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Abstract

Background: A significant problem in precision medicine is the prediction of drug sensitivity for individual cancer
cell lines. Predictive models such as Random Forests have shown promising performance while predicting from
individual genomic features such as gene expressions. However, accessibility of various other forms of data types
including information on multiple tested drugs necessitates the examination of designing predictive models
incorporating the various data types.

Results: We explore the predictive performance of model stacking and the effect of stacking on the predictive bias
and squared error. In addition we discuss the analytical underpinnings supporting the advantages of stacking in
reducing squared error and inherent bias of random forests in prediction of outliers. The framework is tested on a
setup including gene expression, drug target, physical properties and drug response information for a set of drugs
and cell lines.

Conclusion: The performance of individual and stacked models are compared. We note that stacking models built
on two heterogeneous datasets provide superior performance to stacking different models built on the same dataset.
It is also noted that stacking provides a noticeable reduction in the bias of our predictors when the dominant
eigenvalue of the principle axis of variation in the residuals is significantly higher than the remaining eigenvalues.

Keywords: Drug sensitivity prediction, Stacking, Bias

Background
In precision medicine, drug sensitivity prediction is a
significant problem. The primary goal of improving
prediction accuracy for precision medicine opens up
problems that are broadly relevant to other machine
learning tasks. In this article, we examine the stacking
of predictive models and their influence on prediction
accuracy and modeling bias. The principal individual
model considered in this article is Random Forests (RF)
since previously reported studies [1–4] have shown RF to
outperform multiple other approaches in drug sensitivity
prediction applications. However, RF models can suffer
from inherent bias where they under predict sensitivities
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above the mean and over predict sensitivities below the
mean. There have been some recent studies to address
this bias [5, 6] but none have explored the effect of stack-
ing on bias. In this article, we illustrate that stacking of
model predictions automatically lower the inherent bias
in RF based models without having to resort to explicit
bias reduction approaches. Furthermore, we explored
the theoretical underpinnings of the stacking operation
on mean squared error and how stacking will produce
results that are no worse than the worst individual
model.

To demonstrate the role of stacking in accuracy and
bias reduction, we created a drug sensitivity prediction
setup with multiple data sources. The main motivation
behind stacking is that each model will provide comple-
mentary information. For that reason we have included a
variety of different datasets to built our individual mod-
els. We consider multiple cell lines and multiple tested
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drugs as well as the genomic information in the form of
gene expressions for each cell line. Each drug is charac-
terized by its physical properties and its potential targets.
The drug responses are normalized Area Under the curve
(AUC) values obtained from cell viability curves. This
setup allows us to explore incorporating complementary
information in our prediction models. For instance, gene
expression provides information on each cell line whereas
drug targets provide information on each drug that is
complementary to genomic information. Thus, the effect
of both cell line and drug information can be included
in prediction. Note that, we can train some models only
on cell lines with fixed drug whereas other models can
be trained on drugs with fixed cell line and they can
be combined to produce an integrated prediction model.
This study provides a theoretically sound, but easy to
implement, methodology to jointly analyze multiple phar-
macogenomics databases [7, 8] that include information
on multiple cell lines and multiple drugs. Thus, for a
new cancer patient, a biopsy can be used to generate
a genomic profile of the patient and a drug screen can
be run to get an estimate of the cell viability for the
drugs in the screen and then we can utilize these infor-
mation along with prior database information to predict
sensitivities for drugs that have not been tested in the
drug screen. Improvement in performance will motivate
us to explore personalized medicine from the perspec-
tive of training using both genomic and drug specific
features.

Methods
Drug sensitivity prediction
To investigate stacking performance, we selected indi-
vidual modeling techniques that have previously shown
to perform well for drug sensitivity predictions scenar-
ios. These methods include Random Forest regression
approach and Neural Network based prediction along
with KNN based sensitivity estimation using drug tar-
get profiles. We provide a brief overview of these three
approaches below.

Random forest
Random Forest regression refers to an ensemble of regres-
sion trees [9] where a set of T un-pruned regression
trees are generated based on bootstrap sampling from the
original training data. For selecting the feature for split-
ting at each node, a random set of m features from the
total M features are used. The inclusion of the concepts
of bagging (Bootstrap sampling for each tree) and ran-
dom subspace sampling (node split selected from random
subset of features) increase the independence of the gen-
erated trees. Thus the averaging of the prediction over
multiple trees has lower variance compared to individual
regression trees.

