64 research outputs found

    Survey of cryogenic semiconductor devices

    Full text link

    Towards a Universal Hot Carrier Degradation Model for SiGe HBTs Subjected to Electrical Stress

    Get PDF
    The objective of this work is to develop a generalizable understanding of the degradation mechanisms present in complementary Silicon-Germanium (SiGe) heterojunction bipolar transistors (HBTs) that can be used to not only predict the reliable lifetime of these devices but also overcome some of these aging limitations using clever device engineering. This broad motivation for understanding and improving SiGe HBT device reliability is explored through the following specific goals: 1) develop an understanding of the dominant hot carrier degradation sources across temperature (25 K – 573 K); 2) develop a broad understanding of all potentially vulnerable regions of damage within a SiGe HBT using electrically measured data, and how these degradations can be captured in a modeling framework; and 3) design optimized SiGe HBTs that can potentially overcome some of these device-level limitations in reliability across temperature. Being able to simulate the electrical degradation of a complex circuit with SiGe HBTs swinging dynamically on the output plane using a universal physics-based aging model is invaluable for any circuit designer optimizing for high performance and reliability.Ph.D

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization

    Journal of Telecommunications and Information Technology, 2007, nr 2

    Get PDF
    kwartalni

    Strained Si heterojunction bioploar transistors

    Get PDF
    This dissertation addresses the world’s first demonstration of strained Si Heterojunction Bipolar Transistors (sSi HBTs). The conventional SiGe Heterojunction Bipolar Transistor (SiGe HBT), which was introduced as a commercial product in 1999 (after its first demonstration in 1988), has become an established device for high-speed applications. This is due to its excellent RF performance and compatibility with CMOS processing. It has enabled silicon-based technology to penetrate the rapidly growing market for wide bandwidth and wireless telecommunications once reserved for more expensive III–V technologies. SiGe HBTs is realised by the pseudomorphic growth of SiGe on a Si substrate, which allows engineering of the base region to improve performance. In this way the base has a smaller energy band gap than the emitter, which increases the gain. The energy band gap of SiGe reduces with increasing Ge composition, but the maximum Ge composition is limited by the amount of strain that can be accommodated within a given base layer thickness. Therefore, a new innovation is necessary to overcome this limitation and meet the continuous demand for high speed devices. Growing the SiGe base layer over a relaxed SiGe layer (Strain Relaxed Buffer) can increase the amount of Ge that can be incorporated in the base, hence, increasing the device performance. In this thesis, experimental data is presented to demonstrate the realisation of sSi HBTs. The performance of this novel device has been also investigated and explained using TCAD tool.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research CouncilGBUnited Kingdo

    Journal of Telecommunications and Information Technology, 2004, nr 1

    Get PDF
    kwartalni

    Journal of Telecommunications and Information Technology, 2000, nr 3,4

    Get PDF
    kwartalni

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Low pressure epitaxial growth, fabrication and characterizion of Ge-on-Si photodiodes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 238-249).In order to facilitate the integration of photonic systems onto an electronic chip, near infrared photodiodes utilizing novel materials such as germanium must be monolithically integrated onto the Si CMOS platform. Such near-infrared photodiodes can be utilized for a plethora of applications such as optoelectronic ADCs, optical interconnects, photonic integrated circuits, and near infrared cameras. In this work, the major focus is on investigating processes utilizing a Low Pressure Chemical Vapor Deposition (LPCVD) Applied Materials Epi CenturaTM system to deposit germanium onto silicon substrates (Ge-on-Si). A growth space is identified to deposit blanket and selective epitaxial 1 to 3 rim-thick Ge-on-Si films via a two-step process. These deposited Ge-on-Si films have a low root-mean-square surface roughness (below 2 nm) and a moderate threading dislocation density (- 107 cm-2) after an annealing process. Utilizing these Ge-on-Si films, vertically illuminated Ge-on-Si pin photodiodes are fabricated in a CMOS compatible process. The best photodiodes fabricated in this work have low dark current values (below 10 mA/cm2), high responsivity (- 0.45 A/W at 1.55 pim wavelengths) and 3-dB frequency response in the gigahertz range.(cont.) Due to the importance of the photodiode reverse bias leakage current for circuit applications, the reverse bias leakage current is investigated and characterized in detail for various Ge-on-Si pin photodiodes. Trap assisted tunneling was found to be the dominant reverse bias leakage mechanism. These Ge-on-Si films show great promise for leveraging the integration of photonic devices onto the Very Large Scale Integration (VLSI) platform, and once there is improved reproducibility in the fabrication process, specifically the passivation of germanium surface states, the promise of these Ge-on-Si films can be fully realized.by Oluwamuyiwa Oluwagbemiga OlubuyidePh.D
    corecore