect of dry friction on both degrees-of-freedom is investi-

gated. This is because the damping, up to now, has been entirely modeled through a viscous

model. With such a modeling, the damping force is proportional to the velocity. However, all

real machines have some amount of dry friction where the magnitude of the damping force

is relatively constant. In the present case, it is important to investigate the sensitivity of the

aeroelastic device towards dry friction to make sure that self-sustained LCOs are still possible

when it is included within the aeroelastic model. In the second section of this chapter, the

modeling of the electrical generator’s effect is discussed and analyzed. As it has been briefly

introduced in Chapter 2, the effect of a generator connected to the turbine has been taken

into account through a viscous type of damping. This section aims at investigating more

deeply this modeling in order to determine if it is fully or only partially representative of the

physical reality.

In the third section of this chapter, two actual cases of the optimized fully-passive, flapping-

airfoil turbine are considered in real terms (dimensional parameters). One of these physical

cases is for a turbine that would be used within a flow of water, while the second is for a

turbine that would be used within a flow of air. Obviously, the set of dimensional parameters

pertaining to each apparatus is different, and the objective is to determine if an aeroelastic

device respecting the set of parameters from the optimized case could indeed be conceived in

order to experimentally study the problem of this thesis. Because several structural constraints

are present, there is no guarantee that it is possible to satisfy them all simultaneously.

In the last section, which is more of an opening on future work, other interesting sets of

non-dimensional parameters that are worth being further investigated are mentioned. Unfor-

tunately, it has not been possible to fully investigate these sets of parameters within this thesis

due to time constraints, but these sets of parameters surely constitute an interesting starting

point for a person that would be interested into pursuing the research on this aeroelastic

problem.
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5.1 Dry friction

The model of the fully-passive, flapping-airfoil turbine used up to now has included some

damping for both the pitching and the heaving motions. The damping in heave has been

used to account for the effect of the generator connected to the device, while the damping in

pitch has been used to account for losses. This has been modeled through a viscous type of

damping where the force opposed to the movement is linearly dependent upon the velocity

of motion. However, real machines obviously include some amount of dry friction where the

magnitude of the opposing force is relatively constant (see Meriam and Kraige (2008)), and

this section briefly discusses the effect of including such friction within the aeroelastic model.

To carry on numerical simulations that include dry friction, it is of course required to modify

the equations of motion of the flapping airfoil by adding some extra terms.

Dry friction is here modeled without making any distinction between the kinetic friction and

the static friction. This is without consequence because an initial perturbation is provided to

the airfoil when a simulation is initiated. Although dry friction can turn out to be relatively

complex and dependent upon several parameters, it is here modeled as a force of constant

magnitude which is opposed to the airfoil’s motion in both pitch and heave. As a result, the

modified equations of motion are:

CL = m∗h ÿ
∗ + S∗

(
θ̇2 sin θ − θ̈ cos θ

)
+ D∗h ẏ

∗ + k∗h y
∗ + C∗h sgn(ẏ)︸ ︷︷ ︸

dry friction

, (5.1)

CM = I∗θ θ̈ − S∗ÿ∗ cos θ + D∗θ θ̇ + k∗θ θ + C∗θ sgn(θ̇)︸ ︷︷ ︸
dry friction

, (5.2)

where sgn() is the sign function defined as:

sgn(φ) =

{
1 if φ ≥ 0

−1 if φ < 0
(5.3)

Further, C∗h and C∗θ are respectively the non-dimensional dry friction coefficients in heave and

in pitch, and their values are constant throughout the cycle. These coefficients are normalized

as:

C∗h =
Ch

1
2ρU

2
∞bc

, (5.4)

C∗θ =
Cθ

1
2ρU

2
∞bc

2
. (5.5)
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5.1.1 Effect of dry friction on the fully-passive turbine

In order to assess the effect of dry friction, a few simulations have been performed with various

values for the dry friction in both pitch and heave. The baseline case about which this study

has been performed is again the optimized case of Chapter 4 (Table 4.7), and the values of the

dry friction have been chosen according to the maximum cyclic value of the terms D∗hẏ
∗ and

D∗θ θ̇
∗ . This information is readily available from Figures 4.16 and 4.17, and the maximum

cyclic values are respectively 2.40 and 0.45 in heave and in pitch. What this means is that the

constant dry friction is represented as a fraction of this maximum viscous type of damping:

C∗h = ψh (D∗hẏ
∗)max , (5.6)

C∗θ = ψθ

(
D∗θ θ̇

∗
)

max
, (5.7)

where ψh and ψθ can take any positive value, including 0. For the purpose of performing

numerical simulations, it would be very useful to determine an upper bound for these dry

friction coefficients. Getting such an upper bound remains approximate as a complete design

of the machine would be needed to obtain a more precise value. Assuming some of the

worst conditions, such as a dry steel-steel contact, a kinematic coefficient of friction of 0.4

can be assumed for the heaving motion (see Meriam and Kraige (2008)). Knowing that the

drag coefficient of the oscillating airfoil, which is a measure of the normal forces along the

contacting surfaces, is in the vicinity of 2.5 in average throughout the cycle, a value of C∗h ≈ 1

(i.e., ψh ≈ 0.4) is obtained. This is really an upper bound, and the real machine would

probably have much less dry friction in heave. In fact, it is hardly conceivable to do worse

than that, and great care would be taken in order to reduce such dry friction. Finding an

upper bound for the pitch degree-of-freedom is not as easy due to the difficulty of obtaining

the order of magnitude of the normal forces at the contacting surfaces. For this reason, it

is simply assumed that the maximum value of ψθ is the same as the maximum value of ψh,

specifically 0.4.

The effect of varying ψh is shown in Figure 5.1, and the results are presented using the same

type of figures as in Chapter 4. This means that the effect on each parameter is shown as a

relative variation, in percents, from the baseline values of the original optimized case. As it

can be observed, the reduced frequency (f∗) and the efficiency (η) are not very sensitive to

the amount of dry friction in heave for the values investigated. However, the amplitude of

motion in both pitch and heave decreases significantly as ψh is increased. As a result, the total

amount of power harvested from the flow (CP ) is very significantly reduced as ψh increases

due to the smaller flow window that is harvested. There is another effect of dry friction that

should be considered. Dry friction is, in fact, an extra energy sink for the aeroelastic device.
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Figure 5.1: Effect of varying the amount of dry friction in heave (ψh) between values of 0 and
0.4 on f∗, θ0, y0/c, η and CP .

Table 5.1: Effect of varying the amount of dry friction in heave (ψh) on the coefficient of
harvested power (CP ), on the coefficient of power available to the generator (CPy,damp), and
on the ratio of useful power over the total power harvested (CPy,damp/CP ).

ψh (%) CP CPy,damp CPy,damp/CP (%)

0 1.08 0.94 87

5 1.03 0.84 82

10 0.98 0.74 76

20 0.88 0.57 65

30 0.78 0.42 54

40 0.68 0.30 44
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Said otherwise, it adds a mechanism for dissipating the power harvested from the flow, and

this means that less power is dissipated through the heave damper representing the electrical

generator. The values of CP , CPy,damp, and CPy,damp/CP are shown in Table 5.1. With

these results, it is clear that the fraction of harvested power available to the generator is

significantly reduced as dry friction increases.

To summarize, dry friction in heave has two main effects. First, the flow window is reduced,

thus leaving less available power to the turbine. Second, a smaller fraction of the total power

harvested by the turbine is useful, i.e., available to the generator. Nevertheless, a small

amount of dry friction, such as ψh = 5% or ψ = 10%, remains fully viable. Indeed, with

ψ = 10%, the generator gets approximately 79% of the power it would get without any dry

friction. Of course, dry friction should be minimized as much as possible in order not to

impair the performances of the fully-passive turbine.

