1,767 research outputs found

    Inductorless bi-directional piezoelectric transformerbased converters: Design and control considerations.

    Get PDF

    Advances in Piezoelectric Systems: An Application-Based Approach.

    Get PDF

    Advances in Very High Frequency Power Conversion

    Get PDF

    Modeling, Control and Characterization of Aircraft Electric Power Systems

    Get PDF
    A study model of advanced aircraft electric power system (AAEPS) corresponding to B767 Aircraft is developed in the PSIM9 software environment. The performance characteristics of the system under consideration for large sharing of non-linear loads are studied. A comprehensive mathematical model describing system dynamics is derived where the GSSA technique is applied for reduced-order system approximation. The transient and steady-state performance of the hybrid PEM-FC/battery APU integrated to the aircraft electric network is analyzed while different loading scenarios are taken into account. In addition, dynamic bifurcation analysis is employed to characterize the systems stability performance under multi-parameters condition. Also, the power quality of the system is assessed under various loading configurations, and the effect of installing active/passive power filters (APF/PPF) on power quality of the system is investigated for a wide range of operating frequencies

    Performance of direct power controlled grid-connected voltage source converters

    Get PDF
    PhD ThesisIn this thesis the performance of direct power controlled grid-connected voltage source converters (VSCs) is investigated. Of particular interest is the stability of the controller with the third-order LCL filter employed as the grid filter, effect of grid impedance variations and grid voltage distortion, and current limitation during voltage dips. The control scheme implemented is virtual-flux direct power control with space vector modulation (VF-DPC-SVM). By mathematical modelling and stability analysis, it is found that the closed-loop power control system is stable for all values of proportional gain when the current sensors are on the inverter side of the LCL filter. The inverter current together with the estimated grid virtual-flux is used to estimate the active power and the reactive power. The difference between the estimated reactive power and the reactive power on the grid side is compensated for, using a new reactive power error compensation scheme based on the estimated capacitor current. The control system is found to be robust to changes in grid inductance, and remains stable for a range of grid inductance values, and controller proportional gain. It is demonstrated in simulation and experimentally that the total harmonic distortion (THD) of the current injected by the VSC is less than the limit of 5 %, set by standards, for all different values of grid inductance and proportional gain. This is true even in the presence of significant grid voltage distortion. To control the VSC during voltage dips without damaging the semiconductor devices, a new current limiting algorithm is proposed and implemented. The positive-sequence component of the virtual-flux is used for synchronization and power estimation to achieve balanced, undistorted currents during unsymmetrical voltage dips. Experimental results show that the current achieved during unsymmetrical voltage dips is balanced and has a THD of less than 3 %.Commonwealth Scholarship and Fellowship Plan, Copperbelt Universit

    Control System Design, Analysis, and Simulation of a Photovoltaic Inverter for Unbalanced Load Compensation in a Microgrid

    Get PDF
    This thesis presents a control scheme for a single-stage three-phase Photovoltaic (PV) converter with negative sequence load current compensation. In this thesis a dual virtual impedance active damping technique for an LCL filter is proposed to address the issue of LCL filter resonance. Both inverter-side current and the capacitor current are used in the feedback loop. Using both signals provides higher DC rejection than using capacitor current alone. The proposed active damping scheme results in a faster transient response and higher damping ratio than can be obtained using inverter-side current alone. The feedback gains can be calculated to achieve a specified damping level. A method of determining the gains of the Proportional and Resonant current controller based on frequency response characteristics is presented. For a specified set of gain and phase margins, the controller gains can be calculated explicitly. Furthermore, a modification is proposed to prevent windup in the resonator. A numerically compensated Half-Cycle Discrete Fourier Transform (HCDFT) method is developed to calculate the negative sequence component of the load current. The numerical compensation allows the HCDFT to accurately estimate the fundamental component of the load current under off-nominal frequency conditions. The proposed HCDFT method is shown to have a quick settling time that is comparable to that obtained with conventional sequence compensation techniques as well as immunity to harmonics in the input signal. The effect of unbalance compensation on the PV power output depending on the irradiance and the operational region on the power-voltage curve is examined. Analysis of the DC link voltage ripple shows the region of operation on the P-V curve affects the amplitude of the DC link voltage ripple during negative sequence compensation. The proposed control scheme is validated by simulation in the Matlab/Simulink® environment. The proposed control scheme is tested in the presence of excessive current imbalance, unbalanced feeder impedances, and non-linear loads. The results have shown that the proposed control scheme can improve power quality in a hybrid PV-diesel microgrid by reducing both voltage and current imbalance while simultaneously converting real power from a PV array

    Partitioning And Interface Requirements Between System And Application Control For Power Electronic Converter Systems

    Get PDF
    Applications of power electronics in power systems are growing very rapidly and changing the power system infrastructure in terms of operation speed and control. Even though applications of power electronics are wide spread, the cost and reliability of power electronics are the issues that could hinder their penetration in the utility and industrial systems. The demand for efficient and reliable converter controllers gave rise to modularized converter and controller design. The objective of this dissertation is to determine the appropriate partitioning and interface requirements between the system and application control layers for power electronic converters so that the minimum set of system layer to application layer control interfaces is compatible across all power electronic controllers. Previous work, using the Open System Architecture (OSA) concept has shown that there is a set of common functions shared by different converters at the low-level control layers. It has also shown that, depending on the application, there is a variation in control functions in application/middle control layers. This functional variation makes it difficult to define system functionality of power converters at upper control layers and further complicates the investigation into the partition requirements of system to application control layer. However, by analyzing the current or voltage affected by a converter in terms of orthogonal components, where each component or group of components is associated with a power-converter application, and the amount of required DC bus energy storage, a common functionality can be observed at the application control layer. Therefore, by establishing common functionality in terms of affected current or voltage components, a flexibility of operation can be realized at upper control layers that will be a major contribution towards standardizing the open system architecture. In order to a construct functional flexible power converter control architecture, the interface requirements to the system control layer and the partitioning between the system control layer and application control layer need to be explored. This will provide flexibility of system design methodology by reducing the number of constraints and enabling system designers to explore possible system architectures much more effectively

    Piezoelectric transformer based power converters; design and control

    Get PDF

    A Comprehensive Review on Constant Power Loads Compensation Techniques

    Get PDF
    Microgrid, because of its advantages over conventional utility grids, is a prudent approach to implement renewable resource-based electricity generation. Despite its advantages, microgrid has to operate with a significant proportion of constant power loads that exhibit negative incremental impedance and thus cause serious instability in the system. In this paper, a comprehensive review is presented on accomplished research work on stabilization of dc and ac microgrid. After reviewing these, microgrid system stabilization techniques are classified with required discussions. As found out in this paper, the stabilization techniques can basically be classified as compensation done: 1) at feeder side; 2) by adding intermediate circuitry; and 3) at load side. Finally, after analyzing the merits and drawbacks of each generalized technique, several infographics are presented to highlight the key findings of this paper

    Optimum power control of a battery energy storage system

    Get PDF
    MasteroppgĂĄve i energiENERGI399MAMN-ENER
    • …
    corecore