Process of splitting a node Let X
(
i, j

)
and Y (i)(i = 1, · · · ,

n; j = 1, · · · , M) denote the training predictor features
and output response samples respectively. At any node
ηP , we aim to select a feature js from a random set of
m features and a threshold z to partition the node into
two child nodes ηL (left node with samples satisfying
xtr

(
I ∈ ηP, js

) ≤ z) and ηR (right node with samples satis-
fying X

(
i ∈ ηP, js

)
> z). We consider the node cost as sum

of square differences:

D (ηP) =
∑

i∈ηP

(Y (i) − μ (ηP))2 (1)

where μ(ηP) is the expected value of Y (i) in node ηP.
Thus, the reduction in cost for partition γ at node ηP is

C (γ , ηP) = D (ηP) − D (ηL) − D (ηR) (2)

The partition γ ∗ that maximizes C(γ , ηP) for all pos-
sible partitions is selected for node ηP . Note that for a
continuous feature with n samples, a total of n partitions
needs to be checked. Thus, the computational complex-
ity of each node split is O(mn). During the tree generation
process, a node with less than nsize training samples is not
partitioned any further.

Forest prediction Using the randomized feature selec-
tion process, we fit the tree based on the bootstrap sample
{(X1, Y1) , ..., (Xn, Yn)} generated from the training data.

Let us consider the prediction based on a test sample x
for the tree �. Let η(x, �) be the partition containing x,
the tree response takes the form [9–11]:

Y(x, �) =
n∑

i=1
wi(x, �)y(i) (3)

where the weights wi(x, �) are given by

wi (x, �) = 1{xtr(i)∈η(x,�)}
# {r : xtr(i) ∈ η (xtr(r), �)} (4)

Let the T trees of the Random forest be denoted by
�1, · · · , �T and let wi(x) denote the average weights over
the forest i.e.

wi(x) = 1
T

T∑

j=1
wi

(
x, �j

)
. (5)

The Random Forest prediction for the test sample x is
then given by

Y(x) =
n∑

i=1
wi(x)y(i) (6)

Neural networks
Deep Learning (DL) is a revived Neural Networks (NN)
based approach that is increasingly becoming popular
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due to its high predictive power for scenarios with large
number of samples.

There exists a vast number of software options available
to process a Deep Learning problem and we utilized the
tool H2O [12], in its R-Package form. H2O is Java based,
open source, multi-interface and multi-language machine
learning and analytics platform that allows machine learn-
ing modeling using several algorithms including Deep
Learning Neural Networks [13]. H2O deep learning mod-
ule is based on a multi-layer feed-forward artificial neu-
ral network, trained with stochastic gradient descent
(loss function minimization) using back-propagation [14].
An illustration of the neural network model is given
in Fig. 1.

For this study the model parameters were selected after
using grid search on a validation set. In general terms and
for all the models, the early stopping deviance criteria was
set to 0.001, with a �2 regularization of 0.0001. The activa-
tion function chosen was a Tanh and 4 hidden layers with
the same number of neurons for each layer. The number
of neurons in each layer was set to be equal to the number
of input features.

Sensitivity estimation using drug targets
Drug targets have been shown to be an effective source of
data for estimating drug sensitivities [15]. However target
data tends to be very sparse which limits the number of
available methods. The k-Nearest Neighbor (KNN) algo-
rithm is a simple yet powerful method of nonlinear clas-
sification that is popular in machine learning for sparse
data. Given a set of training vectors � with their corre-
sponding sensitivities S, we can estimate the sensitivity
given a drug’s target profile by looking at the sensitivi-
ties corresponding to the k-closest training target profiles.

For our case, we have chosen taxicab distance to pick the
closest training samples, defined as:

d(φ, ψ) =
nTargets∑

i=1
|φi − ψi|

The average of the k closest training vectors is our pre-
diction. In our model we have chosen to look at k = 5
closest samples.

We have developed two separate models for predict-
ing drug sensitivity with KNN and target data. In the
first method, which we denote as KNN Direct, we simply
directly estimate AUC using all available target data for a
single cell line. For the second method, called KNN Resid-
ual, we instead predict the residuals (actual values minus
the mean) of each drug for a given cell line. We then add
our residual prediction back onto the mean AUC of each
drug for our final prediction.

Integrated prediction
Up to this point, we have considered each model inde-
pendently, i.e. one model for one set of data. However
biological processes are complex and restricting our data
to a single type rarely shows us the whole picture. To
overcome this limitation, we have also utilized a systems
genomics approach in our predictions.

From a machine learning point of view, we can format
this as ensemble prediction problem. We first select Nm
models, then let ỹ = [

y1, y2, ..., yNm

]
be the output of

each of our individual models. The final prediction, yf is
formed using these individual predictions i.e.

yf = C(ỹ)

Fig. 1 Deep Network layers and neuron details. Image generated from [14]
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Linear stacking
As the name implies, linear stacking is simply a linear
combination of prediction algorithms i.e.

yf = ỹ w + b

where w is our set of linear weights for each model. We
can easily solve for the weights utilizing matrix inverse to
find the least squares solution.