Concerning the effect of dry friction in pitch, the results are shown in Figure 5.2. The first

observation is certainly that no LCO are obtained for ψθ = 40%. On Figure 5.2, this is

seen with all recorded quantities falling by 100% compared to the baseline case. Further,

it is not shown on the figure, but it is an interesting fact that the LCO are now dependent

upon the initial perturbation. If the perturbation is such that no deep dynamic stall is

encountered, the oscillations are quickly damped and no LCO are obtained. Conversely, if the

initial perturbation is large enough as to induce deep dynamic stall, large-amplitude LCO are

present. The cases shown in Figure 5.2 are, of course, those for which the initial perturbation

was large enough to give rise to LCO. The only exception to that is for ψθ where no LCO is

observed even when the initial perturbation is large enough to give rise to a deep dynamic

stall event.

From Figure 5.2, it is observed that a small amount of dry friction in pitch increases the

amplitude of motion in heave. This is believed to be due to the delay of the deep dynamic

stall. Because the amplitude of motion in pitch is now slightly lower, the dynamic stall of

the airfoil happens when the airfoil is farther away from its equilibrium position in heave.

Because the maximum geometric angle θ is smaller, the airfoil must be further decelerated

to increase the effective angle of attack enough for stalling to happen. This deceleration is

essentially achieved through the spring in heave, and this explains why the airfoil must travel

a greater distance in heave. On the contrary, any further increase of ψθ beyond 10 % makes

the amplitude of motion in heave quickly drop. This time, because of the reduced amplitude

of motion in pitch, the lift coefficient does not reach values that are as high, and this reduces

the distance over which the oscillating airfoil translates. All the other quantities recorded,

namely f∗, θ0, η and CP seem to be similarly sensitive towards ψθ, and they quickly drop as

the amount of dry friction increases.
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Figure 5.2: Effect of varying the amount of dry friction in pitch (ψθ) between values of 0 and
0.4 on f∗, θ0, y0/c, η and CP .

Table 5.2: Effect of varying the amount of dry friction in pitch (ψθ) on the coefficient of
harvested power (CP ), on the coefficient of power available to the generator (CPy,damp), and
on the ratio of useful power over the total power harvested (CPy,damp/CP ).

ψθ (%) CP CPy,damp CPy,damp/CP (%)

0 1.08 0.94 87

5 1.03 0.91 88

10 0.79 0.70 89

20 0.15 0.13 87

30 0.11 0.09 82

40 0 0 —
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Table 5.3: Effect of including dry friction in both pitch (ψθ) and heave (ψh) on the fully-
passive, flapping-airfoil turbine’s motion and performances.

ψθ (%) ψh(%) f∗ θ0 y0/c η CP CPy,damp CPy,damp/CP (%)

0 0 0.096 82.8◦ 1.26 33.6 1.08 0.94 87

5 10 0.091 75.0◦ 1.20 32.2 0.95 0.73 77

10 10 0.080 64.4◦ 1.23 25.9 0.77 0.59 77

The values of CP , CPy,damp, and CPy,damp/CP are shown in Table 5.2. The ratio of useful

power over the total harvested power is relatively insensitive to the amount of dry friction

in pitch. This means that although an extra sink of energy is included within the model,

it essentially only affects the dissipation of energy from the pitch degree-of-freedom, thus

leaving the same fraction of useful power to the generator. This is certainly in contrast with

the results for the dry friction in heave, where this ratio proved to be very dependent upon ψh.

Nevertheless, these results suggest that a small amount of dry friction, such as ψθ = 5% or

ψθ = 10%, remains fully viable. Indeed, with ψθ = 10%, the generator gets approximately 74%

of the power it would get without any dry friction. Again, dry friction should be minimized

as much as possible during the design process to avoid a serious impairment of the turbine’s

performances.

As a last investigation concerning the effect of dry friction, two simulations have been per-

formed with some dry friction in both degrees-of-freedom simultaneously. Obviously, a real

apparatus would include a reasonable amount of dry friction in both degrees-of-freedom, and

it should be verified that LCO are still observed when this is the case. Also, it should be

verified that the performances of the turbine remain acceptable. The results of these calcula-

tions are shown in Table 5.3 along with the baseline case (i.e., the case where no dry friction

is included), and they suggest that a small amount of dry friction in both degrees-of-freedom

is tolerable as the performances are not unacceptably affected. This is especially true for

the case where ψθ = 5% and ψh = 10%. The efficiency of this case, η = 32.2%, is almost

unchanged compared to the efficiency of the baseline case, η = 33.6%. Further, the generator

gets approximately 78% of the power it would get without any dry friction, which is not bad

at all. Again, the conclusion is certainly that small amounts of dry friction are tolerable, but

this surely does not enhance the performances. Nevertheless, large-amplitude LCO are still

observed when a reasonable amount of dry friction is included within the model. 1

1. The reader may take some time to locate the various cases from this section on the mapping of efficiency
for the kinematically-constrained turbine shown in Figure 1.2. It is easily found that the values of η are in
very good agreement with this mapping of efficiency. Again, this suggests that this mapping, although it has
been obtained for a kinematically-constrained turbine, does apply reasonably well for a fully-passive turbine
once its kinematics is known.
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5.2 Modeling of the generator

This section aims at briefly investigating the current modeling of the electrical generator

connected to the device. This modeling of the generator’s effect has been done, up to this

point, by considering a viscous type of damping. Nowadays, generators have been designed

for various applications, and several methods have been developed for controlling the specific

way in which generators behave. This section is surely not an extensive review of the theory

concerning electrical generators as this falls outside the author’s domain of expertise. The

reader may find more details within references dedicated to this matter, such as Abad et al.

(2011); Tan (2011); Wildi and Sybille (2000) and Wu et al. (2011).

Using basic notions from the field of electrical engineering, a simple analysis of the generator’s

behavior can be done. This will also prove to be useful for validating the generator’s model

used in this study. To begin with, the voltage (E0) induced by a generator through Faraday

induction, according to Wildi and Sybille (2000), is given by:

E0 =
Znφp

60
, (5.8)

where Z is the number of conductors in the armature, n is the armature revolution in RPM

(rotations per minute) and φp is the flux per pole of the generator. Further, the required

torque to activate the generator (Tg) is given by:

Tg =
ZφpI

2π
, (5.9)

where I is the current produced by the generator. A generator under an electrical load can be

represented with the simple equivalent circuit shown in Figure 5.3, where R0 is the internal

resistance of the generator, and RL is the resistance of the load. With this equivalent circuit,

the value of the current can easily be found:

I =
E0

R0 +RL
. (5.10)

Combining Eqs. 5.8 to 5.10, an expression for the torque is then obtained:

Tg =
Z2φ2

p n

120π (R0 +RL)
. (5.11)

Returning to the aeroelastic model of this study, the generator’s damping force on the heave

motion simply corresponds to the torque required to drive the generator divided by some lever-

arm, the value of which depends upon the specific configuration of the apparatus. Further,
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Figure 5.3: Equivalent circuit for an electrical generator under an electrical load.

the angular velocity of the generator’s armature (n) is proportional to the heaving velocity

(ẏ). With this, the following can be written:

Fdamp =
KZ2φ2

pẏ

120π (R0 +RL)
, (5.12)

where Fdamp is the damping force and K is a proportionality constant. The interesting point

here is to realize that the previous equation can be written in the following form:

Fdamp = Dhẏ , (5.13)

where

Dh =
KZ2φ2

p

120π (R0 +RL)
. (5.14)

This shows that for a constant electrical load and a constant flux within the generator 2, a

viscous type of damping indeed models adequately the effect of a generator connected to the

fully-passive, flapping-airfoil turbine. This confirms that the simple model used in this thesis

is realistic and definitely not far fetched. Further, this demonstrates that the specific value

of the damping coefficient can be changed by varying the electrical load, as much as through

modulations of the flux φp.

In fact, several electronic controllers connected to generators achieve a dynamic control of the

torque through modulations of the flux 3. Using such a controller, the equivalent damping

coefficient of the generator could not only be modulated depending on the conditions of

2. Such as a generator with permanent magnets.
3. Such as direct torque control (DTC).
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the flow, but it could even be modulated throughout the cycle of oscillation of the flapping

airfoil. This would offer the possibility of enforcing other damping laws, thus opening up

some new possibilities. Indeed, this could be used for controlling the dynamics of the airfoil.

