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Abstract

The last two decades of research into piezoelectric transformer (PT) based power

converters have led to some extensive improvements of the technology, but it still

struggles to get its commercial success. This calls for further research and has been

the subject of this work, in order to enable the utilization of the PT technology

advantages, reduce cost and increase competitiveness.

First of all an overview of the basic PT technology used in general power converters

is given, including the basic piezoelectric nature, converter topologies and control

methods. Compared to traditional magnetic technology based power conversion, the

PT technology has some obvious advantages, being the electromechanical energy

conversion, low EMI profile, a compact and low profile design, as well as a high

potential of high efficiency and power density.

The utilized inductor-less half-bridge topology is investigated in detail, revealing its

strong points, as well as some shortcomings. As a result of this investigation, a soft

switching factor (ZVS factor) is derived, which describes the maximal achievable soft

switching capability of the PT, as well as it is related to the structure of the PT,

through the effective electromechanical coupling factors.

In order to exploit the advantages of the inductor-less half-bridge, research into soft

switching optimized PT’s has been conducted. Several innovative PT solutions have

been proposed, simulated and optimized, using Finite Element Modeling (FEM) tools,

all with the main goal of achieving soft switching capabilities. The proposed designs

have been manufactured, tested and evaluated. The main achievement has been

the development of an Interleaved interdigitated electrode (IDE) PT, which retains

some of the easy manufacturing advantages, combined with the high efficiency of the

thickness mode vibration.

The main focus of this research has been control methods, due to the high control

requirements of PT based power converters and the inductor-less half-bridge, as well

as the shortcomings of the prior-art solutions, and has led to several innovative solu-

tions. A self-oscillating control method is proposed that has a very tight and precise

frequency control, which ensures optimal and soft switching operation at all times.

Furthermore a forward conduction mode control method is proposed, which resembles

a PLL control and ensures a constant and optimal operation, as well as having the

advantage of being purely primary side based. A revolutionary bi-directional control

method is proposed, which utilizes active phase shift of the output rectifier that en-

ables bi-directional power flow. Soft switching operation is maintained over the full

power flow modulation range, ensuring optimal and efficient operation. Furthermore,

it enables line and load regulation.
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Dansk resumé

De sidste to årtiers forskning i Piezoelektriske Transformer (PT) baserede strømfor-

syninger har ført til omfattende forbedringer af teknologien, men teknologien kæm-

per stadig for at f̊a sit kommercielle gennembrud. For at kunne udnytte fordelene

ved PT-teknologien, reducere omkostningerne og øge konkurrenceevnen, er yderligere

forskning p̊a omr̊adet p̊akrævet, hvilket har været formålet med dette arbejde.

Først og fremmest bliver den grundlæggende anvendelse af PT-teknologi i strømfor-

syninger gennemg̊aet, herunder den grundlæggende piezoelektriske effekt, konverter

topologier og kontrolmetoder. Sammenlignet med traditionelle magnetisk baseret

strømforsyninger, har PT-teknologien nogle åbenlyse fordele, s̊a som den elektro-

mekaniske energikonvertering, lav udstr̊alet støj, et kompakt og lav-profil design,

samt et stort potentiale for høj effektivitet og effekttæthed.

Der er blevet udført en dybdeg̊aende undersøgelse af den anvendte spole-løse halv-

bro topologi, hvor dens styrker og svagheder bliver fremhævet. Et resultat af denne

undersøgelse er udledelsen af en soft-switching factor (ZVS factor), som beskriver den

maksimale opn̊aelige soft-switching evne for PT’en, s̊avel som den vil blive relateret

til strukturen af PT’en igennem de effektive elektromekaniske koblingsfaktorer.

For at udnytte fordelene ved den spole-løse halv-bro, er der blevet forsket i soft switch-

ing optimerede PT’er. Ved hjælp af Finite Element Modeling (FEM) værktøjer er

der opn̊aet flere innovative PT-løsninger, som er simuleret og optimeret, alle med det

primære mål at opn̊a soft-switching evner. De foresl̊aede designs er blevet produceret,

testet og evalueret. Udviklingen af en Interleaved InterDigiteret Elektrode (IDE) PT

er et af hovedresultaterne og bevarer nogle af de produktionsmæssige fordele, kom-

bineret med den høje effektivitet ved anvendelsen af tykkelses mode vibrationer.

Forskningen i dette arbejde har primært været fokuseret p̊a kontrolmetoder, p̊a grund

af de høje kontrolkrav til PT strømforsyninger og den spole-løse halv-bro, samt man-

glerne ved de nuværende løsninger, hvilket har ført til flere innovative løsninger. En

selvsvingende kontrolmetode er blevet foresl̊aet, som har en meget snæver og præcis

frekvens kontrol, der sikrer optimal og soft-switching drift til enhver tid. Endvidere

foresl̊as en forward conduction mode kontrolmetode, der minder om fasel̊ast sløjfe

kontrol og sikrer en konstant og optimal drift, der ydmere udelukkende er primærside

baseret. Et revolutionerende tovejs kontrolmetode foresl̊as, som anvender aktiv fase-

forskydning af udgangsensretteren, hvilket muliggør tovejs effektflow. Soft-switching

drift er endvidere sikre over hele effektflow modulationsomr̊adet, hvilket sikrer opti-

mal og effektiv drift. Endvidere muliggøres forsynings- og ballast-regulering.
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Chapter 1

Introduction

1.1 Scope

The scope of this thesis is to present the research conducted during this PhD project,

which was carried out at DTU Elektro. Most of the research has been presented and

published as conference papers, journal papers and patent applications. The publi-

cations compose the major part of this thesis and are included in Appendix D and

are referenced to as [D.1]-[D.9].

The objectives of this thesis is to complement and summarize the publications, pro-

viding a condensed and more complete overview of the research work and results

obtained during this project.

1.2 Scope of project

As mentioned in the preface this PhD project is part of the Advanced Technology

Foundation (HTF) project ”A miniature high-voltage piezoelectric power supply for

driving a dielectric electro active polymer actuator”, which is a joint research project

between Danfoss PolyPower A/S, Noliac A/S and DTU Elektro.

As the title reveals, the goal of the HTF project is to develop a miniature high volt-

age (HV) piezoelectric transformer (PT) based power converter, suited for driving

a dielectric electro active polymer (DEAP) actuator. The DEAP actuator is a HV

device (several kV’s) and the HV interface is a drawback for general use due to safety

concerns and regulations. The objective is to develop a miniature power converter,

small enough to be integrated into the core of the DEAP actuator, forming a low

voltage (24V) interfaced DEAP actuator and hence avoiding the HV interface and

its challenges.

Furthermore, the use of magnetic components is avoided thus enabling the utiliza-

tion of DEAP actuators in environments subjected to high magnetic fields, where

magnetic components are exposed to saturation and malfunctioning. In addition, the

elimination of the magnetic components potentially minimizes the component count

of the power converter.

This PhD research is focused on the electrical part, being the PT based power con-

verter, whereas Danfoss PolyPower A/S is researching on the DEAP actuator and

1



1.3 Background and motivation

Noliac A/S researching on the PT. Furthermore, the PhD project has been focused

on the control and operation of the PT based power converter, but has also involved

development of PT’s, as the PT is utilized as an electrical power component and is

essential to the functionality and operation of the power converter.

1.3 Background and motivation

The field of electro active polymers (EAP) emerged as far back as 1880, but it is

not until the early 1990s the technology really starts to evolve, demonstrating elec-

tro active properties far superior to previous EAP’s [1]. EAP or DEAP devices are

based on polymer materials and change shape as the result of electrostatic forces,

when a voltage is applied. The shape change is proportional to the square of the

applied voltage and the current technology requires a relative high voltage, in order

to achieve a satisfying shape change. The DEAP devices are often referred to as ”ar-

tificial muscles” and the technology is explained in more detail in section 2.2. Within

the last decade new high performing and low cost DEAP materials have emerged that

enables the commercialization of the technology, in products such as actuators for

various mechanical components, like gripers and valves for example. But the tech-

nology is still dependent on a relative high applied voltage (several kV’s), in order

to fully utilizes the material and calls for high performing drivers, in order for the

technology to reach its potential.

Conventional electromagnetic power converters are the only available HV sources

to drive DEAP actuators, but they suffer from high and inconvenient parasitic (at

high conversion ratios), have poor efficiency, are bulky and provide limited oppor-

tunities for miniaturization. The drawbacks of the electromagnetic transformer are

pronounced at high conversion ratios and high voltage, where large creep distances

and higher winding and inter winding isolation are required, which leads to bad mag-

netic coupling, large parasitic components and a bulky transformer.

The PT technology and PT based power converters emerged in the late 1950s, where

C. Rosen was a pioneer and invented and patented the Rosen type transformer [2, 3].

Since then, the technology has evolved and there has been a lot of research in this

field. The technology has struggled to get its commercial success, but in one appli-

cation of high step-up and low power it has succeeded, namely for the power supply

for cathode back-lighting for LCD displays [4, 5, 6]. But it is still limited to these

simple applications of resistive high frequency AC loads. The PT is not limited by the

same drawbacks as the electromagnetic transformer; on the contrary it excels at high

step-up and high voltage applications. Furthermore, the PT based power converter

is compact, has a low profile design and offers potentially high efficiency and power

density, making it a perfect match for the DEAP technology.