Due to its high accuracy and low computational cost we
have focused mainly on the Random Forest for our anal-
ysis of stacking. By comparison, the Neural Network has
comparable accuracy but has significantly longer training
train which did not make it practical for our purposes. It
should be noted, however; that in principle linear stack-
ing functions independent of the individual models and
in most practical scenarios the model that has the highest
accuracy for each given dataset should be chosen.

Analysis of stacking
In this section we illustrate some attractive benefits of
stacking operation besides being a simple tool to com-
bine outputs from different models. Our main focus is
on demonstrating how stacking reduces bias in Random
Forest (RF) prediction. We conceptualize the distribu-
tion of ensemble predictions arising from each tree in
the RF and frame a Bayesian Hierarchical model. It is
shown that, under the assumption of Gaussianity, the
Bayes rule, under mean square loss, turns out to be a linear
combination of individual model outputs.

Denote the RF training dataset as DF = (Y , x). We can
view RF prediction as a weighted average of the individual
tree prediction, i.e.,

Ȳ (x) = 1
T

T∑

j=1

n∑

i=1
wi

(
x, �j

)
y(i) (7)

Define the random variable Zj
(
x, �j

) = ∑n
i=1 wi

(
x, �j

)

y(i), j = 1, 2..., T as the prediction obtained from the
jth tree generated by the �− process. Let us assume that
the �− process induces a valid distribution on the finite
collection

Z(x, �) = [Z1(x, �1), Z2(x, �2), ..., ZT (x, �T )] (8)

Now, observe that each tree attempts to predict the tar-
get μ(x) = E(Y |x) and the RF predictor, Ȳ (obtained
in 7), emerges as the sample average, Z̄ of Z(x). However,
finite sample tree predictions are biased [6] resulting in
E(Zj(x)) = αj(n) + βj(n)μ(x) and Var(Zj(x)) = σ 2

j j =
1, 2, .., T , where the additive bias αj(n) is a sequence of
constants that goes to 0 as n → ∞ and the multiplicative
bias βj(n) is a sequence of constants that approaches 1 as
n → ∞ under some smoothness condition on true μ(x)

[16]. Note that, in this construction σ 2
j can be interpreted

as the variance of individual tree estimates and, therefore,

is of the order kn/n where kn is approximately the num-
ber of terminal nodes and n is the number of samples on
which the tree is built [17].

For illustration purpose, we assume αj = 0, βj = β > 0
and σ 2

j = σ 2, j = 1, 2, ..., T . In this formulation 0 <

β < 1 is the event of underprediction by RF estimate,
as is typical for small values of responses, and β > 1 is
the event of overprediction by RF estimate, as is typical
for large values of responses [5]. For notational simplic-
ity, we suppress the arguments n, � and x in relevant
statistics henceforth. Under the assumption of Gaussian-
ity and conditional independence, the joint distribution of[
Z|μ, β , σ 2] is

∏T
j=1 Normal

(
βμ, σ 2). If there are no other

models, we can assume a prior π
(
μ, σ 2) ∝ 1 (note that

μ and β are not identifiable in this case) and the posterior
mean of μ|σ 2,DF turns out to be the familiar RF estimate.
Suppose, we have another model, M, potentially operating
on a different set of inputs, xm, but predicting the same
response variable Y. We denote the training data for this
model M as DM. The output of this model is μm which
is an estimator of E(Y |xm). If we wish to pool both RF
and model M together to generate predictions of Y, we
can develop a hierarchical structure with μm as a prior
mean for μ, so that the posterior of μ is conditional on
both DF and DM. For simplicity, let us assume conjugacy
and impose a Normal

(
μm, τ 2) prior on μ. If M is another

ensemble model, τ 2 can be computed in the same vein as
σ 2. If M is deterministic, then a procedure to compute τ 2

in a general setting is described in [18, 19].
Therefore the hierarchical specification takes the form

[
Z|μ, σ 2, β

] [
μ|μm, τ 2] [

σ 2, τ 2, β
]

(9)

and the conditional posterior distribution of μ,[
μ|σ 2, τ 2, β ,DF ,DM

]
, turns out to be Normal

(
λ, ν2),

where,

ν2 =
(

1
τ 2 + Tβ2

σ 2

)−1
, (10)

λ = Tβτ 2

σ 2 + Tβ2τ 2 Z̄ + σ 2

σ 2 + Tβ2τ 2 μm. (11)

Note that, the Bayes estimate under square error loss is
the posterior mean λ which happens to have similar form
as the foregoing linear stacking estimator.