This is because using other damping laws, such as a damping force that is proportional to

the square of the heaving velocity for example, could alter significantly the dynamics of the

oscillating airfoil, and, as a result, alter its performances at harvesting a flow. This suggests

that the electronics connected to the generator probably offers a certain degree of control on

the “passive” turbine, and it is surely worth being further investigated in the near future.

5.3 Dimensional cases

Up to now, the aeroelastic problem has been solely considered in its non-dimensional form, and

this revealed to be very convenient for the purpose of performing a vast numerical campaign.

However, it is also interesting and very important to come back into the dimensional world

in order to assess the feasibility of such a device. This is because non-dimensional values do

not always speak for themselves, and it is not always easy to determine if a given parameter

is physically realistic or not. Therefore, the purpose of this subsection is to propose the

dimensional values of the structural parameters that should be used in order to conduct an

experimental study of the turbine. With this in mind, two fluids of very different densities

are here considered: water and air. In both cases, the non-dimensional parameters used are

those of the optimized case which has been extensively described and discussed in Chapter 4.

5.3.1 Dimensional case in air

For the sake of finding a set of dimensional parameters that would be appropriate for an

experiment involving a freestream flow of air, the specifications pertaining to an air tunnel

located at Laval University could be used. However, the circular shape of the test section

does not appear to be adequate for conducting an experiment with a fully-passive, flapping

airfoil for several reasons. One of these is certainly that the aspect ratio of the airfoil would

need to remain relatively small. This is so because if the airfoil had a too large span, the

wing tips could get into contact with the circular walls of the tunnel. An alternative would

be to make use of an airfoil having a much smaller chord length, but the Reynolds number

would drop significantly. For these reasons, the wind tunnel from the RMC is used here as a

reference. Indeed, the rectangular shape of the test section (0.76 m × 1.08 m) appears to be

more appropriate for such an experiment, and the span of the airfoil can almost be as large as

the vertical extent of the test section. Further, such a study with flapping airfoils has already

been conducted within this wind tunnel, and this tunnel can attain flow speeds in the range

of 60 m/s.
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Table 5.4: Set of dimensional structural parameters for a wind tunnel experiment involving
the optimized case of the fully-passive, flapping-airfoil turbine. The following dimensional
parameters are proposed: c = 0.2 m, b = 0.7 m, ρf = 1.23 m/s, U∞ = 60 m/s.

Parameter Value Parameter Value

mh 0.105 kg S -0.0002 kg·m

kθ 3.844 N·m/rad kh 3738 N/m

Dθ 0.049 N·m·s/rad Dh 15.508 N·s/rad

Iθ 0.00013 kg·m2

Due to the dimensions of the test section, the chosen span of the wing (b) is set at 0.7 m.

Further, because the amplitude of motion of the airfoil can easily reach 1.5 chord length,

and because we certainly do not want the airfoil to oscillate too close from the wind tunnel’s

walls, the chord length (c) is chosen to be 0.2 m. This results in an aspect ratio of 3.5, and a

maximum blockage ratio of approximately 17%.

The current numerical study has been performed assuming a Reynolds number of 500,000.

However, it would not be possible to attain such a high Reynolds number with the equipment

from the RMC. Assuming the maximum flow velocity of 60 m/s, the Reynolds number is

approximately 76,000, which is in the transitional range of Reynolds numbers. It then clearly

appears that conducting an experiment at Re = 500,000 would require a very large wind

tunnel, or a wind tunnel that can provide much higher velocities. Nevertheless, such an

experiment in the transitional range of Reynolds numbers would remain very interesting, and it

could provide some very relevant informations pertaining to the fully-passive, flapping airfoil.

A few numerical simulations have been realized in this range of Reynolds numbers (50,000

to 100,000), and large-amplitude LCO have been predicted with the FSI solver. Further, the

predicted efficiencies of the optimized case remained between 25% and 30%, which is not so

far from the case at a higher Re = 500,000 (η = 34%). 4

Using the previously chosen dimensional parameters (i.e., b = 0.7 m, c = 0.2 m, U∞ = 60 m/s

and ρf = 1.23 kg/m3) and the dimensionless structural parameters of the optimal case (Ta-

ble 4.7), the resulting unique set of dimensional parameters shown in Table 5.4 is obtained.

Calculating these values is very straightforward using the definitions of the non-dimensional

parameters provided in Chapter 2. With this in hand, the mechanical feasibility of a fully-

passive, flapping airfoil making use of these parameters can be investigated. It should be

understood that the purpose is certainly not to make a complete design of an experimental

4. It should be noted that there is some uncertainty on these values as a transitional turbulence model has
not been used for these simulations. Instead, the Spalart-Allmaras turbulence model was used. See Chapter 3
for a brief discussion on this matter.
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setup, but instead to verify its feasibility. Further, it should be noted that the flapping airfoil

is assumed to be set vertically in the wind tunnel.

Beginning with the stiffness in heave, the best solution would probably be to make use of

extension springs. Two sets of these springs would be required: one for y > 0 m and one for

y < 0 m. Because a specific stiffness is required, each set of springs could contain more than

one spring in series in order to be as close as possible to the required spring constant. In fact,

from an investigation of the products already available on the market, having the adequate

stiffness is certainly not the challenge here. Because the maximum deflection of the springs

would be in the range of 25 cm, the behavior of the springs has to remain fairly linear up

to this extension length, and this appears to be more of a constraint than the stiffness itself.

Nevertheless, assembling a set of springs respecting these constraints appears to be possible

(see Century Springs (2014)). Several standard extension springs exhibit a linear behavior up

to an extension length of approximately 30 cm. Obviously, several combinations of springs

are possible, and choosing one over the other could be dictated by other design factors that

cannot be considered here.

Concerning the torsional spring, the maximum angular deflection is expected to be in the

range of 90◦, so that the behavior of the restoring moment should remain fairly linear up to

such a deflection. Again, it appears better to use a combination of more than one spring to

obtain a stiffness as close as possible to the desired value. Further, several standard torsional

springs available on the market meet these requirements (see Century Springs (2014)). This

structural component is surely not a constraint from a design point of view.

Concerning the damping coefficients, a complete design of the aeroelastic device would be

required to be very specific. This is because there will obviously be some structural damp-

ing inherent to the setup, and the damper/generator connected to each degree-of-freedom

should be well chosen in order to bring the total damping as close as possible to the desired

dimensional value of Table 5.4. Nevertheless, the damping ratios are 0.39 in heave (ξh) and

1.10 in pitch (ξθ). These damping ratios are relatively high when compared to those of the

RMC experiment, which are 0.022 in heave (ξh) and 0.05 in pitch (ξθ). This is great news

as this indicates that structural damping inherent to the device would very certainly be low

enough to require the use of a damper/generator to increase the total damping. The oppo-

site situation, where very small damping ratios would have been required, could have been

a severe constraint on the design of the aeroelastic device, and it could have been harder or

impossible to meet such requirements. Indeed, if the structural damping is greater than the

total required damping, it would not be possible to add a damper/generator to the device.

Moving to the mass of the airfoil, to its moment of inertia and to its static imbalance, an

important point is to verify if it is possible to satisfy the three constraints on mh, S and

Iθ simultaneously. To achieve this verification, the airfoil’s thickness is here neglected for

154



Figure 5.4: Approximate representation of the linear density functions f(x) and g(x) over the
airfoil from the leading edge (xle) to the trailing edge (xte)

the calculation of Iθ (i.e., the airfoil’s mass is assumed to be concentrated on the chord

length), which is not too much of a coarse approximation due to the streamlined shape of

the airfoil. Further, a linear density function g(x) is assumed ahead of the elastic axis, while

a linear density function f(x) is assumed for the part behind the axis. An educated guess

of these function’s trend over the complete airfoil is presented in Figure 5.4, but the exact

shape of these functions representing the distribution of mass along the chord length are here

the unknowns of the problem. To find these unknowns, various physical constraints can be

mathematically formulated:

f(x) ≥ 0 ∀ x ∈ [xea, xte] , (5.15)

g(x) ≥ 0 ∀ x ∈ [xle, xea] , (5.16)

g (xle) = f (xte) = 0 , (5.17)

f(xea) = g(xea) , (5.18)

d f

d x

∣∣∣∣
xea

=
d g

d x

∣∣∣∣
xea

, (5.19)

xea∫
xle

g(x) dx +

xte∫
xea

f(x) dx = mp , (5.20)
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xea∫
xle

g(x)x dx +

xte∫
xea

f(x)x dx = S , (5.21)

xea∫
xle

g(x)x2 dx +

xte∫
xea

f(x)x2 dx = Iθ . (5.22)

Equations 5.15 and 5.16 simply state that the linear density functions cannot be negative.