2



1.4 Project objectives

As opposed to the cathode back-lighting for LCD displays, which is a DC/AC appli-

cation, the DEAP actuator is a DC/DC application, with a controlled variable output

voltage. The PT based DC/DC power converter is still somewhat immature. It has

been treated a lot in the literature, but the commercial breakthrough has yet to come.

With the high potential of the PT based DC/DC power convert, the partners have

a clear vision of the unique and highly competitive solutions, which are achievable.

This specific application takes advantage of the PT’s strong points, at high step-

up and high voltage, but it is envisioned that the research will contribute towards

the development and commercialization of the PT based DC/DC power converter in

general.

1.4 Project objectives

As described in Scope of project, the main objective is to develop a miniature high

voltage PT based power converter, suited for driving a DEAP actuator. This PhD

research is focused on the electrical part, the control and operation of the PT based

power converter, but has also involved development of PT’s and the research have

the following main objectives:

• Research the PT based power converters in general, especially in relation to the

inductor-less half-bridge topology, for DC/DC applications.

• The utilized inductor-less half-bridge has some obvious advantages, but it also

introduces some new challenges, primarily related to the PT and the challenge

of designing suitable PT. This demands a better understanding of the PT’s

properties, especially how native soft switching capability can be achieved and

a investigation of the PT’s properties and nature is performed in this study.

Furthermore several suitable PT designs is proposed, manufactured, evaluated

and utilized through the project.

• The capacitive nature of the DEAP actuator calls for a bi-directional power

converter, in order to regenerate and reuse the electrically energy stored in the

DEAP actuator. This is one of the main goals of this project and demands the

research of bi-directional PT based power converters, topologies and control

methods, as well as bi-directional enabling PT’s.

• The research of control methods suited for soft switching optimized PT based

converters is key. As the PT is operated close to its resonance frequency and is

of very high quality factor, the band of optimal and efficient operation is very

narrow, hence a tight control of the operating frequency is essential. Obviously

the control methods should take advantage of the PT nature, as well as avert

and/or compensate the challenging parts and shortcomings of its nature.

3



1.5 Thesis structure and content

1.5 Thesis structure and content

The following flow chart illustrates the structure and content of the PhD thesis, start-

ing out with the Introduction and Overview and State of the art. These introducing

chapters are followed by the three main chapters, breaking down the subject to the

PT based power converter, PT design and control methods. The thesis is finaliz-

ing with a conclusion and future work, providing a condensed and more complete

overview of the research work and results obtained during this project. Most of the

research has been published through conference papers, journal papers and patent

applications. The publications are linked to the relevant chapters and sections, where

some publications are relevant in more than one chapter.
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Chapter 2

Overview and State of the art

In this chapter an overview of the topics of the study is given. Starting out with a

description of the application itself, which is followed by an overview of the involved

technologies, being the Electro Active Polymer, the Piezoelectric transformer and the

available Control methods.

2.1 The application

As described in the Introduction, the objectives is to research a miniature high voltage

PT based power converter, suited for driving a DEAP actuator and the application

is also described in general in [D.1][D.6]. The challenge is to drive a highly capacitive

DEAP load, which is described in further detail in the following sections, with the

objective of performing a controlled voltage modulation of the DEAP load, to voltages

as high as 2.5 kV. Figure 2.1 illustrates a conceptual block diagram of the application

and the power converter, and as it can be seen the driver is supplied from a 24 V DC

line, giving it a very high step-up conversion ratio of more than 100.

Figure 2.1: Conceptual block diagram of the PT based DEAP driver, initially without

bi-directional power flow support. Composing a MOSFET based driver, the PT, a output

rectifier, a control circuit and a high voltage measurement (HVM) circuit.

The driver is to be controlled by an external reference voltage that is related linearly

to the output voltage. The DEAP actuator displacement or stroke is directly pro-

portional to the square of the applied voltage, so by applying a specific voltage of up

7



2.1 The application

to 2.5 kV, a desired stroke by the actuator can be achieved, which is the essence of

an actuator.

Figure 2.2: Danfoss PolyPower cylindri-

cal DEAP actuator (110 mm x 32 mm).

The control of the driver should ensure a

optimal operation of the PT, maximizing

efficiency and power conversion, as well as

it compares the reference voltage and the

output voltage, which is obtained through

a high voltage measurement (HVM) cir-

cuit. The high impedance and capacitive

nature of the DEAP makes it quite diffi-

cult to measure the voltage, without dis-

charging and dissipating the electrical en-

ergy of the DEAP. A very high impedance

HVM circuit is needed and the circuit con-

siderations and design is described and dis-

cussed in [D.1]. The DEAP actuator itself

is a coreless cylindrical structure, having an

outer and inner diameter of approximately

32 mm and 13 mm, it is 110 mm high and is

illustrated in Figure 2.2. It is intended that

the driver should be so small that it fits in-

side the cylindrical DEAP actuator, giving

it at low voltage interface, essentially mak-

ing it a low voltage device. The low voltage

interface will make the device much more

applicable and practically useful, as all the

high voltage concerns are contained inside

the device. Figure 2.3 illustrates a conceptual drawing of the driver integrated in to

the DEAP actuator, as a matter of fact, the illustrated driver is one of the devel-

oped prototype PT based drivers [D.1,D.6] and the full schematic can be found in

Figure 2.3: Illustration of the DEAP actuator with integrated driver (left) and the inte-

grated driver (right). The actuator has a height/length of 110 mm and an outer and inner

diameter of approximately 32 mm and 13 mm.

8



2.1 The application

Appendix B. As the illustration reveals, the space for the driver is very limited and

leads to quit high requirements for minimization, as well as pushing the limits of high

voltage clearance and routing in the electrical circuits.

As the DEAP actuator is a highly capacitive load, with very low leakage, the power

requirement of the driver is more a consideration of how fast the DEAP actuator

should respond. Initially, a 30 ms response from relaxation to full stroke was desired

(0 V to 2.5 kV) and with a capacitance of approximately 110 nF, an average power

of 11.5 W is required.

11.5 W at 2.5 kV translate into a very small current (4.6 mA), which challenges

the design in terms of high output impedance and potential high impact of parasitic

components on the output side. Furthermore, the high voltage and impedance pose

a challenge if any level-shifting is needed, such as gate signal to a high-side switch.

The major part of the energy supplied to the DEAP actuator is stored as electrical

energy and only a small part is converted to mechanical work (2-5 %). To date, the

stored electrical energy is just dissipated when the DEAP actuator is discharged and

if this electrical energy could be regenerated, the overall performance could be greatly

improved. Achieving energy recovery is one of the main goals and challenges of this

project and can be achieved by having two converters, one for each direction or by

having a bi-directional power converter. To date, no bi-directional PT based power

converter exists and it will be applicable and have a huge potential in various other

applications.

Concerning the efficiency of the drive, the unique features of the PT is expected to

improve the efficiency compared to a magnetic solution and in general as a high effi-

ciency as possible is desired. And in relation to the energy recovery, it is desired to

recover 90 % of the DEAP actuator stored electrical energy, which leads to a required

driver efficiency of at least 90 %.

From an electrical point of view, the driver has the following main specification:

• 24 V input voltage.

• Up to 2.5 kV controllable output voltage.

• Up to 11.5 W average output power.

• An efficiency of at least 90 %.

• Bi-directional power flow and/or energy recovery.

• Avoid magnetic based components.

9



2.2 Electro Active Polymer

2.2 Electro Active Polymer

The field of electro active polymers (EAP) emerged as far back as 1880, where Wil-

helm Röntgen designed an experiment, testing the effect of an electrical current on

the mechanical properties of a rubber band [1, 7]. In the early 1990s, the technol-

ogy really started to evolve, demonstrating electro active properties far superior to

previous EAP materials and within the last decade new high performing and low

cost EAP materials have emerged, enabling the commercialization of the technology.

EAP’s consist of two electrodes and an intermediate material (polymer) and based on

their activation mechanism, there are two general types of EAP’s: Electronic EAP’s

and Ionic EAP’s [1, 7, 8, 9].

Electronic EAP’s are driven by Coulomb forces, and includes electrostrictive, elec-

trostatic, piezoelectric and ferroelectric forces. This type of EAP materials change

shape as the result of the electrical field strength, when a voltage is applied to the

electrodes and they can be made to hold the induced displacement. However, they

require a high activation field (>100 V/µm) that may be close to the breakdown level

of air, as well as it pose challenges to generate and handle voltages as high a 2-10 kV.

Ionic EAP’s are materials that involve mobility or diffusion of ions, and includes

gels, polymer-metal composites, conductive polymers and carbon nanotubes. The

activation voltage of the Ionic EAP is much lower than Electronic EAP and can be

as low as 1-2 V, but the disadvantages are that they need to maintain wetness and

they pose difficulties to sustain constant displacement under activation.

As the EAP construction resembles a simple plate capacitor, this type of load is

also highly and almost purely capacitive, seen from an electrical point of view. EAP

devices are often referred to as ”artificial muscles”, as the polymer material is flexible

and tensile compared to traditional mechanical actuators and is comparable to the

biological muscle.