How is this representation of stacking estimator insight-
ful? Observe that if σ 2 is small, in particular if σ 2 � τ 2

and β > 1 then λ ≈ 1
β

Z̄. Thus, when the ensembles in RF
overpredicts, the stacking estimator downweighs the RF
estimator (with negligible contribution from μm) thereby
reducing the bias. On the other hand, if σ 2 � τ 2 and
0 < β < 1 then λ ≈ Cβ

1+Cβ2 Z̄ + 1
1+Cβ2 μm, where C =

Tτ 2/σ 2 
 1. In this situation RF ensemble underpre-
dicts but stacking operation counteracts in the following
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way: (a) When Cβ ≤ 1, the stacking estimate under-
weighs RF estimate but adds a non-trivial fraction of μm.
In an extreme situation, when β(∈ R

+) is in the neighbor-
hood of 0, the stacking estimator does not put any weight
on the RF estimate and solely uses μm as the prediction,
thereby reducing the RF bias. (b) When Cβ 
 1 the stack-
ing estimator upweighs the RF estimate with minimal
contribution from μm. Clearly, in all the three foregoing
situation, stacking helps reducing the bias of RF estimates.

What happens when σ 2 and τ 2 are comparable or σ 2 

τ 2? Our argument from previous paragraph suggests that
the debiasing characteristic of stacking operation will crit-
ically hinge on T. However, arbitrarily large T is not useful
because after a certain number of trees, individual tree
outputs will be correlated hence violating the fundamental
premise of conditional independence in our setup. Conse-
quently, the effect of stacking operation on debiasing RF
output is ambiguous.

Observe that in practise, we do not need to estimate
the relevant parameters in the coefficient of Z̄ and μm
in (11). We can simply replace μ by observed responses
(that are not used to obtain Z̄ and μm) and regress that on
predictions obtained from RF and model M. The regres-
sion coefficients can be treated as the estimates of the
coefficients in (11) while the intercept can be interpreted
as an estimate of average additive bias. Thus, we argue
that standard linear stacking operation should also behave
according to the formulation above and will be an effective
debiasing device subject to the variance condition.

The fact that we need σ 2 � τ 2 to force the stacking
estimator operate as a debiasing devise indicates that we
ought to design the stacking operation in such a way that
the above condition is satisfied. Consider a generic situ-
ation where DM consists of n1 independent samples and
the feature matrix xm is of dimension n1 × p1. DF consists
on n2 samples and the corresponding feature matrix x is
of dimension n2 ×(p1 +p2), with col(xm) ⊂ col(x), i.e., DF
includes all the features observed in DM and also p2 addi-
tional feautes. We must predict the response utilizing the
entire set of p1+p2 features. One can easily combine these
two training sets by training an RF on DM, obtain μm and
τ 2 and then use this prior information on the RF trained
on DF . In other words, one can simply stack RFs trained
on DM and DF . We call this operation vertical stacking.
Since both are RF estimators σ 2 is of order k./n2 and τ 2

is of order k./n1. Since k. is typically user specifed and can
be made to remain constant in both RFs, the variances
of the stacking components are essentially determined by
the sample sizes of the respective training set. Clearly, if
n2 < n1 the above condition relating the variances of the
stacking components cannot be enforced. One can argue
that the variance condition can be maintained by switch-
ing the generic label σ 2 and τ 2, but in this situation DF
contains more information as compared to DM and hence

we would like to put more weight on the RF trained on DF .
In other words, the stacking operation should more effec-
tively debias the RF estimates obtained from DF than the
other way around.

To enforce the variance condition, regardless of the
sample sizes of DM and DF , we introduce the notion of
horizontal stacking. In this form of stacking we first parti-
tion the feature matrix associated with DF into two parts
xn2×(p1+p2) = (

xn2×p1
p1 , xn2×p2

p2

)
. We then train an RF on

n1 + n2 samples with feature matrix (xm, xp1)
′. If σ 2 is the

variance associated with this stacking component, then σ 2

is of the order k./(n1 + n2). The other model is also an
RF but trained on n2 samples and feature matrix xp2 . If τ 2

is the variance associated with this stacking component,
then τ 2 is of the order k./n2. Keeping the number of ter-
minal node constant, we can easily see σ 2 < τ 2 and hence
we expect horizontal stacking to be more efficient in debi-
asing than vertical stacking. Furthermore, as n1, n2 → ∞
and β → 1, it is easy to see, from (10), that the variance
of horizontal stacking estimator is smaller than its vertical
counterpart. Figure 2 provides a graphical representation
of these two forms of stacking. Group H1 contains n1 +n2
samples with p1 features while H2 contains only n2 sam-
ples with feature set p2. Our horizontal stacking predictor
Hc is then the linear ensemble of H1 and H2. Mean-
while, V 1 contains only p1 features with n1 samples and
V 2 has all p1 + p2 features but with n2 samples. The lin-
ear ensemble of V 1 and V 2 is then our verticle stacking
predictor Vc.