Equation 5.17 simply means that the linear density must fall to zero at the leading edge (xle)

and at the trailing edge (xte) of the airfoil. Equations 5.18 and 5.19 make sure that the linear

density functions match at the elastic axis, and that the transition from one function to the

other is smooth. However, note that the specific value of the first order derivative at the

elastic axis is not enforced, which means that the maximum linear density is not necessarily

encountered on the elastic axis. Equations 5.20 to 5.22 simply correspond to the definitions

of the pitching mass, of the static imbalance, and of the moment of inertia about the elastic

axis.

It should be noted that it is not possible to obtain an equation for the heaving mass (mh)

without the actual design of the mechanisms. However, in the current case, because the value

of mh is fairly low, it is assumed that the difference between mp and mh must remain small

if we want mp to be realistic. For this reason, mp is here assumed to be equal to mh, which

corresponds to the upper bound value for mp. Using these equations, the following polynomial

forms are assumed for the linear density functions, where the units are kg/m:

f(x) = axn + bxm + cx + d , (5.23)

g(x) = ex2 + hx + k . (5.24)

These forms have been chosen based on the shape of the airfoil, which obviously suggests a

general trend for the density functions. Again, the general trend of this educated guess is

shown in Figure 5.4. Before solving the problem for a, b, c, d, e, h and k, values of n and

m must be chosen. Several combinations of n and m have been tried, and the chosen values

are those providing a well-behaved linear density function near the trailing edge of the airfoil.

For example, simply assuming n = 3 and m = 2 does give rise to some negative values of

the linear density function near the trailing edge. Some other combinations make the value

of the mass density function fall too quickly towards zero. One of the possible, well-behaved

solution of the problem is:
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Figure 5.5: Representation of the linear density functions f(x) and g(x) over the airfoil for
the dimensional case in air.

f(x) = −14893.133x5 + 700.725x3 − 15.865x + 1.082 , (5.25)

g(x) = −481.426x2 − 15.865x + 1.082 , (5.26)

and these linear density functions are plotted in Figure 5.5. The very first important observa-

tion that should be made is certainly that a solution satisfying all the constraints simultane-

ously does exist. However, that solution is not unique and the specific shape may be adapted,

for example, by varying m and n. Furthermore, the real linear density does not need to be

as continuous: internal structural components of the wing, which have a specific dimension,

will alter the shape of the linear density.

The reader should make sure to fully understand the physical interpretation of the linear

density functions. For example, at the location corresponding to the elastic axis, a value of

1.08 kg/m is obtained. At this same location, the thickness of the airfoil is 0.03 m 5. This

means that if the airfoil’s section at this station was extruded of 1 m, thus resulting in a block

5. The elastic axis is located c/3 behind the leading edge, which also corresponds to the location of the
airfoil’s maximum thickness, which is here 15%.
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Figure 5.6: Representation of the density distribution (ρs) over a NACA0015 airfoil for the
dimensional case in air.

of 0.03 m × 0.7 m × 1 m, the mass of that piece of material would be 1.08 kg. If the density

of the material was constant and uniform across that section (i.e., a completely filled section),

the material used to build this specific section would need to have a density of 51.4 kg/m3.

This material density ρs(x) is simply computed as:

ρs(x) =
µ

e(x) b
, (5.27)

where µ is the function f(x) or g(x) depending on the sign of x, e(x) is the thickness of the

airfoil, and b is the span. However, it should be noted that using a completely filled section

is not a requirement. In fact, a portion of the airfoil could be hollow, thus making it possible

to use a material of greater density to build the airfoil, and, also, providing an efficient way

of controlling the material density at each station along the chord length of the airfoil. For

example, if the section located at the elastic axis was built with a 1 cm thick shell on both

the upper surface and the lower surface, the material used would need to have a density of

77.1 kg/m3. If the shell was only 0.5 cm thick, this density would increase to 154.2 kg/m3.

A representation of this density ρs(x) is shown in Figure 5.6 for the case of a NACA0015

profile where the density is uniform across each station (i.e., the wing is completely filled).
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It can be observed that the maximum is located ahead of the elastic axis, which is a result

of the constraint specifying the static imbalance of the airfoil. Knowing that carbon fibers

composite materials have a density in the range of 20 kg/m3, and polystyrene has a density in

the range of 10 kg/m3, it does not seem feasible to make an airfoil that respects this density

distribution. Indeed, the required density drops below 10 kg/m3 close to the leading edge,

and because of the very small airfoil’s thickness there, it is hard to conceive having a hollow

interior surrounded by a thin shell. This matter will be further discussed within the next

subsection once the dimensional parameters for the case in water have been introduced.

The frequency of oscillation of such an airfoil also needs to be considered in order to charac-

terize the feasibility of the concept. With a freestream velocity (U∞) of 60 m/s, a chord length

(c) of 0.2 m and a reduced frequency (f∗) of 0.096, a frequency (f = U∞f
∗/c) of approxi-

mately 30 Hz is obtained. Such a high frequency of motion is most probably unattainable

for the oscillating airfoil described here as it would result in very fast heaving and pitching

motions, thus increasing considerably the inertial forces and moments on the turbine. The

structural integrity of the flapping airfoil would therefore be compromised. This too high

frequency of oscillation could be reduced by using an airfoil having a larger chord length, but

this also means that a larger wind tunnel would be needed. Another possibility would be to

reduce the frequency by decreasing the freestream velocity, but the Reynolds number would

also diminish and move farther away from a value representative of a turbine application.

5.3.2 Dimensional case in water

Concerning the dimensional parameters pertaining to a setup specifically designed to study the

fully-passive, flapping-airfoil in a water tunnel, the dimensions of the test section are assumed

to be the following: a water depth of 0.5 m, a width of 0.5 m and a length of 2.5 m. Further,

the velocity of the flow is assumed to be 1 m/s. These dimensions and this velocity of the

flow are representative of the typical water tunnel encountered within academic environments.

With such dimensions, the chord length of the airfoil would need to be approximately 0.1 m.

Again, this is to make sure the oscillating foil remains at some distance from the walls of

the tunnel. Also, it is assumed that the airfoil’s vertical extent is equal to the water depth,

specifically 0.5 m, thus providing an aspect ratio of 5. The corresponding maximum blockage

ratio is 20%, and the Reynolds number is approximately 90,000. With these references (i.e.,

b = 0.5 m, c = 0.1 m, U∞ = 1 m/s and ρf = 1000 kg/m3), the set of dimensional parameters

corresponding to the optimized fully-passive, flapping airfoil is calculated. The values are

shown in Table 5.5.

With these values, a resulting frequency (f = U∞f
∗/c) of approximately 1 Hz is obtained.

This is in contrast with the frequency of 30 Hz computed for the case in air. Obviously, the

lower value of 1 Hz corresponding to an experiment performed in water is more physically

plausible, and it would be attained more easily. This is because the inertial forces and moments
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Table 5.5: Set of dimensional parameters for a water tunnel experiment involving the opti-
mized case of the fully-passive, flapping-airfoil turbine. The following dimensional parameters
have been used: c = 0.1 m, b = 0.5 m, ρf = 1000 m/s, U∞ = 1 m/s.