2.2.1 Dielectric Electro Active Polymer

Dielectric electro active polymer (DEAP) is an Electric EAP materials and the op-

erational principle is quite simply to explore the electrostatic force in between two

electrodes, inducing a deformation of the intermediate material. The pressure on the

material generated by the electrostatic force is described by Maxwell pressure (2.1),

where the pressure p is proportional to the square of the electrical field strength E,

and is dependent on the permeability of the material εr.

p = ε0εrE
2 (2.1)

The intermediate material is a soft dielectric polymer, which is soft enough for the

electrostatic force to be comparable to the spring force of the material, allowing
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2.2 Electro Active Polymer

a deformation of the material. Figure 2.4 illustrates the basic DEAP structure,

consisting of two electrodes placed on each side of a thin dielectric polymer film.

As it can be seen, the polymer film is squeezed thinner when a voltage is applied,

Figure 2.4: Basic DEAP structure, in relaxation with no voltage applied (left) and in

deformation with a DC voltage applied (right).

which results in a deformation and elongation of the polymer film in the directions

perpendicular to the electrical field. The thickness squeeze or strain is dependent on

Young’s modulus Y and is inversely proportional to the applied pressure (2.2).

St =
−p
Y

=
−ε0εrE2

Y
(2.2)

Both the thickness reduction and the elongation can be utilized, but the elongation

is more pronounced as the polymer film is very thin, where there are no really limits

of the length or size of the film. A very thin film is desirable, as the thinner the film

is, the lower an applied voltage is needed, in order to obtain the required electrical

field. Some other desired properties of the polymer are a high insulation and high

breakdown voltage. A high insulation ensures a low leakage current and minimizes

the electrical loss. A high breakdown voltage enables the use of high electrical fields,

which is very desirable since the higher an applied field the higher an generated

electrostatic force.

2.2.2 Danfoss PolyPower DEAP actuator

The DEAP actuator developed by Danfoss PolyPower A/S is based on a DEAP ma-

terial as described in the previous section, with some unique features, which greatly

improves performance and eases production. The PolyPower DEAP is based on a

silicone dielectric material, it has a corrugated surface and metallic electrodes. The

metallic electrode is very stiff in comparison to the silicone material and the electro-

static force, and does not allow the silicone to deform and elongate. But with the

PolyPower patented corrugated surface [10, 11, 12, 13, 14], the DEAP structure is
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Figure 2.5: Danfoss PolyPower DEAP material, in relaxation with no voltage applied

(left) and in deformation with a DC voltage applied (right).

compliant in one direction, allowing the silicone to deform and elongate, as illustrated

in Figure 2.5. The corrugated surface does not only enable the silicone to deform,

but it also forces the elongation in one direction, as the electrode still is stiff in the

other direction. This increases the performance further by doubling elongation, as

a result of the silicone being limited to expand in only one direction and the strain

(2.2) is directed directly in this direction. Furthermore, the DEAP material is easy

to manufacture, where a thin single side silicone sheet if formed during a roll coating

process, typically as thin as 40 µm. This single side silicone sheet has a corrugated

surface structure, on which a thin electrode is applied (100 nm range). Two of these

sheets with electrodes are then laminated together, forming a DEAP film, having two

electrodes with corrugated surfaces in the same direction.

PolyPower DEAP unique features:

• Extremely low electrical losses.

• Uni-directional elongation, due to the corrugated surface.

• High breakdown voltage of 40 kV/mm, allowing applied electrical fields of up

to 31 kV/mm.

• Very robust; suitable for demanding industrial applications.

• Scalable roll-to-roll volume manufacturing made possible.

With a DEAP film thickness of 80 µm, the film can withstand a voltage of 2.5 kV

and will produce up to 2% ellongation of the material [10, 11, 12, 13, 14]. The DEAP

actuator is buildup by wounding two layers of film around a collapsible winding man-

drel, forming a cylindrical actuator as illustrated in Figure 2.6. The coreless DEAP
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Figure 2.6: Danfoss PolyPower coreless DEAP actuator build-up, consisting of 0.1x7 m,

80 µm DEAP film.

actuator is wounded from 7 m of DEAP film and the structure is self-supporting.

The final device is illustrated in Figure 2.3 and has an outer and inner diameter of

approximately 32 mm and 13 mm and a height of 110 mm. The film has a height

of 100 mm and have 2x20 mm of inactive area, where only one electrode is present,

in order to make the electrical connections, as well as ensuring isolation between the

two electrodes.

PolyPower DEAP actuator specifications:

• 110 mm high and a outer diameter of approximately 32 mm.

• Build-up of 0.1x7 m, 80 µm PolyPower DEAP film.

• Electrically highly capacitive, with a capacitance of approximately 110 nF.

• Rated for voltages of up to 2.5 kV.

• Maximal force of 7 N or maximal elongation of 1.1 mm (1.7%).

2.3 Piezoelectric transformer technology

In the late 1950s C. Rosen invented the first PT [2, 3], which was named the Rosen

type PT after him. He was a pioneer within PT technology and PT based power

converter, and since then there has been a lot of research in this field and as a

result the technology has also evolved a lot. The technology has struggled to get
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its commercial success, but in one application of high step-up and low power it has

succeeded, namely for the power supply for cathode back-lighting for LCD displays

[4, 5, 6]. But as the LCD display has evolved away from the PT based converter,

it is mainly only commercially available for special low yield applications. The PT

based converter is still somewhat limited to these simple applications of resistive high

frequency AC loads. The pending challenge is to enable usage of PT based converters

in DC/DC applications, in low voltage applications, as well as it is desirable to

increase the power level above 5-10 W. The PT is not limited by the same drawbacks

as the electromagnetic transformer and has some clear advantages, which is especially

pronounced in high step-up and high voltage applications.

2.3.1 Piezoelectricity

The word piezoelectricity means electricity resulting from pressure and was discov-

ered in 1880 by the French physicists Jacques Curie and Pierre Curie [15]. The

piezoelectric effect is an interaction between the mechanical and the electrical state

in crystalline materials, such as crystals and ceramics, giving them an electromechani-

cal coupling. Through the direct piezoelectric effect an electrical charge displacement

is generated as a resulting of an applied mechanical force [15, 16, 17, 18, 19, 20, 21].

The piezoelectric effect is reversible and through the reverse piezoelectric effect me-

chanical strain is generated as a resulting of an applied electrical field. The generated

mechanical strain is typically very small and for lead zirconate titanate (PZT) based

materials it is approximately 0.1 % [15], but they have a very precise positioning

and can generate large forces. Furthermore piezoelectric devices are one of the few

devices which can carry out mechanical work at very low temperatures (close to 0o K).

During World War I, piezoelectric devices found its first practical application, with

the development of sonar. The sonar system utilized piezoelectric quartz crystals

as the transducer, which generates a sound wave pulse that would be reflected by a

submerged submarine. By measuring the time of the sound wave travel, the distance

to the object can be calculated.

In newer times, new and high performing piezoelectric materials have been developed,

such as the PZT based materials. It has found its usage in various applications, such

as actuators with the qualities of being very precise and rapid, for application like

fuel injectors, loudspeakers and piezoelectric motors. Through the direct piezoelec-

tric effect, it has found its usage as positioning and vibration sensors. One of the

most widespread utilization of piezoelectricity is crystal oscillators, which is present

in a lot of electronic applications, such as radios, digital circuits and microprocessor

circuits, where a precise clock frequency is needed.
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(a) Unpolarized crystals. (b) Polarization process. (c) Polarized crystals.

Figure 2.7: Polarization of piezoelectric material, where the blue arrows indicate the

polarization direction.

Polarization

The direction of the piezoelectric effect is related to the direction (polarization) of the

electric dipole moments in the piezoelectric material and dipoles near each other tend

to be aligned in regions called domains. When a piezoelectric material is heated above

a certain temperature, it loses its polarization, which is called the Curie temperature

[15, 17, 18, 22]. The material restores its polarization when the temperature drops

below the Curie temperature and if no external electrical field is applied, the domains

are polarized randomly. In single domain structures, the piezoelectric effect can be

observed and excited externally. But in multi domain structures, the random polar-

ization results in a total dipole moment of zero, which results in no piezoelectric effect

that can be observed or excited on macro scale. Figure 2.7(a) illustrates the random

polarization of a multi domain structures, but by applying a high external electrical

field (usually at elevated temperatures), the domains can be forced in one direction,

as illustrated in Figure 2.7(b). After the polarization process, all the domains are

aligned in one direction, giving the structure a total non-zero dipole moment, as illus-

trated in Figure 2.7(c). The polarization field strength is several decades higher than

what the material usually is operated under, but the material can be de-polarized or

re-polarized (total dipole moment), when exposed to high fields or high stress.