Results
In this section, we first demonstrate the performance of
vertical stacking and horizontal stacking of two RF com-
ponents on a synthetic dataset and a real dataset. For both
datasets we observe that horizontal stacking is not only
more effective in reducing bias but also consistently out-
performs its vertical counterpart in terms of MSE. Next,
we demonstrate how linear stacking of different models

Fig. 2 Stack Diagram
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operating on different non-overlaping features outper-
forms each individual component both in terms of bias
and MSE reduction.

Synthetic data
We generate a 2000 × 100 matrix of covariates drawn
from a Normal (0, 1) distribution. Then a random set of
100 weights are created, half are randomly selected to be
"weak" predictors and are drawn from a Uniform (0, 0.5)

distribution while the other half are "strong" predictors
drawn from Uniform (1.5, 3). These weights are linearly
combined with our covariates to create a set of 2000
responses. We then obtain the variance of the forego-
ing responses and add gaussian noise with a variance
set at 3% the sample variance of the non-noisy data and
add an intercept of 1.4. Finally, the noisy responses are
normalized into the range of [−1, 1].

Data is sectioned off into three groups. The first group is
a set of 100 samples that constitutes our initial training set.
The second group contains 50 samples and serves as a val-
idation set for building the stacking ensemble predictors.
The third group is 500 used for testing. The remain-
ing samples are reserved for later addition into group
one. The entire process is then repeated to generate 100
independent sets of data which are treated as replicates.

To illustrate the operation of vertical and horizontal
stacking we divide our synthetic training data into the
groups illustrated in Fig. 2 and build our individual and
stacked models. Each individual model is a Random Forest
with 50 trees and each tree utilizes one-third the input fea-
tures. When splitting our features we make certain each
horizontal group has at least 25 weak and 25 strong fea-
tures. We then start adding samples, 20 at a time, to each
group, remake our models and then re-estimate our MSE.

Bias analysis: A plot of the residuals obtained from the
RF estimates against the observed values often shows a
linear trend [5] as against a random scatter about 0. There-
fore, to assess the bias of the candidate model we can
simply regress the residuals on the observed values. The
angle (θ , see Fig. 3) the fitted line makes with the horizon-
tal axis can be used as a measure of bias for that model.
Larger values of θ indicates more bias and in the case of
unbiasedness, θ = 0. Figure 4 shows that the bias asso-
ciated with horizontal stacking is substantially lower than
that incurred in vertical stacking in accordance with the
theoretical analysis of the previous section.

MSE analysis: Besides reduction in bias, we also argued
in the previous section that the variance of horizontal
stacking estimator should also be smaller than that of the
vertical stacking estimator. Therefore, we would expect to
see that the MSE associated with the predictions of the
test samples would be consistently smaller for the former
as compared to the latter. Figure 5 shows the performance
of these two types on stacking in terms of prediction MSE

Fig. 3 Example of the residuals from a biased estimator that shows
the bias angle θ derived from best fit line

for increasingly larger (training) sample sizes. Both H2
and V 1 perform comparably across all the sample sizes
under consideration. This is expected as both models have
the same number of samples and features. V 2, having all
the features but fewer samples, overfits the data initially
leading to higher prediction MSE as compared to H1,
but as the sample size increases, V 2 outperforms H1 to
become the top single performer. However, regardless of
the performances of individual components, the predic-
tion MSE of horizontal stacking is consistently lower than
that of the vertical stacking across all sample sizes under
investigation.

Analysis of CCLE data
In order to test our theory on real dataset, we obtain gene
expression and normalized Area Under the Curve (AUC)
values for the cell lines tested on the drug 17-AAG from
the Cancer Cell Line Encyclopedia (CCLE) [7]. From the
available 19, 000 gene expressions we use RELIEFF [20] to
screen top 250 features. Similar to the synthetic case, we