Parameter Value Parameter Value

mh 15.180 kg S -0.0145 kg·m

kθ 0.155 N·m/rad kh 603 N/m

Dθ 0.060 N·m·s/rad Dh 75.050 N·s/rad

Iθ 0.0048 kg·m2

on the turbine would probably not be large enough to impair the structural integrity of the

flapping airfoil or to impose severe mechanical constraints during the design of the turbine.

Again, the stiffness in heave can be best provided by making use of extension springs. Because

the chord length of the airfoil is here smaller than in the case of the experiment in air, the

extension of the springs will be considerably reduced. This means that the linear behavior of

the spring does not need to be maintained up to extensions of 30 cm. Instead, 15 cm would be

sufficient, and this means that far more springs already available on the market are suitable for

the task. Concerning the torsional spring, the amplitude of the deflection obviously remains

unchanged when compared to the case in air. Nevertheless, selecting a particular spring

appears to be simplified again by the fact that the required stiffness is smaller than for the

previous device in air.

For the damping in both pitch and heave, the same conclusions as for the case in air still hold

true. This is because the damping ratios are the same as before, namely 0.39 in heave (ξh)

and 1.10 in pitch (ξθ). Because these damping ratios are fairly high, the inherent structural

damping of the device alone should not bring the damping ratios up to these values, which

means that a damper and a generator should be added to the device.

The heaving mass of the airfoil is probably the structural parameter that differs the most from

the case in air. This is because, it has a value of 15.18 kg for the device in water, while the

device in air had a heaving mass of 0.1045 kg. From a design perspective, building a device

having a mass of 15.18 kg is probably far less restrictive and much easier to meet that building

a device with a mass of 0.1045 kg. The same procedure as before can be applied in order to

find the linear density functions. However, this time it is not required to assume mp = mh.

It is even possible to design the wing such that it does not respect the requirement on Iθ

and S, and simply add masses that are external to the wing: a form of non-uniform flywheel

attached to the shaft. This is of great help as satisfying the three constraints simultaneously

does not appear to be possible without external masses. Indeed, if external masses were not
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used, the density of the required material to build the wing would be far above the density

of common metals (i.e., above 30,000 kg/m3).

One simplistic alternative is to build the wing with some metals without giving thoughts about

its mass, its moment of inertia and its static imbalance. This will result in a wing having

a total mass in the range of 1 to 3 kg only. Then, a non-uniform flywheel can be added to

the shaft, thus bringing the static imbalance and the moment of inertia to the desired values.

Last, some masses can be added to the sliding mechanism, thus bringing the total mass of

the device to a value of 15.18 kg. A specific solution is not shown here as there are far too

many options available. Indeed, the fully-passive, flapping-airfoil in water offers much more

flexibility in the design than does the case in air.

The main conclusion of this dimensional study is certainly that investigating the fully-passive,

flapping airfoil in a water tunnel experiment is far more plausible than doing the experiment

in air. This is because the resulting frequency of motion in air would be too large to be

realistic, and the density of the material required for building the wing would be too low. The

latest is due to the moderate FSI strength corresponding to the optimized case investigated

in this thesis. As a result of this FSI strength, the density of the material used to build the

airfoil needs to be approximately in the same range as the fluid’s density. This is convenient

for the case in water, but this is of course not achievable for the case in air.

As a result of the previous findings, two main statements can be formulated:

• Investigating the fully-passive, flapping-airfoil in a water channel appears to be feasible

if one accepts to drop the Reynolds number in the vicinity of 100,000. Furthermore,

solutions where the total mass of the turbine (m∗h) is lower than for the optimized case

of this thesis could be considered, and such solutions would remain feasible. However,

this implies that the strength of the FSI would increase, and the present numerical

solver would have to be modified in order to carry out the simulations (i.e., a strong

coupling scheme would be needed).

• The current optimized fully-passive, flapping-airfoil device does not appear to be suit-

able for being experimentally investigated in air. One could of course seek another

optimized solution, if any, where m∗h is larger in order to increase the density of the

material used to build the oscillating airfoil, and the solver of this thesis could be used

without any modification to carry out the numerical simulations. However, this would

only solve a part of the problem as the frequency of oscillation would still be too high

to be mechanically possible. The Reynolds number would have to be very significantly

lowered in order to obtain a frequency which is at reach for the purpose of investigating

the turbine in a wind tunnel.
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5.4 Other interesting cases

Because the set of non-dimensional parameters corresponding to the optimized case discussed

in Chapter 4 is not suitable for an application in a freestream flow of air, some other interesting

cases are here presented. These sets of non-dimensional parameters make use of a higher value

ofm∗h, which means that the strength of the fluid-structure interaction is decreased. Therefore,

these sets are more appropriate at being used in air.

These sets of parameters have been obtained through RPAS. The same procedure as before

has been used (see Chapter 4), except that the prescribed aerodynamics and kinematics make

use of a reduced frequency equal to 0.12. A few cases minimizing the residuals, where the

average residuals is in the range of 10%, have then been simulated with the FSI solver. The

very encouraging results shown in Table 5.6 have been obtained. There still remains the need

to perform a complete optimization about these cases to determine if the performances can

be further increased. Even without any optimization, the performances are already quite

impressive. The amplitudes of motion are large, and the efficiencies are in the range of 25%

to 30%. These efficient cases could be an interesting starting point for a person interested into

pursuing the research on this aeroelastic problem. Definitely, these results show that there is

great potential at obtaining good performances of the flow harvester within other regions of

the parametric space. Some of these regions of the parametric space could be more adapted

to light fluids than does the optimized case from the previous chapter.

The fact that prescribing a reduced frequency of 0.12 in RPAS provides lower residual than

the previous case from Chapter 4, where a frequency of 0.18 had been imposed, is probably

not meaningless. The higher performances here obtained, without even performing an opti-

mization, is also in agreement with these lower residuals. One should recall that the residuals

of RPAS in Chapter 4 were in the range of 20%.

The low residuals in the range of 10% obtained here can be physically explained. First, it

should be mentioned that the optimal reduced frequency of the kinematically-constrained

turbine, which is 0.18, does not give rise to massive flow separations. Deep dynamic stall is

not encountered at any moment of the upstroke or the downstroke, and this has been easily

confirmed by observing the physical fields associated to the aerodynamics imposed within

RPAS. However, when a reduced frequency of 0.12 is imposed within RPAS, the corresponding

aerodynamics does exhibit some massive separations. In fact, the airfoil encounters deep

dynamic stall twice per cycle, just as the optimized fully-passive, flapping-airfoil turbine. Said

otherwise, the physics of the flow surrounding a kinematically-constrained airfoil oscillating

at a reduced frequency of 0.12 is in better agreement with the physics of the flow around

an airfoil undergoing stall flutter. It is not a great surprise to obtain lower residuals when

the aerodynamics prescribed within RPAS is in better agreement with the real physics of the

flow. These observations, again, are in agreement with the observations of Chapter 4 that

confirmed the dominating role of the vortex shedding associated to deep dynamic stall.
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Table 5.6: Interesting cases where the fluid-structure interaction is weaker than the optimized
case of Chapter 4. These cases have been obtained through RPAS and simulated with the
FSI solver, and no optimization has been performed yet.

Parameter Case 1 Case 2 Case 3 Case 4

m∗h 5.187 7.628 8.849 12.510

S∗ 0.619 0.635 0.619 0.619

k∗θ 0.061 0.061 0.061 0.061

k∗h 2.667 4.033 4.748 6.829

Dθ 0.209 0.209 0.209 0.209

Dh 1.337 1.337 1.337 1.337

Iθ 0.286 0.286 0.286 0.286

f∗ 0.111 0.111 0.111 0.111

θ∗0 81◦ 78◦ 76◦ 71◦

y∗0 0.88 0.84 0.83 0.76

η 29.5% 28.9% 28.1% 26.3%

CP 0.70 0.66 0.63 0.56

Conclusion

Within this chapter, the feasibility of the optimized fully-passive, flapping-airfoil turbine has

been investigated. First, the effect of dry friction in both heave and pitch has been addressed.