2.3.2 The piezoelectric transformer

The PT is basically just two piezoelectric elements joined together, forming a joined

transformer structure. The operational principle is that the primary element or sec-

tion of the transformer is excited by an electrical AC voltage, which induces a de-

formation of the joined structure. The deformation of the secondary element or

section will generate a charge displacement and an electrical output voltage. And

through the PT design (structure, section size, layer thickness), a desired voltage

conversion can be achieved, matching a specific load and application. PT’s are built

from piezoelectric ceramics, such as the PZT based ceramics [19, 20], and are build-
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up utilizing tape casting technology [17, 18], which is the same technology used for

building multilayer ceramic capacitors. Figure 2.8 illustrates the three most common

PT types, which utilizes three different structures, as well as electromechanical cou-

plings [16, 17, 18, 19, 20]. The electromechanical coupling is a measure of how strong

the piezoelectric effect is and relates the mechanical stored energy to the applied

electrical energy or the other way around. The square of electromechanical coupling

expresses the fraction of the electrical energy converted in to mechanical energy (2.3)

or the other way around [16, 17, 18, 19, 20].

k2 =
Wmechanical stored

Welectrical applied

or k2 =
Welectrical stored

Wmechanical applied

(2.3)

In order to obtain an efficient transmission of the mechanical energy from the pri-

mary to the secondary section, the PT is operated in one of its resonance modes

[4, 22, 23, 24, 25, 26, 27, 28]. The PT resonates each time it is possible to generate

a standing acoustical sound wave in the structure. In a resonance mode the two

sections are well mechanical coupled, in terms of transferring mechanical energy, as

the primary section is capable of exciting the resonance of the joined structure. As

one can imagine, an excitation at low frequency (close to DC), the primary section

will just move the secondary section, without deforming and inducing any charge

displacement. Furthermore the PT is typically optimized for one specific resonance

mode, in order to achieve the highest efficiency [4, 22, 23, 24, 26, 27, 28]. In this

manner, electrical energy is converted through the electromechanical domain, which

has some advantages and disadvantages.

PT main advantages and potentials:

• Electromechanical energy conversion.

• No magnetic field generation, as well as immunity to magnetic fields.

• Low EMI profile, due to the nature of resonance converter and soft switching.

• Potential high efficiency and power density.

• Potential low price, due to simple build-up and manufacturing utilizing tape

casting technology [17, 18].

PT main drawbacks:

• Best suited for constant resistive AC loads.

• Mechanical mounting of PT, without restricting the free mechanical movement.

• Low thermal conductivity of ceramics, limiting heat dissipation.

• Limited current carrying capacity, due to thin electrodes.

• Limited to lower power levels (<100 W), due to physical and efficiency limita-

tions [21, 29].
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(a) Rosen type PT. (b) Radial mode PT. (c) Ring shaped Thickness

mode PT.

Figure 2.8: Three different types of PT’s, utilizing three different operation principles

and electromechanical couplings.

Rosen type PT

In the classical Rosen type PT [2, 3, 30, 31, 32] (Figure 2.8(a)), the primary and

secondary sections each occupy half of the rod shaped PT. The operational resonance

is along the longitudinal direction, where a standing sound wave occurs in the length

of the rod. The primary section is polarized perpendicular to the direction of the

vibration, which is the transverse mode electromechanical coupling k31 and the section

can be configured with several layers. The secondary section is polarized in the same

direction as the vibration, which is the thickness mode electromechanical coupling

k33 and it has only one layer. It can be operated in its first mode shape, with a

standing half wave sound wave, but also its second mode shape, with a standing full

wave sound wave.

Radial mode PT

In the radial mode PT [26, 33, 34, 35, 36, 37, 38] (Figure 2.8(b)), the primary and

secondary sections occupy a certain part in the height of the disc shaped structure,

which can be configured with several layers. It is operates in the radial mode, where

a standing sound wave occurs across the element. It is operated in its first mode

shape of a standing half wave sound wave and is generated through the planar mode

electromechanical coupling kp.

Thickness mode PT

The thickness mode PT [39, 40, 41, 42, 43, 44, 45, 46, 47] (Figure 2.8(c)) operates

in the thickness mode, where a standing wave occurs in the hight of the element and

the same direction as the polarization. The primary and secondary sections occupy

a certain part in the height of the structure, which can be configured with several

layers. It is usually, but not limited to, operated in its first mode shape of a standing

half wave sound wave and has a significant higher resonance frequency, due to the

small thickness. The thickness mode electromechanical coupling k33 is approximately
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twice as large as the transverse mode k31, which gives it a much higher potential for

high efficiency and high power density.

2.3.3 Modeling of piezoelectric transformers

The electromechanical structure of the PT resembles a distributed network and one

of the most used PT models is the lumped parameter model, which was derived by

Mason in 1946 [22, 24, 26, 27, 28, 48]. The lumped parameter model is illustrated

in Figure 2.9 and describes the behavior of the PT in a narrow band around the

resonance mode of interest. For simplicity and mathematical representation, normally

only the resonance mode of interest is included in the model, but the model can

represent several resonance modes, by adding branches of each resonance mode [22,

24, 26, 27, 28]. However the resonance mode of interest is usually the most pronounced

mode, as the design is optimized for this mode, and in practice a modeling of a single

mode is sufficient. The model is basically an electrical LCC resonance tank and

Figure 2.9: Lumped parameter model, which describes the behavior of the PT in a narrow

band around the operating resonance mode.

describes the mechanical resonance circuit. The behavior of a PT based converter is

also quite similar to a traditional resonance converter [49]. As the PT is operated

close to the resonance frequency and the PT resonance is of very high quality, the

band of optimal and efficient operation is very narrow [22, 23, 24, 26, 27, 28, 50, 51],

which is expanded further in section 3.2. In order to maximize the power transfer of

the resonance tank, the load is usually matched to the output capacitance Cd2 of the

PT, or the other way around (2.4) [24, 26, 27, 49].

Rmatch =
1

Cd2ωr
⇒ Cd2 =

1

Rmatchωr
(2.4)

Model parameter determination

The lumped parameters can either be calculated from its dimensions and material

parameters for some of the known PT types [24, 26, 30, 32, 36, 38, 45, 52, 53] or be

determined from a impedance measurements or simulations [25, 53, 54, 55]. Finite

element method (FEM) can be a huge asset in terms of simulating PT structures,

especially when developing new PT’s, which are not well described yet. FEM has

been used through the development of the PT’s in chapter 4, from which the primary

and secondary impedance can be extracted, which is used for calculating the lumped
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parameters, using the method of [25, 54]. Furthermore, the lumped parameters of

prototype PT’s can be obtained in the same manner, by measuring the primary

and secondary impedance. Figure 2.10 illustrates a FEM simulated primary and

secondary impedance, of the developed interleaved Rosen type PT of section 4.3

[D.2], from which the lumped parameters are calculated.

Figure 2.10: FEM simulated primary and secondary impedance, of the interleaved Rosen

type PT (section 4.3 [D.2]).

2.4 Control methods

As described in the previous section the PT is operated close to its primary resonance

mode, in order to obtain optimal and efficient operation. But as the PT resonance

is of very high quality factor, the band of optimal and efficient operation is very

narrow. Ensuring an optimal operating frequency is one of the main objectives of

control methods for PT based converters, as the resonance frequency is subject to

variations, as a result of internal or external influences, such as temperature, load

variations, aging etc. When employing inductor-less topologies (chapter 3), that uti-

lizes PT’s with native soft switching capabilities (chapter 4), the band of operation

is even further reduced and small variations in the resonance frequency can easily

totally destroy the operation and efficiency. Hence a tight control of the operating

frequency is essential.

In terms of load regulation, classical pulse width modulation (PWM) [49] is not really

an option, especially not in connection with inductor-less topologies, as it demands a

50 % duty cycle. Pulse frequency modulation (PFM) on the other hand, can be used

for load regulation, assuming a relative wide band of optimal and efficient operation

of the PT. This is usually not the case when utilizing inductor-less topologies, due to

the utilization of soft switching operation, and PFM is therefore not really an option.
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2.4.1 Controlled oscillator

The most basic type of PFM is a controlled oscillator, typically a voltage controlled

oscillator (VCO), which is controlled directly or indirectly by a feedback signal. This

method is primarily used in continuous and constant load application, but is appli-

cable both for AC and DC loads, such as fluorescent lamp ballast [56] or LED loads

[57, 58]. The feedback is typically a measurement of the load current or voltage,

which is held up to a reference, resulting in an error signal that adjusts the operating

frequency [23, 44, 56, 57, 58, 59, 60], as illustrated in figure 2.11.

Figure 2.11: Basic principle of PFM based on a VCO, which compares a load current or

voltage feedback to a reference and adjusts the operating frequency.

2.4.2 Phase lock loop

The phase lock loop (PLL) approach is basically also a controlled oscillator, but the

feedback here is not a load state measurement, it is a measurement of the phase lag

coursed by the PT. As the PT acts as a band pass filter, there will be a certain phase

lag at the desired operating frequency, between the applied primary voltage and the

secondary output voltage. This phase lag is measured by the PLL, as illustrated in

figure 2.12, from which the operating frequency is adjusted, as the PLL seek to lock

Figure 2.12: Basic principle of PFM based on a PLL, which compares the phase lag and

adjusts the operating frequency.
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the phase [5, 23, 61, 62, 63, 64, 65], hence the name. The method is applicable both

for AC and DC loads, as well as it is possible to implement the control digitally [5].

2.4.3 Self-oscillating control

The phase lag of a band pass filter can be utilized in another manner, by forming a

phase shifted self-oscillating closed loop. The idea is to have a phase shift in the loop

of a multiple of 360o, at the desired operating frequency, making it highly unstable,

which induces self-oscillation [42, 66]. A clear benefit of this approach is its very fast

response to track and ”hit” the resonance frequency at startup, which is beneficial

when utilizing burst-mode control for load regulation, which is described in the next

section. Despite its excellence to ”hit” the resonance frequency at start up, it can

have difficulties to start, as the loop needs a ”spark”, noise or distortion, in order to

initiate the self-oscillation.