Fig. 4 Residuals and best fit line for vertical stacking (left) and
horizontal stacking (right) on synthetic data with 1200 training
samples and 50 testing samples
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Fig. 5 Mean Square Error (MSE) on Synthetic Data with increasingly large training sample sizes. H1, H2, V1, and V2 are individual RF models built
using the template in Fig. 2. Hc and Vc are horizontal and vertical stacking models, respectively, built with their corresponding individual models.
MSE shown is the average over 100 replicates

segregate 50 training samples into our vertical and hori-
zontal groups, build individual predictive model RF with
50 trees, build the stacking model using a set of 150 sam-
ples, and obtain the prediction MSEs of candidate models
on a set of 50 testing samples. We then add 2 training
samples and reestimate the MSEs. We repeat this process
until the training set has a total of 150 samples. The entire
process is replicated 100 times with randomly selected
training, testing, and validation samples in every itera-
tion. The results are shown in Figs. 6 and 7. Similar to the
synthetic results we see horizontal stacking consistently
outperforming vertical stacking both in terms of reducing
bias and prediction MSE.

Analysis of GDSC data
We have access to four non-overlapping sources of data.
(a) Drug sensitivity values for 265 compounds in the form
of normalized AUC on 982 cancer cell lines supplied by

GDSC [8] constitute the response variable. (b) Normal-
ized gene expression for 982 cancer cell lines, also given
by GDSC [8], forms one set of predictors. Once again,
we use RELIEFF to screen the top 500 gene expression
features from 18, 000 available features. Since, the appli-
cation of feature selection is drug dependent, the set of
500 selected features can be different for each drug. (c)
Second set of predictors consists of the physical descrip-
tors for 178 drug compounds calculated using the PaDEL
software with the structure data files downloaded from
PubChem [21]. The PaDEL defaults provide 1444 proper-
ties but we have removed features that had no variability
across drugs resulting in 1181 chemical descriptors for
each drug. Each chemical feature is a numerical value
that can be continuous or discrete. (d) Finally, the last
type of predictors contain information about the target
proteins of 139 drugs under consideration. We generate
the drug target predictor set by mining information from

Fig. 6 Residuals and best fit line for vertical stacking (left) and horizontal stacking (right) on 17-AAG data utilizing top 250 features 150 training
samples and 50 testing samples
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Fig. 7 Mean square error (MSE) of AUC prediction on 17-AAG using top 250 gene expression features and 150 samples for validation. H1, H2, V1,
and V2 are individual RF models built using the template in Fig. 2. Hc and Vc are horizontal and vertical stacking models, respectively, built with their
corresponding individual models. MSE shown is the average over 100 iterations with new training/testing samples at each iteration

PubChem’s bioassay database [22]. For each drug, we look
for either the reported Kd (dissociation constant) or EC50
(drug concentration required to reach 50% of maximal
inhibition of the target) values for 419 kinases. In the case
of multiple reported values, we first remove any major
outliers using the following equation. Let ti be a set of all
reported Kd or EC50 values for target i. We then calculate
the order of magnitude, m for each value and remove any

values that deviates strongly from the most common order
of magnitude as shown below.

m = floor
(
log10

(ti
))

(12)
Remove value if abs ( m − mode (m̃)) > 3 (13)

We have noticed this to be particularly effective when
values are misreported as nanomolars instead of the

Fig. 8 Pictorial Description of the data types used in our analysis
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standard micromolar. For the final value, we pick the
median of all remaining values. These target values are
then binarized using a threshold of one-half of the max-
imum dosage of the respective compound (taken from
GDSC as well). A target is considered inhibited (value of
1) if the target value is less than one-half the max dose
otherwise the value is set to 0.

A graphical representation of various data sources and
their relationships are shown in Fig. 8. The intersection
of all data sets gives approximately 80000 samples. For
model training and validation, the data was randomly split
up into three sets. The first set contains approximately
60% of all samples and is used for training the individ-
ual predictors. The second set contains only 20% of the
data and is used to estimate the stacking model param-
eters. Finally, the remaining 20% of the data is used for
testing both individual and the ensemble prediction algo-
rithms. A list of individual predictive models along with a
short description for each of them is provided in Table 1.
The “mean” model, where we simply utilize the mean AUC
of each drug as our prediction, is included to establish a
baseline. We measure the performance of individual can-
didate model using the Pearson correlation between all
observed and predicted AUC values in our testing set
as well as the mean squared error normalized with the
mean square error of the mean predictor (NMSE). The
results are shown in Table 2. In terms of individual per-
formances, the genomic features outperformed the drug
based features. Using genomic features, the RF produced
a correlation of 0.7276 and NMSE of 0.7910 outperform-
ing the remaining candidate models. We also note that
modeling the centered AUC with drug target data works
significantly better than modeling the raw AUCs. Conse-
quently, we remove KNN Direct and NN Phy Direct from
any further consideration.