The main finding, which is not a great surprise, is that dry-friction reduces the performances

of the turbine. Nevertheless, small values of dry friction are tolerable since large-amplitude

LCO are still possible. This means that care will be needed during the design of a fully-passive

turbine in order to minimize the amount of dry friction.

Following this, the modeling of the electrical generator connected to the turbine has been

investigated. Through a relatively simple analysis, it has been shown that an electrical gen-

erator can indeed behave as a viscous damper, thus confirming the validity of the current

model. Further, it has been discussed that the equivalent damping coefficient of the generator

can be controlled through electronic controllers by varying the flux and/or the electrical load.

In the following section, the optimized fully-passive turbine has been dimensionally studied.

For this purpose, the dimensional structural parameters of a turbine operating in air and a

turbine operating in water have been calculated. Through a deeper analysis of these dimen-
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sional parameters, it has been found that the optimized fully-passive turbine of this thesis is

well adapted for dense fluids, such as water. In order to use a fully-passive turbine within a

freestream flow of air, another region of the parametric space where the mass is greater would

need to be investigated.

A few cases where this non-dimensional mass is greater have been obtained through RPAS.

They were shown within the last section of this chapter, and efficiencies as high as 30% were

obtained. It should be recalled that no optimization has been performed on these cases, and

the performances can surely be further increased. These four cases are more adapted for a

turbine in air, and they are certainly worth being further investigated in the near future.
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Conclusion

This master’s thesis constitutes a fairly extensive initial investigation of a hydrokinetic turbine

making use of the self-sustained, pitch-heave oscillations of an elastically-mounted, symmet-

rical and rigid airfoil. Such a novel type of flow harvester could prove to be very useful

as a result of its relatively simple mechanics when compared to other sorts of hydrokinetic

turbines. Further, such a device appears to be well adapted for harvesting a flow of limited

depth, thus making it useful for shallow rivers.

The current numerical work is among the first few studies to extensively consider a fully-

passive, flapping-airfoil turbine. Also, to the author’s knowledge, it is the first time that such

a numerical study is achieved at high Reynolds numbers that are representative of a realistic

turbine application. Within this concluding chapter, a brief summary of the main results and

findings is provided, along with an opening on the future work following this project.

Summary of the results and findings

The first objective of this document was to introduce some theoretical concepts pertaining

to the field of aeroelasticity in order to better understand the flutter phenomena to which

the oscillating airfoil is exposed. For this reason, classical flutter, stall flutter and limit-cycle

oscillations have been discussed. This provided the required knowledge to the reader in order

to understand more deeply the aeroelastic problem of the thesis.

The second objective of this thesis was to formally introduce the aeroelastic problem. For this

purpose, the aeroelastic device has been thoroughly described, and the equations of motion

have been formally derived. Further, the various terms involved within both equations have

been discussed and analyzed to provide a better physical understanding of the apparatus. The

main findings were certainly that we are dealing with a nonlinear problem, and both equations

of motion are greatly coupled. This coupling is achieved through an inertial coupling term,

and also through the nonlinear aerodynamics involved. However, it is not possible to prescribe

a phase lag between both motions, nor to constrain the shape of the motions. Instead, a total

of seven structural parameters are involved within the equations, and all of these parameters

can be individually varied as a way to affect and indirectly control the motion of the flapping-
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airfoil. Through modifications of the airfoil’s dynamics, its performances at harvesting a

freestream flow can also be modified. Therefore, the device can be optimized through an

astute choice of each structural parameter.

The third objective was to introduce the fluid-structure solver used for solving the aeroelastic

problem. For this reason, the methodology used and implemented within the OpenFOAM-

2.1.x CFD toolbox has been thoroughly presented. This methodology has also been validated

in various complementary ways. First, the results were shown to be relatively independent

from the numerics. Second, an experiment from the Royal Military College has been repro-

duced with the solver. This experiment deals with an elastically-mounted airfoil oscillating

within a flow of air as a result of stall flutter. Although the experiment was conducted in the

transitional range of Reynolds numbers and the numerical solver has been designed for high

Reynolds numbers, the qualitative and quantitative agreement between the experimental and

the numerical data contributed to the proof of the solver’s accuracy. A third validation of the

solver has been performed with a well-known problem: the vortex induced vibrations of an

elastically-mounted cylinder oscillating transversally to a flow. Numerical results from other

studies, as well as experimental results, were used to assess the validity and the accuracy of

the predictions obtained with the solver of this thesis. Again, the present results were found

to be in good agreement with the other numerical studies, as much as with the experimental

results.

The fourth objective was to optimize the fully-passive, flapping airfoil as an efficient hydroki-

netic turbine, and also to suggest an optimal concept that is realistic. In order to initiate

the optimization process with a well-chosen initial case, a clever methodology has been im-

plemented with an in-house application. The objective of the Reverse Passive-Airfoil Solver

is to solve the inverse mathematical problem where the kinematics and the aerodynamics are

prescribed. The output of such a solver is a set of structural parameters that satisfies as

closely as possible the equations of motion. With such a methodology, an initial case having

an efficiency in the range of 12% has been obtained. Then, a gradient-like optimization has

been achieved about this initial case, thus increasing the efficiency to 34%. Such an efficiency

demonstrates that there is obviously great potential at using fully-passive, flapping-airfoils

for the purpose of harvesting a flow. It should be recalled that the efficiency of the op-

timal kinematically-constrained turbine is in the range of 43%. Therefore, an efficiency of

34% is relatively high, especially that the fully-passive turbine is far less complex than the

kinematically-constrained one from a mechanical point of view.

The efficient case found with the gradient-like optimization has also been studied more deeply

to find out that it is realistic for an application within a flow of water. However, using this

optimal set of parameters does not seem to be possible for an application within a flow of

air. This is because the resulting frequencies would be too high, and also because the mass of

the oscillating wing would need to be very low. It would be very challenging to respect such

severe constraints.
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The fifth and last objective was to perform a sensitivity study of the device, and also to study

the physics involved. The physics has been deeply investigated, and it has been demonstrated

that the oscillating airfoil of this study is unstable as a result of a static divergence. Further,

the cyclic motion of the airfoil is attributed to stall flutter. During the deep dynamic stall

events of the airfoil, a large eddy is shed at the leading edge, and this vortex interacts with

the airfoil. It is this interaction with the vortex that provides the aerodynamic moment giving

rise to a pitching motion, thus making the airfoil pitch the other way around and revert its

heaving direction. The fact that the vortex-airfoil interaction most accounts for the pitching

motion has been demonstrated through simulations where no springs were present in both

pitch and heave.

Two mechanisms have been highlighted as being responsible for the great performances of the

optimized case at harvesting a flow. First, the adequate synchronization between the pitching

and the heaving motion is a crucial element. This is because an adequate synchronization

will prevent the airfoil from achieving some work on the flow. If the airfoil does some work

on the flow at some moments of its cycle, this turns out to be very costly from a performance

point of view. Further, an adequate synchronization allows the airfoil to remain closer to

the vortex shed during the deep dynamic stall, and this enhances the beneficial airfoil-vortex

interaction. The second mechanism is the presence of a fast pitching regime. Because the

airfoil must pass through a null effective angle of attack when it reaches an extrema in heave,

the lift coefficient must also be momentarily null. Because the airfoil’s pitching motion is

achieved in three different phases, and because one of these phases has a larger pitching rate,

the effective angle of attack does not remain close to zero for too long, and the lift coefficient

quickly becomes large again. This minimizes the effect of changing the heaving direction, and

the larger lift coefficients resulting from such a motion enhance the harvested power from the

flow.

Concerning the sensitivity study, it has been shown that the airfoil is sensitive to all of the

structural parameters, except for the moment of inertia. However, because of the complex

interaction between both degrees-of-freedom, no parameter has an effect on a single perfor-

mance metric. Nevertheless, it has been shown that the electrical generator connected to the

airfoil could be used to achieve some control over the airfoil’s response. This is especially true

when the velocity of the flow is increased above the design value. In such a case, the equivalent

damping of the generator could be increased in order to maintain high performances, and to

avoid amplitudes of motion that are too large. In counterparts, it has not been possible to

find an adequate compensation whenever the velocity of the flow is below its design value.