2.4.4 Burst-mode modulation

Load regulation becomes necessary when the load is variable and the transferred en-

ergy need to be modulated in order to maintain a desired DC output voltage, as an

example. The classical PWM control is typically not applicable for load regulation

when utilizing inductor-less topologies, as well as neither of the previous described

methods, although they are capable of maintaining a constant operating point and

hence achieving control of the output power of a predefined load. An option is to use

burst-mode modulation, also known as quantum-mode control, with the relatively

simple principle of transferring energy in modulated bursts, which is done by switch-

ing the power converter ON and OFF [42, 53, 66, 67, 68]. The power converter is

operated at full power and by modulating the ratio of the ON and OFF period, a

controlled output can be achieved.

2.5 Summary

In this chapter the principle of the targeted application, Electro Active Polymer,

piezoelectricity, the piezoelectric transformer and control methods, have been de-

scribed, giving an overview of the subjects. As the nature of this chapter is to

summarize and present the technological advances of the technologies, it is difficult

to summarize and compress the contents even further. As an alternative the literature

has been summarized, by sorting it by subject. Table 2.1 lists the relevant reference

by subject, with the intentions of helping the reader to quickly find literature on the

subjects. Some references might be relevant in several subjects and hence are listed

several times, as well as the table includes subject of the remaining chapters.
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Subject References

Electro Active Polymer [1, 7, 8, 9]

Dielectric Electro Active Polymer [7, 8, 9]

Danfoss PolyPower DEAP actuator [10, 11, 12, 13, 14]

The piezoelectric transformer (PT) [4, 16, 21, 22, 23, 27]

Piezoelectricity [15, 16, 17, 18, 19, 20, 21]

Modeling of piezoelectric transformers [22, 24, 26, 27, 28, 48, 50, 51]

Model parameter determination [24, 26, 30, 32, 36, 38, 45, 52, 53]

Piezoelectric loss and PT loss [16, 17, 18, 21, 29, 69, 70]

Piezoelectric transformer design [26, 53]

Rosen type PT [2, 3, 30, 31, 32]

Radial mode PT [26, 33, 34, 35, 36, 37, 38]

Thickness mode PT [39, 40, 41, 42, 43, 44, 45, 46, 47]

Soft switching optimized PT’s [36, 38, 39, 40, 71],[D.2,D.5]

The PT based power converter [23, 50]

Topologies [23]

Push-pull [4, 72]

Class-E [58, 60, 68]

Half-bridge [5, 66, 67, 73, 74]

The inductor-less half-bridge [40, 50, 51, 54, 63, 64, 74, 75, 76],[D.7]

Soft switching factor [26, 36, 50, 51, 54],[D.3]

Control methods [23]

Controlled oscillator [23, 44, 56, 57, 58, 59, 60]

Phase lock loop (PLL) [5, 23, 61, 62, 63, 64, 65],[D.7]

Self-oscillating control [42, 66],[D.8]

Burst-mode modulation [42, 66, 67, 68],[D.1,D.6]

Bi-directional control [D.9]

Table 2.1: Relevant reference sorted by subject.
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Chapter 3

The piezoelectric transformer based power

converter

The PT based power converter is basically a resonant converter [49], with the distinc-

tion of converting the electrical energy through an electromechanical resonant tank,

contrary to the traditional resonant converter, which utilizes an electromagnetic and

capacitive resonant tank. One of the qualities of resonant converters is the oppor-

tunity to exploit soft switching operation, which significantly reduces switching loss

and switching stress. As a side product, the switching loss and stress reduction will

also lead to a reduced EMI profile, due to the elimination of high frequency switching

noise.

Figure 3.1: Some of the most popular topologies for driving PT’s. The topologies are

as follows, seen from the left: the push-pull, the class-E and the half-bridge. An output

rectifier is also applicable for DC loads.

The PT can be driven by various converter topologies, where the most popular topolo-

gies [23] are the push-pull [4, 72], Class-E [58, 60, 68] and half-bridge [5, 66, 67, 73, 74]

and is illustrated in Figure 3.1. The push-pull topology is primarily used for step-up

applications, due to a higher step-up ratio and simple control requirements [23]. The

Class-E and half-bridge topology are more suitable for step-down applications, where

the half-bridge handles high power levels better than the Class-E [77]. But they all

suffer the drawback of requiring additional inductive components in order to achieve

soft switching operation. There are also various charge-pump topologies, which offers

soft switching and power factor correction (PFC) capabilities [56, 71, 78, 79, 80, 81],

but they have very demanding requirements for the PT.

The inductor-less half-bridge topology however, offers soft switching capabilities,

through the utilization of soft switching optimized PT’s [40, 50, 51, 54, 63, 64, 74,

75, 76]. The elimination of bulky series inductors reduces complexity and component
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3.1 The inductor-less half-bridge

count, which leads to a smaller and cheaper power converter and the inductor-less

half-bridge is treated in detail in the following section.

3.1 The inductor-less half-bridge

Figure 3.2 illustrates the inductor-less half-bridge topology and the lumped parameter

model, where the absence of a series inductance reduces component count, size and

price of the converter. Usually a series inductor is required in the half-bridge topology,

in order to achieve soft switching operation of the switches and avoid large hard

switching losses, in connection to the parasitic input capacitor of the PT Cd1 [22, 23,

66, 74]. The parasitic input capacitance can easily lead to hard switching losses in the

same range as the output power, resulting in a very poor efficiency. In order to achieve

sustained soft switching of the switches, the inductor-less half-bridge utilizes soft

switching optimized PT’s [36, 38, 39, 40],[D.2,D.5], which possess native soft switching

capabilities, without requiring auxiliary inductive components. Furthermore, the PT

is operating slightly above its operating resonant frequency, where the series resonant

network becomes inductive and contains enough resonating energy to charge and

discharge Cd1. And as it will be shown in section 3.2, there is an optimum where

the inductive behavior and energy of the resonant network is maximized, making the

largest energy transfer to Cd1. Moreover the dead time in-between the two switches

should be sufficiently large, in order to let the charge and discharge occur. A detailed

description of the operational principle is conducted in the following section.

Figure 3.2: Schematic diagram of the inductor-less half-bridge topology and the lumped

parameter model.

3.1.1 Operational principle

Figure 3.3 illustrates the steady-state operation of the inductor-less half-bridge, which

is operated slightly above its operational resonant frequency, maximizing inductive

behavior and resonating energy. As it can be seen the resonant current possesses

sufficient phase shift (inductive behavior) and magnitude to achieve soft switching,

where the switches are operated under zero voltage switching (ZVS). Furthermore
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3.1 The inductor-less half-bridge

sufficient dead time is supplied in-between the switches, clearly allowing the resonant

current to charge and discharge Cd1, making the input voltage Vin reach the supply

rails, before the switches is turned ON.

Figure 3.3: Operational waveforms of the inductor-less half-bridge topology, operated

slightly above its operational resonant frequency, where ZVS is obtained.

The circuit (Figure 3.2) has 6 modes of operation, divided into the following periods:

t0 − t1: Both switches are turned OFF in this period and the reverse resonant current

IL charges the input capacitor Cd1.

t1 − t2: When the input capacitor Cd1 is charged to the supply voltage the body

diode of M1 conducts the reverse resonant current IL and it is in this period

M1 is switched ON, achieving ZVS.

t2 − t3: At t2 the resonant current IL is inverted, switch M1 conducts the resonant

current IL and transfers energy to the resonant tank.

t3 − t4: At t3 switch M1 is turned OFF and the resonant current IL discharges the

input capacitor Cd1.

t4 − t5: When the input capacitor Cd1 is totally discharged the body diode of M2

conducts the resonant current IL and it is in this period M2 is switched ON,

achieving ZVS.

t5 − t6: At t5 the resonant current IL is reversed and the resonant current IL is

freewheeling through switch M2. The period ends at t6, where M2 is switched

OFF and a new cycle begins.
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3.2 Soft switching factor

As mentioned the switches should be turned ON in-between the time periods t1 − t2
and t4− t5, so sufficient dead-time should be supplied to the gate signals, in order to

utilize the ZVS capability.

3.2 Soft switching factor

The inductor-less half-bridge topology is quite simple, making it easy to understand

the subject of soft switching. But the soft switching principle and the requirements

for the PT for a bit more advance topologies, like the full-bridge, are the same. How-

ever for the more advanced PFC charge pump topologies, the requirements to the soft

switching capability of the PT is higher, as the apparent parasitic input capacitance

is increased.

From a design point of view, it is desirable to get a measure of soft switching capa-

bility, in order to evaluate PT designs and meet the requirement for achieving soft

switching operation. The PT soft switching capability can be derived from the lumped

parameter model and several attempts of doing so, have been made [26, 36, 50, 51, 54].

They all succeed to derive expressions, but suffer from complexity and are not trans-

parent or accurate. In [54] a simple and transparent expression is derived (3.1), but

it lacks accuracy, by being too optimistic.

