10,881 research outputs found

    Simulation of ultrasonic lamb wave generation, propagation and detection for an air coupled robotic scanner

    Get PDF
    A computer simulator, to facilitate the design and assessment of a reconfigurable, air-coupled ultrasonic scanner is described and evaluated. The specific scanning system comprises a team of remote sensing agents, in the form of miniature robotic platforms that can reposition non-contact Lamb wave transducers over a plate type of structure, for the purpose of non-destructive evaluation (NDE). The overall objective is to implement reconfigurable array scanning, where transmission and reception are facilitated by different sensing agents which can be organised in a variety of pulse-echo and pitch-catch configurations, with guided waves used to generate data in the form of 2-D and 3-D images. The ability to reconfigure the scanner adaptively requires an understanding of the ultrasonic wave generation, its propagation and interaction with potential defects and boundaries. Transducer behaviour has been simulated using a linear systems approximation, with wave propagation in the structure modelled using the local interaction simulation approach (LISA). Integration of the linear systems and LISA approaches are validated for use in Lamb wave scanning by comparison with both analytic techniques and more computationally intensive commercial finite element/difference codes. Starting with fundamental dispersion data, the paper goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries, before presenting a theoretical image obtained from a team of sensing agents based on the current generation of sensors and instrumentation

    Piano Genie

    Full text link
    We present Piano Genie, an intelligent controller which allows non-musicians to improvise on the piano. With Piano Genie, a user performs on a simple interface with eight buttons, and their performance is decoded into the space of plausible piano music in real time. To learn a suitable mapping procedure for this problem, we train recurrent neural network autoencoders with discrete bottlenecks: an encoder learns an appropriate sequence of buttons corresponding to a piano piece, and a decoder learns to map this sequence back to the original piece. During performance, we substitute a user's input for the encoder output, and play the decoder's prediction each time the user presses a button. To improve the intuitiveness of Piano Genie's performance behavior, we impose musically meaningful constraints over the encoder's outputs.Comment: Published as a conference paper at ACM IUI 201

    Fast Determination of Soil Behavior in the Capillary Zone Using Simple Laboratory Tests

    Get PDF
    INE/AUTC 13.1

    GPU Acceleration and Game Engines for Wireless Channel Estimation in Millimeter Waves

    Get PDF
    In this article, the intended purpose is to show an innovative technique for estimating the MIMO channel at millimeter wave bands, candidates for mobile 5G technology, by using hardware acceleration, game engines and heuristic algorithms applied to optical ray launching techniques. To verify the performance of the ray launching tool, the normalized Power Delay Profile (PDP) was simulated. The channel was analyzed using the mean square delay error (RMS), the average value of the delay (MD) and the basic propagation loss (PL). The results obtained in computational precision and time were compared with those of a traditional ray tracing tool simulation programmed in MATLAB and with the measurements made in the 57 to 66 GHz range in a specialized laboratory. The results show that the presented technique becomes efficiently profitable from a small number of simulated events (reflections, diffractions).This work was supported by the Vicerrectoría de Investigación of the Universidad del Magdalena by FONCIENCIAS 2018 announcement. This research was funded by COLCIENCIAS GRANT, grant number 528/2012
    corecore