This situation proved to be very detrimental for the turbine’s performances.
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Future work

Following this numerical study, one of the first steps to be performed is certainly to investigate

more deeply the various cases shown in Chapter 5 (Table 5.6) where the heaving mass is

greater than for the optimized case. An optimization still remains to be performed about

these cases, and this could prove to be useful for the sake of finding an optimized case that

is well adapted for an application into a flow of air. The performances of these four cases are

already relatively high, and there is hope to further increase this efficiency. Using a solver

implementing a strong FSI coupling scheme should also be considered in order to investigate

other regions of the parametric space that are adapted to an application into a flow of water.

Next, it has not been possible to realize three-dimensional simulations of the fully-passive,

flapping-airfoil turbine due to time constraints. It will be important to achieve such simula-

tions in order to refine the numerical predictions. In fact, two main effects will need to be

assessed. First, the vortex shed at the leading edge of the airfoil will have the possibility to

break down into smaller structures, thus affecting the spanwise correlation of pressure over

the airfoil. However, it has been mentioned that structures oscillating as a result of fluid-

structure interaction tend to have a relatively strong correlation of pressure along the span,

especially when the amplitude of motion is large. For this reason, this effect should not impair

the performances of the turbine. The second effect that needs to be investigated is due to

the wingtip vortices associated to the finite lateral extent of the wing. Several aspect ratios

of the wing will need to be investigated, as much as the effect of using end plates to minimize

the effect of the wingtip vortices. This effect might reduce the performances of the turbine,

and this needs to be quantify. To end, simulations making use of a more advanced turbulent

modeling approach could be used, such as LES or a hybrid method combining URANS and

LES, in order to further refine the numerical predictions.

Future studies should also deal with the effect of the location of the elastic axis. Xiao and Zhu

(2014) showed that moving the elastic axis can have a significant impact on a passive airfoil.

In fact, they suggest that moving the location of the elastic axis is equivalent to changing the

phase lag between the heaving and the pitching motions, and the current study showed that

this synchronization is a critical parameter in order to optimize the efficiency of the turbine.

Another structural parameter that should be investigated is the airfoil’s profile. This study

made use of a NACA 0015 airfoil, and there is no guarantee that this is optimal.

A following step will be to investigate the behavior of the fully-passive, flapping-airfoil tur-

bine when it is used within a non-uniform flow, such as within a boundary layer. As the

fully-passive turbine is relatively a new subject in the literature, there is definitely a lack of

information concerning the effect of such a condition of the flow. Further, the effect of pertur-

bations within the flow should be investigated. Indeed, a fully-passive, flapping-airfoil should

not be oversensitive to fluctuations of the freestream flow, and this has not been investigated.
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Furthermore, experimental work could certainly be achieved on such a fully-passive, flapping-

airfoil turbine. Indeed, a recipe has been provided within this thesis in order to design an

experimental setup respecting the set of parameters corresponding the the optimized case.

Such an experimental work could help at better understanding the physics involved. This

could also highlight some special features or some complexities pertaining to such a mecha-

nism, especially concerning the design of the apparatus or its sensitivity. The effect of the

self-sustained oscillations on the spanwise correlation of pressure could also be investigated

through such an experimental study.

Last but not least, a semi-passive, flapping-airfoil turbine could be investigated. Studying

the fully-passive turbine surely provided a very good understanding of the physics involved.

Nevertheless, a semi-passive turbine where only one degree-of-freedom is prescribed could

be studied. In fact, the semi-passive devices that have been studied so far in the literature

are aeroelastic apparatus where the pitch is prescribed and the heave results from the fluid-

structure interaction. However, a novel system where the heave is prescribed and the pitch

results from the fluid-structure interaction could be studied more deeply. Indeed, if a lin-

ear motor/generator was connected to the airfoil, it could be used to constrain the heaving

motion. Then, the structural parameters of the device could be adjusted in order to obtain

an efficient pitching motion. Such a semi-passive turbine where the linear motor/generator is

used to control the motion could most probably be more easily optimized than its fully-passive

counterpart. Also, the device could probably be efficient over a larger range of flow conditions

as a result of the greater control on the dynamics. This is because a linear motor/generator

could provide a damping force that is variable throughout the cycle, thus providing much

control over the airfoil’s motion. Last, the semi-passive device where the heaving motion is

constrained has a clear advantage over the semi-passive device where the pitch is constrained.

Because the generator must be connected to the heaving motion, constraining the heaving

motion means that only one motor/generator is needed. On the contrary, constraining the

pitching motion requires a motor for the pitching motion, as much as a generator for the

heaving motion.

As a final remark, the author of this document hopes that the reader will show some interest

at pursuing the research on the aeroelastic problem here considered. There is still room for the

development of novel flow harvesters making use of renewable energies, and the research on

oscillating foils as efficient harvesters is only at its beginning. So far, most studies available in

the literature have been concerned with a better understanding of the physics. A lot of work

remains to be done in order to develop fully-passive or semi-passive, flapping-airfoil turbines,

but the encouraging results of this thesis surely demonstrate that it is worth the efforts.
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Appendix A

Turbulence modeling

A.1 Spalart-Allmaras RANS model

The Spalart-Allmaras one-equation turbulence model (see Spalart and Allmaras (1994)) makes

use of a modified eddy-viscosity concept. Generally speaking, the Boussinesq assumption

permits to calculate the Reynolds stresses in the following way, where the indicial notation is

used:

− u′iu′j = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
k δij , (A.1)

where νt is the turbulent kinematic viscosity, and k is the turbulent kinetic energy 1. However,

the Spalart-Allmaras model does not incorporate an equation for k, which means that the

term involving the kinetic energy is dropped, thus leaving:

− u′iu′j = νt

(
∂ui
∂xj

+
∂uj
∂xi

)
. (A.2)

Now, a transport equation for νt is required, and it has been obtained through an empirical

approach. In fact, a transport equation for the modified turbulent viscosity (ν̃) is obtained:

Change rate︷︸︸︷
∂ν̃

∂t
+

Convection︷ ︸︸ ︷
uj
∂ν̃

∂xj
=

Production︷ ︸︸ ︷
cb1 (1− ft2) S̃ν̃ −

Destruction︷ ︸︸ ︷[
cw1fw −

cb1
κ2
ft2

(
ν̃

d

)2
]

+
1

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
︸ ︷︷ ︸

Diffusion

,

(A.3)

1. The reader can refer to Eqs. 2.37 and 2.38 for a better understanding of the (′) notation and the ( )
notation.
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and the eddy viscosity can be computed as:

νt = ν̃fv1 . (A.4)

To complete the model, the following definitions are required:

fv1 =
χ3

χ3 + c3
v1

, (A.5)

χ =
ν̃

ν
, (A.6)

S̃ = Ω +
ν̃

κ2d2
fv2 , (A.7)

fv2 = 1 − χ

1 + χfv1
, (A.8)

fw = g

[
1 + c6

w3

g6 + c6
w3

]
, (A.9)

g = r + cw2

(
r6 − r

)
, (A.10)

r = min

[
ν̃

S̃κ2d2
, 10

]
, (A.11)

cw1 =
cb1
κ2

+
1 + cb2
σ

, (A.12)

where Ω is the vorticity magnitude, and d is the distance to the closest wall. Finally, the

following constants are used: cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41, cw2 = 0.3,

cw3 = 2, cv1 = 7.1, and ct4 = 0.5.