V ′
P [54]

=
1

n2

Cd2
Cd1

36
√

6

9π2
η (3.1)

The expression assumes a matched load as this maximizes the power transfer of

the resonant network, as well as this is the worst case condition for soft switching

capability [54]. What the expression states is the maximal obtainable soft switching

capability, for a given set of PT model parameters, also known as the soft switching

factor or ZVS factor. As the expression reveals only a few parameters of the model

affect the ZVS factor, making it very simple and transparent. As the expression is too

optimistic, a ZVS factor of at least 1.4 is required, in order to achieve soft switching

operation. This expression (3.1), is used as a starting point for the empirical search

for a simple, transparent and accurate expression of the soft switching capability,

which is conducted in [D.3] and described in the following section.

3.2.1 Derivation of soft switching factor

Due to the lack of a simple and transparent measure of soft switching capability, an

investigation has been conducted in [D.3], seeking to express the maximal obtainable

soft switching capability (ZVS factor). The approach has been to perform an empiric

series of parametric sweep time domain simulations of the inductor-less half-bridge

and the lumped parameter model, searching for linearization opportunities in respect

to the soft switching capability. The simulations have been performed using OrCad
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3.2 Soft switching factor

PSpice, with at least 100 cycles before any measurements were made, in order to

ensure steady-state operation. Furthermore the simulated circuit utilizes idealized

switches and body diodes, as well as a matched load is employed. But it also uses

an adaptive dead-time, which ensures an optimal dead-time for any given operation

point. The measurement of the soft switching capability, i.e. the maximal charging

and discharging of Cd1, has been performed by a circuit arrangement that enables a

measurement of the peak voltage across Cd1. The simulated circuit can be found in

Appendix A, where the peak voltage is measured in the V Cd1 node. This makes it

possible to measure the overshoot, which is a measure of the soft switching capabil-

ity. Or the simulation will reveal a lack of overshoot, where the limited voltage is a

measure of the lacking soft switching capability. Figure 3.4 illustrates two simulation

cases, at 56.5 kHz, showing a soft switching and hard switching case.

Figure 3.4: Simulated PT soft switching capability, at 56.5 kHz, with two different input

capacities Cd1, using the simulation circuit of Appendix A.

As (3.1) revealed, the soft switching capability is strongly dependent on the input and

output capacitor. Figure 3.5 illustrates a series of simulations, sweeping the frequency

above and in the vicinity of the operational resonant frequency. Furthermore the

swept frequency simulations has been performed with a linearly increment of the

input capacitor Cd1, while keeping the remaining model fixed1.

As anticipated the simulations confirm a clear and strong dependency on the fre-

quency and the input capacitor Cd1, as well as the frequency profile matches what is

seen in prior art [26, 50, 51, 54]. The simulations unveil an optimal point in operating

frequency, where the soft switching capability is maximized. This maximal obtain-

able soft switching capability or ZVS factor (V ′P ), can then be plotted in relation

1The PT and model parameters used for the simulations, are from the developed Interleaved

Rosen type PT [D.2], but as the lumped parameter mode is independent of PT design, the results

are general.

27



3.2 Soft switching factor

Figure 3.5: Simulated PT soft switching capability over frequency, with different input

capacities Cd1 (capacitor ratio KC), using the lumped parameters of [D.2] and having a

series resistance of 98 mΩ (98.7% efficiency).

to the swept input capacitor Cd1 or, more interestingly, in relation to the input and

output capacitor ratio KC (3.2).

KC =
1

n2

Cd2
Cd1

(3.2)

The ZVS factors of Figure 3.5, at varying capacitor ratioKC , resembles the second top

most line in Figure 3.6, which illustrates the ZVS factors dependency on the capacitor

ratio KC , as well as ZVS factors at different efficiencies are included (increasing series

resistance R).

And as it can be observed there is a fine linear relation between the capacitor ratio

KC and the ZVS factor V ′P and by performing a linear regression of the topmost line

(η ≈ 100%), the most simplified expression of the ZVS factor is found (3.3).

V ′P η≈100% = 0.304
1

n2

Cd2
Cd1

+ 0.538 (3.3)

The expression is very handy and as simple as it gets, it holds for high efficient PT’s,

which in the end is the ultimate goal of the PT technology.

The efficiency dependency should be taken in to account, when working with less effi-

cient PT’s (approximately < 97%), in order to get an acurate result. The ZVS factor

V ′P η≈100% (3.3) can be adjusted by an efficiency dependent factor, which is derived in

the same manner of a linear regression of the normalized ZVS factor (V ′P/V
′
P η≈100%)

dependency on the efficeincy. This linearization leads to the final expressing of the
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3.2 Soft switching factor

Figure 3.6: Simulated maximal PT soft switching capability (ZVS factor V ′P ) in relation

to the capacitor ratio KC , at different efficiencies.

ZVS factor V ′P (3.4), which describes the maximal obtainable soft switching capability

of the lumped parameter PT model, for any given model parameters.

V ′P =

(
0.304

1

n2

Cd2
Cd1

+ 0.538

)
(0.585η + 0.414) (3.4)

In section 4.2 the ZVS factor will be related to the physical structure of the PT,

which enables a much more intuitive design process.

3.2.2 Experimental verification

The derived ZVS factor is verified up against experimental measurements on one of

the developed 30x10x2 mm prototype Interleaved Rosen type PT’s. The approach

has been to make a stepwise increment of the input capacitor Cd1 and measure the

drop in soft switching capability, just as performed in the simulations. Two sets of

ZVS factor measurements have been collected, where the half-bridge has been oper-

ated at two different supply voltages, 10 V and 20 V respectively. The increase in

voltage should reflect a decrease in efficiency, as a result of the nonlinear nature of

the piezoelectric loss [16, 17, 18, 21, 29, 69, 70].

In Figure 3.7 the experimental measurements is plotted, together with the prediction

of (3.4). As it can be observed the experimental results are not perfectly linear as

anticipated, but the ZVS factor drops when employing a higher half-bridge supply

voltage, just as expected. Furthermore the prediction is a bit more optimistic than

the experimental results, where a 3-6% deviation can be observed. This is mainly
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3.2 Soft switching factor

Figure 3.7: ZVS factor measurement of prototype PT in relation to the capacitor ratioKC ,

compared with the ZVS factor expression. The utilized PT is a 30x10x2 mm Interleaved

Rosen type PT [D.2] (section 4.3).

due to the fact that the PT efficiency drops as the half-bridge voltage increases and

gets heavily loaded. As the lumped parameters of the prototype PT are measured

by a impedance analyzer, which only applies a small signal, in order to perform an

impedance measurement. The result is that the measure loss resistance R is also only

a measure of efficiency at light or no load, which results in a too optimistic prediction.

In order to get an accurate prediction, the loaded PT efficiency should be used, which

in fact is quite difficult to obtain, as it involves precision measurements of relative

high frequency voltages and currents, as well as the input voltage is non-sinusoidal.

Furthermore the experimental results are extracted ”by hand” from oscilloscope plots,

which can lead to some deviation, as well as the prototype unavoidably adds parasitic

components, such as the highly nonlinear semiconductor parasitic capacitances.

Nonetheless an accurate, simple and transparent ZVS factor has been derived, with

the intentions of forming a fundamental measure of soft switching capability and

basic tool to assist through the development of soft switching optimized PT’s.

3.2.3 Operation point of maximal soft switching capability

As described in the previous section, there is an optimal point of operation, where

inductive behavior and resonating energy is maximized, which maximizes soft switch-

ing capability of the PT. This point is located slightly above the operational resonant

frequency, as illustrated in Figure 3.5. By plotting the soft switching capability of Fig-

ure 3.5 (KC = 1.8), in relation to the voltage gain (3.5) and resonant current transfer
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3.3 Summary

function (3.6) of the PT2, some valuable operation conditions can be derived.

VOut
VIn

=

1
jωCd2

∥∥RL

(R + jωL+ 1
jωC

)/n2 + ( 1
jωCd2

∥∥RL)

1

n
(3.5)

IL =
VIn
ZIn

=
VIn

R + jωL+ 1
jωC

+ ( 1
jωCd2

∥∥RL)n2
(3.6)

In Figure 3.8 the soft switching capability is related to the transfer functions and as

it reveals, there is a clear connection between the operational point of optimal soft

switching capability and the phase and magnitude of the transfer functions. As it

can be seen the PT voltage gain magnitude is reduced to 57% and has a phase lag

of 102o, whereas the resonant current magnitude also is reduced to 57% and has a

phase lag of 56o, which is summarised in (3.7).

AZV S = 57% · Amax ∠102o IL ZV S = 57% · Imax ∠56o (3.7)

The results are general for ZVS optimized PT’s as the gain and phase characteristic of

the resonant tank can be considered as constant within a reasonable ZVS range (ZVS

factor of 1 to 1.5). This operational information is key in connection to controlling

and maintaining optimal and sustained soft switching operation of the inductor-less

half-bridge topology, as well as through the design of PT’s, as the voltage gain is one

of the design criterion. Control methods such as PLL relies on the phase information,

as it seek to locking the operation to a certain phase shift [5, 23, 61, 62, 63, 64, 65].

In chapter 5 the phase information will become valuable, as several control method

are presented, which relies on the phase response of the PT.

3.3 Summary

In this chapter the utilized inductor-less half-bridge topology is presented, as well as

the most popular PT based topologies are introduced. The operational principle of

the inductor-less half-bridge is described in detail, where it:

• Relies on soft switching optimized PT’s, which possess native soft switching

capabilities, without requiring auxiliary inductive components.

• Is operated slightly above its operational resonant frequency, where inductive

behavior and resonating energy is maximized, enabling ZVS of the half-bridge

switches.

