7 research outputs found

    Investigation of model stacking for drug sensitivity prediction

    Get PDF
    Background: A significant problem in precision medicine is the prediction of drug sensitivity for individual cancer cell lines. Predictive models such as Random Forests have shown promising performance while predicting from individual genomic features such as gene expressions. However, accessibility of various other forms of data types including information on multiple tested drugs necessitates the examination of designing predictive models incorporating the various data types. Results: We explore the predictive performance of model stacking and the effect of stacking on the predictive bias and squarred error. In addition we discuss the analytical underpinnings supporting the advantages of stacking in reducing squared error and inherent bias of random forests in prediction of outliers. The framework is tested on a setup including gene expression, drug target, physical properties and drug response information for a set of drugs and cell lines. Coclusion: The performance of individual and stacked models are compared. We note that stacking models built on two heterogeneous datasets provide superior performance to stacking different models built on the same dataset. It is also noted that stacking provides a noticeable reduction in the bias of our predictors when the dominat eigenvalue of the principle axis of variation in the residuals is significantly higher than the remaining eigenvalues

    Investigation of model stacking for drug sensitivity prediction

    Get PDF
    Background: A significant problem in precision medicine is the prediction of drug sensitivity for individual cancer cell lines. Predictive models such as Random Forests have shown promising performance while predicting from individual genomic features such as gene expressions. However, accessibility of various other forms of data types including information on multiple tested drugs necessitates the examination of designing predictive models incorporating the various data types. Results: We explore the predictive performance of model stacking and the effect of stacking on the predictive bias and squarred error. In addition we discuss the analytical underpinnings supporting the advantages of stacking in reducing squared error and inherent bias of random forests in prediction of outliers. The framework is tested on a setup including gene expression, drug target, physical properties and drug response information for a set of drugs and cell lines. Coclusion: The performance of individual and stacked models are compared. We note that stacking models built on two heterogeneous datasets provide superior performance to stacking different models built on the same dataset. It is also noted that stacking provides a noticeable reduction in the bias of our predictors when the dominat eigenvalue of the principle axis of variation in the residuals is significantly higher than the remaining eigenvalues

    Simultaneous regression and classification for drug sensitivity prediction using an advanced random forest method

    Get PDF
    Machine learning methods trained on cancer cell line panels are intensively studied for the prediction of optimal anti-cancer therapies. While classifcation approaches distinguish efective from inefective drugs, regression approaches aim to quantify the degree of drug efectiveness. However, the high specifcity of most anti-cancer drugs induces a skewed distribution of drug response values in favor of the more drug-resistant cell lines, negatively afecting the classifcation performance (class imbalance) and regression performance (regression imbalance) for the sensitive cell lines. Here, we present a novel approach called SimultAneoUs Regression and classifcatiON Random Forests (SAURON-RF) based on the idea of performing a joint regression and classifcation analysis. We demonstrate that SAURON-RF improves the classifcation and regression performance for the sensitive cell lines at the expense of a moderate loss for the resistant ones. Furthermore, our results show that simultaneous classifcation and regression can be superior to regression or classifcation alone

    Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks

    Get PDF
    Deep learning with Convolutional Neural Networks has shown great promise in image-based classification and enhancement but is often unsuitable for predictive modeling using features without spatial correlations. We present a feature representation approach termed REFINED (REpresentation of Features as Images with NEighborhood Dependencies) to arrange high-dimensional vectors in a compact image form conducible for CNN-based deep learning. We consider the similarities between features to generate a concise feature map in the form of a two-dimensional image by minimizing the pairwise distance values following a Bayesian Metric Multidimensional Scaling Approach. We hypothesize that this approach enables embedded feature extraction and, integrated with CNN-based deep learning, can boost the predictive accuracy. We illustrate the superior predictive capabilities of the proposed fra- mework as compared to state-of-the-art methodologies in drug sensitivity prediction scenarios using synthetic datasets, drug chemical descriptors as predictors from NCI60, and both transcriptomic information and drug descriptors as predictors from GDSC

    Estimation of cognitive impairment in chronic pain patients and characteristics of estimated mild cognitive impairment

    Get PDF
    BackgroundPatients with chronic pain suffer from psychological effects such as anxiety due to the pain itself. Pain can not only impair activities of daily living (ADL) and quality of life (QOL), but also impair cognitive function. Therefore, in this study, we aimed to estimate the cognitive function of chronic pain patients using a deep neural network (DNN) model that has already been implemented in society. We investigated the characteristics of patients presumed to have mild cognitive impairment (MCI) and, at the same time, verified the relationship with the questionnaire commonly used in chronic pain research, which is administered by 43 university affiliated hospitals and medical institutions participating in the chronic pain research group of the Ministry of Health, Labor and Welfare in Japan (assessment batteries).MethodThe study included 114 outpatients from a multidisciplinary pain clinic, and we estimated their Mini-Mental State Examination (MMSE) scores based on age and basic blood test data (23 items). Furthermore, we classified the estimated MMSE scores of chronic pain patients into two groups based on a cutoff score of 27, which indicates MCI, and compared the blood data and assessment batteries. Additionally, we used a control group of 252 healthy adults aged 45 years or older who visited a dementia prevention outpatient clinic for comparison with the MMSE scores of chronic pain patients.ResultThe MMSE scores in chronic pain patients were below the cutoff for MCI. When classified into two groups based on the estimated MMSE score of 27 points, WBC, RBC, Hb, Hct, PLT, UA, BUN, creatinine, Triglyceride, and γ-GT were significantly higher in the blood data. In the MCI group, PDAS values were significantly lower. Furthermore, only in the non-MCI group, a significant correlation was found between the estimated MMSE value and BPI, PDAS, and Locomo. The estimated MMSE scores were significantly lower in chronic pain patients than in healthy adults (p = 0.04).ConclusionPatients with chronic pain may exhibit cognitive impairment due to systemic metabolic disturbances. This suggests that chronic pain affects activities of daily living, resulting in systemic metabolic disorders

    Investigation of model stacking for drug sensitivity prediction

    Get PDF
    Background: A significant problem in precision medicine is the prediction of drug sensitivity for individual cancer cell lines. Predictive models such as Random Forests have shown promising performance while predicting from individual genomic features such as gene expressions. However, accessibility of various other forms of data types including information on multiple tested drugs necessitates the examination of designing predictive models incorporating the various data types. Results: We explore the predictive performance of model stacking and the effect of stacking on the predictive bias and squarred error. In addition we discuss the analytical underpinnings supporting the advantages of stacking in reducing squared error and inherent bias of random forests in prediction of outliers. The framework is tested on a setup including gene expression, drug target, physical properties and drug response information for a set of drugs and cell lines. Coclusion: The performance of individual and stacked models are compared. We note that stacking models built on two heterogeneous datasets provide superior performance to stacking different models built on the same dataset. It is also noted that stacking provides a noticeable reduction in the bias of our predictors when the dominat eigenvalue of the principle axis of variation in the residuals is significantly higher than the remaining eigenvalues
    corecore