A.2 SST k − ω RANS model

The SST k − ω RANS turbulence model from Menter (1994) again makes use of the eddy

viscosity concept, but this time the complete equation, specifically Eq. A.1, is used. This

model is based on the k − ω model of Wilcox (1994), and also on the k − ε model of Jones

and Launder (1973). In fact, the SST k − ω model has been developed to take profit of the
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advantages pertaining to each model. Therefore, it acts as a k − ω model in the near-wall

regions, and as a k− ε model in the free stream regions. This is because the k−ω model has

proven to perform well in regions where separated flows and adverse pressure gradients are

encountered. In counterpart, the k − ε model has proven to perform well where the flow is

attached and well-behaved. The SST k−ω model has two transport equations, one for k and

one for ω:

Change rate︷︸︸︷
∂k

∂t
+

Convection︷ ︸︸ ︷
uj
∂k

∂xj
=

Production︷︸︸︷
P̃k −

Destruction︷ ︸︸ ︷
β∗kω +

Diffusion︷ ︸︸ ︷
∂

∂xj

(
(ν + σkνt)

∂k

∂xj

)
, (A.13)

Change rate︷︸︸︷
∂ω

∂t
+

Convection︷ ︸︸ ︷
uj
∂ω

∂xj
=

Production︷︸︸︷
αS2 −

Destruction︷︸︸︷
βω2 +

Diffusion︷ ︸︸ ︷
∂

∂xj

(
(ν + σωνt)

∂ω

∂xj

)
+ 2 (1− F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj︸ ︷︷ ︸
Cross diffusion

.

(A.14)

The turbulent kinematic viscosity is then calculated as:

νt =
a1k

max (a1ω, SF2)
, (A.15)

where

S =
√

2SijSij , (A.16)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (A.17)

Further, F1 and F2 are the blending functions to switch between k − ω and k − ε:

F1 = tanh

(min

{
max

{ √
k

β∗ωy
,
500ν

y2ω

}
,

4ρσω2k

CDkωy2

})4
 , (A.18)

F2 = tanh

(max

{
2
√
k

β∗ωy
,
500ν

y2ω

})2
 . (A.19)

Next, CDkω is defined in the following way to avoid issues associate to divisions by zero:
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CDkω = max

{
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−10

}
. (A.20)

Very often, and this is the case in OpenFOAM-2.1.x, a limiter is applied on P̃k to avoid an

artificial production of turbulence within stagnation regions as suggested by Menter (1993).

With such a modification:

Pk = νt
∂ui
∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
, (A.21)

P̃k = min {Pk, 20β∗ρωk} . (A.22)

To end, the constants of the model are calculated through a blending of the constants per-

taining to the k − ω model and to the k − ε model with the following equation:

α = α1F1 + α2 (1− F1) . (A.23)

The constants from the k − ω model are β∗ = 0.09, α1 = 5/9, β1 = 3/40, σk1 = 0.5 and

σω1 = 0.5, while the constants from the k − ε model are β∗ = 0.09, α2 = 0.44, β2 = 0.0828,

σk1 = 1 and σω2 = 0.856.
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Appendix B

Equation for the cycle-averaged

power

The equation for the instantaneous power has been introduced in Chapter 2. It was found to

be:

CLẏ + CM θ̇ = mh ÿẏ + S
(
θ̇2ẏ sin θ − θ̈ẏ cos θ

)
+ Dh ẏ

2 + kh yẏ

+ Iθ θ̈θ̇ − Sÿ cos θθ̇ + Dθ θ̇
2 + kθ θθ̇ .

(B.1)

In order to find the cycle-averaged equation for the power, each term must be averaged over

one complete cycle of oscillation. To achieve this, a very general periodic motion is assumed:

θ =
∞∑
n=1

θn︷ ︸︸ ︷(
an cos (2πnft) + bn sin (2πnft)

)
, (B.2)

y =
∞∑
n=1

yn︷ ︸︸ ︷(
cn cos (2πnft) + dn sin (2πnft)

)
, (B.3)

where the argument of each summation can be defined as θn and yn. With these definitions,

the cycle-averaged contribution of each term can be found, except for those involving the aero-

dynamic forces and moments. This is because the aerodynamics remains unknown. Starting

with the inertial term for the heaving motion (mh ÿẏ), one can write:
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1

T

T∫
0

mhÿ ẏ dt =
mh

T

∞∑
n=1

T∫
0

(
− ω3

nc
2
n cos(ωnt) sin(ωnt) − ω3

ncndn cos2(ωnt)

+ ω3
ncndn sin2(ωnt) − ω3

nd
2
n sin(ωnt) cos(ωnt)

)
dt ,

(B.4)

where ωn = 2πnf . Using a table of integration or a software such as Maple, the integral of

the previous equation formally gives zero, independently of the values taken by ωn, cn and

dn. Therefore:

1

T

T∫
0

mhÿ ẏ dt = 0 , (B.5)

and the inertial term from the equation of motion in heave does not contribute to the cycle-

averaged power. If the same operation is achieved with the inertial term in pitch (Iθθ̈θ̇), the

same equation is obtained except that the coefficients cn and dn are respectively replaced by

an and bn. The conclusion is therefore the same, and none of the inertial terms contribute to

the equation for the cycle-averaged power.

Now, let’s move to the damping term in heave (Dhẏ
2). Using the same methodology as before:

1

T

T∫
0

Dhẏ
2 dt =

Dh

T

∞∑
n=1

T∫
0

(
ω2
nc

2
n sin2(ωnt) + ω2

nd
2
n cos2(ωnt)

− 2ω2
ncndn sin(ωnt) cos(ωnt)

)
.

(B.6)

This time, the result of the integral does not fall to zero, and the following result is obtained:

1

T

T∫
0

Dhẏ
2 dt =

Dh

T

∞∑
n=1

(
2π2fn2

(
d2
n + c2

n

))
6= 0. (B.7)

Again, the same conclusion holds true for the damping term involved within the equation for

the pitching motion, except that cn and dn are respectively replaced with an and bn, and Dh

is replaced with Dθ. Concerning the term associated to the restoring force of the spring in

heave, the following is obtained:
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1

T

T∫
0

khy ẏ dt =
kh
T

∞∑
n=1

T∫
0

(
− ωnc

2
n cos(ωnt) sin(ωnt) + ωncndn cos2(ωnt)

− ωncndn sin2(ωnt) + ωnd
2
n sin(ωnt) cos(ωnt)

)
dt .

(B.8)

Solving this equation, the result is found to be formally zero:

1

T

T∫
0

khy ẏ dt = 0 , (B.9)

which is also the solution when the development is done for the cycle-averaged power associ-

ated to the restoring moment from the spring in pitch. That being said, the springs do not

contribute to the cycle-averaged equation of power. Last but not least, the inertial coupling

terms need to be treated. These terms require a special treatment as a result of the sines and

cosines that are present. Indeed, because of the cyclic motion assumed, this will lead to terms

of the type: cos(cos(ωnt)). To circumvent this issue, the sines and cosines are expressed as

Taylor series:

1

T

T∫
0

S
(
θ̇2 sin θẏ − θ̈ cos θẏ

)
dt =

S

T

∞∑
n=1

T∫
0

(
θ̇2
nẏn

∞∑
p=0

(−1)p

(2p+ 1)!
θ2p+1)
n

− θ̈nẏn
∞∑
m=0

(−1)m

(2m)!
θ2m
n

)
dt ,

(B.10)

− 1

T

T∫
0

S
(
ÿθ̇ cos θ

)
dt = −S

T

∞∑
n=1

T∫
0

ÿnθ̇n ∞∑
q=0

(−1)q

(2q)!
θ2q
n

 dt . (B.11)

All terms involved within the previous two equations have not been fully developed here as this

would certainly lead to large mathematical expressions. Nevertheless, a symbolic calculation

software, such as Maple, can be used to verify that Eqs. B.10 and B.11 are not equal to zero

unless S is null. This can be verified by using a finite number of terms within the Taylor

series, and by successively increasing the number of terms. Furthermore, by using the same

strategy it is possible to show that the summation of Eqs. B.10 and B.11 falls to zero as

the number of terms is increased. This indicates that the inertial coupling terms do not
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contribute, overall, to the cycle-averaged equation of power for the fully-passive, flapping-

airfoil turbine. Nevertheless, the inertial coupling permits a transfer of energy between both

degrees-of-freedom. To summarize, the cycle-averaged equation of power is:

1

T

T∫
0

(
CLẏ + CM θ̇

)
dt =

1

T

T∫
0

(
Dhẏ

2 + Dθθ̇
2
)
dt . (B.12)
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