• Require a sufficiently large dead-time in-between the two switches, in order

to allow the resonant current to charge and discharge of input capacitor Cd1,

enabling the utilization of soft switching.

2The input capacitor Cd1 is excluded in the derivation of these equations, as it does not have

any influence on the frequency domain transfer functions.
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3.3 Summary

The inductor-less half-bridge topology is described in detail in [D.3] and [D.7], but

is the target or utilized topology of this study and all the publications of Appendix D.

An expression of the ZVS factor V ′P (3.4) has been derived, which describes the

maximal obtainable soft switching capability of the lumped parameter PT model,

for any given model parameters, assuming a matched load. The derived expression

demonstrates good correlation with the experimental results, although having a too

optimistic result of 3-6%, but this is mainly the result of using a too optimistic effi-

ciency for the predicted ZVS factor. Which leads to the conclusion that an accurate,

simple and transparent ZVS factor has been derived, with the intentions of forming

a basic tool to assist through the development of soft switching optimized PT’s. As

a closing conclusion on soft switching capability, the derived ZVS factor leads to the

rule of thumb, that a capacitor ratio KC of at least 1.55 is needed, in order to achieve

soft switching capability for high efficient PT’s:

1.55 <
1

n2

Cd2
Cd1

An in-depth analysis of the topic of soft switching and derivation of the ZVS factor

is presented in [D.3]3.

Moreover the study of the soft switching capability, revealed an operational point of

optimal soft switching capability, which is closely connected to the transfer functions

of the PT. It was shown how this optimal operational point was related to a certain

magnitude decrease and phase lag of the PT.

3The ZVS factor will be related to the physical structure of the PT in section 4.2, which enables

a much more intuitive design process.
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3.3 Summary

Figure 3.8: ZVS capability over frequency, in relation to voltage gain and resonant current,

gain and phase, for the 30x10x2 mm Interleaved Rosen type PT [D.2] (section 4.3), but the

results are general for ZVS optimized PT’s.
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Chapter 4

Piezoelectric transformer design

During this study several PT designs and PT’s were developed, in order to accommo-

date the need of high gain and soft switching capabilities, which enables the utilization

of the inductor-less half-bridge topology. As described in Overview and State of the

art chapter 2, the target application is to drive a high voltage DEAP actuator from a

low 24 V supply voltage, which leads to the following main specification for the PT:

• High step-up conversion ratio within the vicinity of 100.

• A desired output power of up to 11.5 W.

• Optimized for soft switching and the inductor-less half-bridge.

4.1 Development tools

One of the challenges of developing PT’s is to make a good evaluation of PT designs

and PT structures, as well as evaluating the manufactured prototypes.

A good evaluation tool of the soft switching capability is derived in section 3.2, that

enables the determination of PT’s soft switching capability from its lumped parameter

model. The ZVS factor is further improved in section 4.2, where it is related to

the physical structure of the PT, enabling a much more intuitive design process.

Furthermore the gain and power can also be determined from the lumped parameter

model [22, 27, 53]. When designing PT’s one of the objectives is to match the output

of the PT to the load, as this maximizes power and efficiency, but as a drawback

this is also the worst case condition for soft switching capability. Another benefit of

utilizing a matched load is that the design is evaluated at the same load conditions,

making it possible to make a fair comparison of different designs, even though the

designs are for different power and voltage levels, or the targeted application does

not resemble a match load, like DC/DC applications.

4.1.1 Finite element method

Through this study the development has relied heavily on finite element method

(FEM) simulations. FEM has proved to be a good evaluation tool, in terms of

determining the lumped parameter model values, from which matched load, gain,

ZVS factor and power can be determined. It has demonstrated fairly good correlation

with manufactured prototypes, but with some shortcomings, primarily in terms of

determining the efficiency. The shortcomings is likely more due to bad correlation
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4.2 Soft switching optimized PT’s

of the material parameters used, as well as an incomplete implementation of the loss

mechanism of piezoelectric material. All in all FEM has proven as a good development

tool, with the lack of a good loss and efficiency determination.

4.1.2 Active match load

In this work with PT’s of high output voltage and output impedance, it is quite dif-

ficult to make its matched load, as the availability of high impedance power resistors

is very limited. Furthermore the match load changes for PT designs and design vari-

ations, requiring the manufacturing of a matched load for every new design, which

typically is a resistor matrix of standard 1/4 W resistors. Therefore as a development

tool, an active high impedance load has been developed [D.4], which makes it easy

to adjust the load impedance, without having to solder a resistor matrix of standard

1/4 W resistors and without having any significant inductive component in the load.

Figure 4.1: The developed active match load (left) and the fundamental electrical circuit

(right).

Figure 4.1 illustrates the developed active match load and the fundamental electri-

cal circuit. The circuit relies on a current and voltage measurement, from which a

high voltage MOSFET is controlled in the linear region, ensuring that the current is

proportional to the voltage, which emulates resistive behavior.

4.2 Soft switching optimized PT’s

To date, several soft switching optimized PT’s and design guides for soft switching

optimization exist, but they primarily deal with the Radial mode PT [36, 38, 39,

40, 71]. But soft switching optimized thickness mode PT’s have also been proposed

[39, 40, 45, 54]. In [63, 64] a Rosen type PT is utilized, but the soft switching capa-

bility is here achieved on the expense of a matched load. In [54] my colleague suggest

how to optimize a ring shaped Thickness mod PT, which has led to the patent ap-

plication [82], which covers soft switching structures, optimized by using the concept

of effective coupling factors. This concept is also a part of this study, as it is closely
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4.2 Soft switching optimized PT’s

related to the soft switching capability and the ZVS factor derived in section 3.2.

4.2.1 Effective coupling ZVS factor

The effective coupling factor is a measure of how good an effective electromechanical

coupling the structure possess, at a given resonance mode, and includes losses [16,

83]. The expression of the effective coupling factors are refreshed in (4.1) and are

calculated from the resonance mode series and parallel resonant frequencies.

k2eff Pri =
f 2
p Pri − f 2

s Pri

f 2
p Pri

k2eff Sec =
f 2
p Sec − f 2

s Sec

f 2
p Sec

(4.1)

As the model parameters also can be determined from the series and parallel resonant

frequencies [25, 53, 54, 55], the ZVS factor (3.4) derived in section 3.2 [D.3], which

relies on the input and output capacitors, can be rewritten in terms of effective

coupling factors (4.2).

V ′P =

(
0.304

(1− k2eff Sec)/k
2
eff Sec

(1− k2eff Pri)/k
2
eff Pri

+ 0.538

)
(0.585η + 0.414) (4.2)

Instead of stating that the reflected output capacitor have to be larger than the in-

put capacitor, the expression now states that the effective coupling of the primary

section have to be larger than the effective coupling of the secondary section. This is

advantageous as the effective coupling factors to some extent can be related directly

to the mechanical structure and the operational stress, whereas the input and output

capacitors are hard to relate to the mechanical structure. This enables a much more

intuitive design process and very simplified articulated, the effective coupling is pro-

portional to the electromechanical coupling, of the utilized vibration mode, and the

Figure 4.2: Visualization of the displacement and stress across the classical Rosen type

PT structure.
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4.3 Interleaved Rosen type PT

area beneath the stress curve covered by the section, as visualized in Figure 4.2. This

assumes simple structures, where only a single resonance mode is excited, but is appli-

cable to higher mode shapes than the first mode shape. This leads to the basic rule of

thumb: one section should cover more area of the stress curve than the other, in order

to achieve a higher effective coupling, if both sections are operated trough the same

electromechanical coupling (electromechanical coupling factors). From this statement

it can be derived that a classical Rosen type PT cannot soft switch, as the primary

section only covers 50 % of the stress curve (both in the first and second mode shape),

as well as it has a lower electromechanical coupling k31, than the secondary section k33.

Figure 4.3: The Interleaved Rosen type PT

structure (top) and FEM simulated opera-

tional mode shape (mid-bottom). For sim-

plicity the PT structure, which has a size of

25 x 10 x 2 mm, only have two primary layers

and the arrows indicate the polarization di-

rection. The FEM simulation illustrates op-

eration in the first longitudinal mode shape,

at 65.1 kHz, where light colors refer to a low

displacement and dark colors to a high dis-

placement.

Giving the primary section a lower effec-

tive coupling than the secondary section.

4.3 Interleaved Rosen

type PT

The Interleaved Rosen type PT, which

is proposed and developed in [D.2], is

essential a classically multilayer Rosen

type PT, where the primary section has

been interleaved into the secondary sec-

tion. The interleaved multilayer struc-

ture is no breakthrough and is also

known as the double sided Rosen type

PT [2, 84, 85]. The break through is its

native soft switching capabilities, which

is achieved by having an optimized pri-

mary section size and position. A de-

tailed analysis and description of the re-

search, can be found in [D.2].

4.3.1 Structure

Figure 4.3 illustrates the structure of the

Interleaved Rosen type PT. The opera-

tional vibration resonance is along the

longitudinal direction, which also is il-

lustrated in Figure 4.3, and is generated

through the electromechanical coupling

factors k31 and k33, primary and sec-

ondary respectively. As it can be seen

it has a nodal line in the center of the
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4.3 Interleaved Rosen type PT

structure, which is useful in terms of mounting and fixing it to the power converter.