Table 1 Explanation of all individual techniques used to predict
drug AUC. Methods utilizing Residuals predict the sample-mean
centered sensitivities (actual AUC- mean AUC) instead of the AUC
directly

Method Description

Mean Prediction using the mean AUC of each drug

KNN Direct K Nearest Neighbor (KNN) Approach using the actual
AUC with drug target data

KNN Residual KNN using the residuals with drug target data

NN GE Neural Network on Gene Expressions

NN Phy Direct Neural Network on Chemical Descriptors of drugs

RF Phy Residual Random Forest on Chemical Descriptors of drugs
using the residuals

RF GE Random Forest on Gene expression

Table 2 Performance of Single Predictors in terms of correlation
coefficient between predicted and actual AUCs (correlation) and
normalized mean square error (NMSE) for predicting AUC. Models
used for building higher order linear ensembles are shown in bold

Method Correlation NMSE

Mean 0.6345 1

KNN Residual 0.6786 0.931

KNN Direct 0.3623 1.555

NN GE 0.7033 0.8613

NN Phy Direct 0.3485 1.947

RF Phy Residual 0.6819 0.8960

RF GE 0.7276 0.7910

Next, we combine pairs of five surviving individual can-
didate models utilizing the linear stacking approach to
obtain the second order linear ensemble. The perfor-
mance of 10 second order linear ensembles, in terms of
correlation and NMSE, are shown in Table 3. Observe
that the linear ensemble of top two single models (RF
GE and NN GE) does not deliver the best predictive
performance in this setup. Instead, the top 3 perform-
ers (RF GE - KNN Residual, RF GE - RF Phys Residual,
NN GE - KNN Residual) comprise of individual mod-
els that are trained on uncorrelated feature sets. In fact,
linear combination of RF and NN, both trained on gene
expression data performs worse than RF GE alone. A
potential reason for this phenomenon is multicollinear-
ity among the members in the linear ensemble. In either
case it is plain to see that when stacking models it
is best to include as much complementary information
as possible.

Finally, all five individual predictive models are com-
bined using linear stacking to obtain a single linear ensem-
ble predictive model. The performance of this ensemble
is reported in Table 4 along with the performance of the
best single predictive model (RF GE) and the best second
order linear ensemble (RF GE- KNN Residual). Observe
that the final linear ensemble substantially outperforms
the other two candidates both in terms of correlation
and NMSE.

Discussion
Bias analysis: Multiple methods have been proposed to
correct the bias in Random Forests [5, 6]. Our foregoing
theoretical discussion and simulation study suggest that
appropriately designed linear stacking of individual pre-
dictive models is also an effective debiasing devise that
can also improve prediction mean square errors. Here
we explore how linear stacking compares with extant
methodologies for bias correction in RF. In particular we
use the BC1 bias correction algorithm proposed in [6]
where we fit a second RF with residuals as the response
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Table 3 Correlation coefficients and NMSEs, in parenthesis, of second order linear ensemble with two component models for AUC
prediction. Top 3 predictors are shown in bold

KNN residual NN GE RF phy residual RF GE

Mean 0.7181(0.8092) 0.7120(0.8266) 0.7090(0.8324) 0.7264(0.7919)

KNN Residual 0.7492(0.7341) 0.7197(0.8092) 0.7550(0.7225)

NN GE 0.7455(0.7457) 0.7258(0.7919)

RF Phys Residual 0.7504(0.7341)

and the validation data as the covariates and then obtain
the final prediction of AUC in the test set by adding the
predicted residuals (obtained from the second RF) to the
predicted values of the AUC generated by the principle
RF fitted on the training data. Note that BC1 outperforms
the remaining 4 algorithms discussed in [6]. In the second
method, RRot, we estimate the residuals using the same
method as in BC1 , however instead of adding the resid-
uals back into our prediction we first rotate the residuals
until the best fit regression line between residual and pre-
dicted values of the response is horizontal [5]. The results
of these methods is shown in Table 5. Bootstrap confi-
dence intervals are created using 1000 bootstrap samples.
We see that the linear stacking ensemble has the best per-
formance among all other approaches in terms of high
correlation, low MSE and low bias. Averaging over all
drugs, the linear stacking ensemble yields the lowest aver-
age θ , θ̄ , of 34.25°as compared to that of the standard RF
trained on gene expression data. The bias corrected ver-
sion of RF infact increases θ̄ hence we do not investigate
BC1 and RRot any further.

To visually assess the effect of variance condition
(τ 2/σ 2 
 1) on the efficacy of linear stacking in reduc-
ing bias we offer the residual plots of two drugs Belinostat
(Fig. 9) and AZ628 (Fig. 10). The former figure demon-
strates that linear stacking efficiently reduces the bias
while the latter shows a scenario where linear stacking is
unable to correct the bias. To explain this phenomenon
we generate the scatter plot of the residuals for our 2
best performing individual methods, the RF GE and KNN
Residual, for these two drugs. The left panel of Fig. 11
shows this plot for AZ628 and the right panel corresponds

Table 4 Correlation coefficient between predicted and actual
AUCs (correlation), and normalized mean square error (NMSE) for
predicting AUC of our best single predictor, the RF GE, and linear
stacking of five individual predictive models that appear in bold
in Table 2

Correlation NMSE

RF GE 0.7276 0.791

RF GE + KNN Residual 0.7550 0.7225

Linear Stacking Ensemble 0.7746 0.6705

to Belinostat. From these plots we see that the residuals
for RF and KNN for Belinostat have a dominant prin-
ciple axis of variation, with the normalized eigen values
being 0.95 and 0.05. This satisfies the variance condition
and hence we expect stacking operation to reduce bias
substantially. However, for AZD628, the normalized eigen
values are 0.76 and 0.23. Given that the ratio of these
eigen values is close to 1, linear stacking is not guaran-
teed to reduce bias. Clearly, the variance condition offers
an insight as to whether linear stacking will be beneficial
or not. For higher (> 2) order linear stacking, we recom-
mend to perform an eigen analysis on the residuals after
all the individual models are fitted. If the dominant eigen
value explains > 90% of the variation, linear stacking will
efficiently correct for bias. A more detailed investigation
of the eigen threshold is beyond the scope of this study but
is certainly a subject of future explorations.

Conclusions
Drug interactions of cancer cell lines are complex bio-
logical processes that can not be fully characterized
using only genomic and drug properties. Accurate drug

Table 5 Comparison of Bias Correction techniques for improving
bias angle and overall error. From top to bottom we have our
best individual predictor RF GE (bolded). RF GE ensembled with
our KNN utilizing the drug targets. RF GE ensembled with NN GE
alone. RF GE ensembled with RF Phys Residual. Linear ensemble
of all methods that are bolded in Table 2. For each method we
shows correlation coefficient between predicted and actual
AUCs (correlation), normalized mean squared error(NMSE), mean
θ across all drugs (θμ), and 95% bootstrap confidence interval
lower and upper bounds, (θL and θH respectively) BC1 and RRot
denote our RF GE corrected using techniques found in [5]

Correlation NMSE θμ θL θH

RF GE 0.7276 0.7910 38.27° 37.34° 39.04°

RF GE + KNN Residual 0.7550 0.7225 35.23° 34.07° 36.30°

RF GE + NNGE 0.7258 0.7919 38.22° 37.39° 39.03°

RF GE + RF Phys Residual 0.7504 0.7341 35.26° 34.23° 36.12°

Linear StackingEnsemble 0.7746 0.6705 34.25° 33.15° 35.26°

BC1 0.7184 0.8092 40.61° 40.00° 41.11°

RRot 0.7084 0.8382 40.60° 40.02° 41.12°
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Fig. 9 Residuals and bias angle from Belinostat AUC predictions. From left to right. Regular Random Forest (RF). BC1 RF. RRot RF. Linear ensemble
from all data sources

sensitivity predictions for personalized medicine will
require the use of a variety of feature sets from multi-
ple data sources. In this article we have shown that by
incorporating drug target data from Pubchem and the
physical properties generated using PaDEL we are able
to improve the prediction accuracy of a Random Forest
model trained on gene expression data. In particular, we
have shown that such ensemble learners are effective
in automatically removing the bias inherent in the Ran-
dom Forest models. We have also derived a necessary

condition for the linear ensemble to be an effective
debiasing devising and described a degined approach to
stacking operation. In the future other sources of data can
be included to improve prediction accuracy. For example
recent models built on protein-protein interaction net-
works [23] could provide information that is not captured
by our current stacked model. However, we note that the
entire theoretically premise is built upon the assumption
of linear bias. We propose to investigate a more general
stacking approach to handle non-linear biases.

Fig. 10 Residuals and bias angle from AZ628 AUC predictions. From left to right. Regular Random Forest (RF), BC1 RF, RRot RF, and Linear ensemble
from all data sources
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Fig. 11 2D Residual Plot for Belinostat and AZ628 graphed with normalized principle axis of variation. X-axis shows the residual value for RF GE and
y-axis is for the KNN Residual. Note that the principle axes in Belinostat is more heavily directed and has normalized eigenvalues of [0.95, 0.05] into a
single direction than in AZ628 which has normalized eigenvalues of [0.76, 0.23] indicating potential improvement in ensemble classifier

Abbreviations
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