A clear advantage of this structure is the very straight forward and easy manufac-

turing, when utilizing tape casting technology [17, 18], as the build-up is the same

as for a simple multilayer Rosen type PT. Furthermore the design possesses high

voltage gain capabilities, which is desirable for this specific application. A drawback

of this design (depending on application) is the split secondary, which results in a

differential output voltage symmetrical around ground. The main drawback of the

Interleaved Rosen type PT is its relative low efficiency, which is a result of the low

electromechanical coupling k31 of the primary section.

4.3.2 Soft switching optimization

As mentioned, the Interleaved Rosen type PT achieves its native soft switching ca-

pabilities through an optimization of the primary section size and position. The PT

is operated in its first mode shape, which is where a half-wave sound wave is stand-

ing across the structure. The position is key and with the interleaving, the primary

section is placed right in the middle of the excitation stress curve, as illustrated in

Figure 4.4.

Figure 4.4: Visualization of the displacement and stress across the soft switching opti-

mized Interleaved Rosen type PT.

This gives it a good mechanical coupling to the structure and hence good conditions

for a high effective coupling factor. Utilizing a primary section which occupy 50 % of

the structure and covers even more of the area below the stress curve, the primary

and secondary have approximatly the same effective coupling (Table 4.1), which is

not enough in order to achieve soft switching capabilities. This is because the pri-

mary section utilize transverse vibrations, which has an electromechanical coupling

k31 that is lower than for the secondary thickness mode k33.

Table 4.1 illustrates how the effective coupling factors and the ZVS factor are de-

pendent on the size of the primary section. As it can be seen, a sufficiently large

ZVS factor is achieved, when increasing the primary section size to 58 % or more.
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4.3 Interleaved Rosen type PT

Primary volume 33% 50% 58% 60% 62% 64% 65%

ZVS factor V ′P 61.6% 82.2% 106.5% 113.5% 124.1% 138.5% 153.4%

keff Pri 24.0% 29.2% 30.7% 31.3% 31.6% 31.8% 31.6%

keff Sec 43.8% 30.1% 23.8% 22.9% 21.4% 19.7% 18.1%

Table 4.1: Soft switching optimization of the Interleaved Rosen type PT, achieved by

primary section volume optimization and is generated through FEM simulations. The

FEM simulation is a 2D simulation of a 30x10x2 mm structure, but the results are general

and independent of the size, as long the structure has a reasonable aspect ration (”long”

structure). The effective coupling factors are calculated from the FEM simulated primary

and secondary impedance, and (4.2) is used to calculate the ZVS factor.

And a size of 58 % is what that have been used for the prototypes in the next sec-

tion. This is totally independent on the numbers of primary layers and therefore

the primary layers can be used to control the voltage gain of the PT. It can be ob-

served that the improved ZVS factor mainly is achieved on the expense of a degraded

secondary section effective coupling. As the effective coupling is a measure of the

effective electromechanical coupling, which includes losses, it is obvious that as high

an effective coupling as possible is desirable. Therefore, it is not desirable to have an

unnecessarily high ZVS factor.

4.3.3 Prototype

As described in the previous section, the optimal size of the primary section was

found to be 58 % of the center of the structure. From this design constraint, four

Figure 4.5: Picture of prototype PT’s (left) of different sizes (length from left: 40 mm,

35 mm, 30 mm and 25 mm) and operational waveforms of a 25 mm prototype (right),

operated at 20 V half-bridge voltage and a matched resistive load (approximately 100 kΩ).

The relative slow rising switching flanks and the MOSFET body-diode conduction voltage

drop, at supply rails, clearly demonstrates ZVS operation.
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4.4 Interleaved thickness mode PT

sized PT designs were developed and produced, as illustrated in Figure 4.5(left),

having a thickness of 2 mm, a width of 10 mm and length ranging from 25 mm to

40 mm. Two numbers of primary layers were manufactured, as the conversion ratio

is directly proportional to the secondary and primary layer thickness ratio. As the

structure gets smaller, the secondary layer thickness gets smaller and the drop in gain

can be compensated by increasing the numbers of primary layers (decreasing primary

layer thickness). In Table 4.2 the design specifications of the four sized PT are listed,

having voltage gains ranging from 75 to 100.

Mask 1 Mask 2

PT length 40 35 30 25 mm

Primary volume 58% 58% 58% 58%

Primary length 23.2 20.3 17.4 14.5 mm

Primary layers 10 10 12 12

Pri layer thickness 200.0 200.0 166.7 166.7 µm

Gain 100.5 88.1 90.5 75.3

Table 4.2: Design specifications of the four developed Interleaved Rosen type PT.

In Figure 4.5(right) the operation of the developed 25 mm PT is illustrated. The

waveforms reveals a high voltage conversion ratio, of approximately 68, generating

voltages of 565 V rms, from a 20 V half-bridge supply voltage, in to a matched

load. The minor drop in voltage conversion ratio is mainly due to the primary layer

being 5 % thicker than expected and is further ellaborated in [D.2]. Moreover it

clearly demonstrates soft switching capabilities, which has been the main objective.

The development furthermore demonstrated a good correlation between the FEM

simulated design and the manufactured prototypes.

4.4 Interleaved thickness mode PT

The Interleaved thickness mode PT is based on the classical thickness mode PT

concepts [39, 40, 41, 45, 47], where soft switching optimized PT’s also have been

proposed [39, 40, 45, 54]. Thickness mode PT’s have mainly been used for step-down

applications and moderate voltages (typically up to rectified AC mains voltages),

due to the limited build-up height (typically 2-4 mm). This puts some limits on

the voltages in terms of breakdown voltages, which to some extent can be extended

by incorporating the electrodes in to the structure. But it is also limiting as the

applied electrical field should not exceed a certain level, in order to maintain efficient

operation and it should definitely be far below the poling field of the material. The

main challenge here is therefore the high voltage, which dictates a high structure.

The Interleaved thickness mode PT also possesses native soft switching capabilities,

which mainly is achieved by having an interleaved primary section.
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4.4 Interleaved thickness mode PT

4.4.1 Structure

Figure 4.6 illustrates the structure of the Interleaved thickness mode PT, where the

operational vibration resonance is along the longitudinal direction and it is operated

in its first longitudinal mode shape. As both the primary and secondary section is

Figure 4.6: The Interleaved thickness mode PT structure (left) and FEM simulation of the

operational resonance mode (mid-right). For simplicity the PT structure, which has a size

of 8 x 8 x 20 mm, only shows two primary layers and the arrows indicate the polarization

direction. The FEM simulation illustrates the operation in the first longitudinal mode

shape, at 70.1 kHz, where light colors refer to a low displacement and dark colors to a high

displacement.

operated through the thickness mode electromechanical coupling k33, which approx-

imately is twice as large as the transverse mode k31, the thickness mode PT has a

much higher potential for high efficiency and high power density. Furthermore the de-

sign possesses potentially high soft switching capabilities, which will be shown in the

Primary volume 20% 25% 27% 30% 33%

ZVS factor V ′P 75.6% 89.4% 96.5% 110.0% 125.9%

keff Pri 45.1% 49.7% 51.5% 53.8% 55.9%

keff Sec 51.2% 46.8% 45.2% 42.5% 40.1%

Table 4.3: Soft switching optimization of the Interleaved thickness mode PT, achieved

by primary section volume optimization and is generated through FEM simulations. The

FEM simulation is a 2D simulation of a 8x8x20 mm structure, but the results are general

and independent of the size, as long the structure has a reasonable aspect ration (”high”

structure). The effective coupling factors are calculated from the FEM simulated primary

and secondary impedance, and (4.2) is used to calculate the ZVS factor.
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4.4 Interleaved thickness mode PT

following section, as well as high voltage gain capabilities, which is directly propor-

tional to the secondary and primary layer thickness ratio. Similar to the Interleaved

Rosen type PT, it has a split secondary, which results in a differential output voltage

symmetrical around ground. The main drawback of the structure is the challenging

manufacturing, in relation to the high build-up height, as described in the previous

section.

4.4.2 Soft switching optimization

Figure 4.7: Visualization of the displace-

ment and stress across the soft switching op-

timized Interleaved thickness mode PT.

Just as the Interleaved Rosen type PT, the

Interleaved thickness mode PT achieves its

native soft switching capabilities through

the interleaving design and the optimiza-

tion of the primary section size. Again,

the interleaving places the primary sec-

tion right in the middle of the excitation

stress curve, as illustrated in Figure 4.7.

But contrary to the primary section of a

Rosen type PT, the primary section uti-

lizes the thickness mode electromechani-

cal coupling k33, which gives it a much

higher effective coupling. This enables the

primary section to be approximately half

the size (due to a doubling of the elec-

tromechanical coupling), while maintain-

ing soft switching capabilities. Table 4.3

illustrates how the effective coupling fac-

tors and the ZVS factor are dependent on

the size of the primary section.

PT height 20 mm

Primary volume 32.6%

Primary ”length” 6.53 mm

Primary layers 64

Pri layer thickness 99 µm

Gain 98.8

Table 4.4: Design specifications of the In-

terleaved thickness mode PT.

As it can be seen, a sufficiently large ZVS

factor is achieved, with a primary section

size of 30 % or more. It can also be

observed that the primary and secondary

sections have significantly larger effective

couplings, which reflects the higher po-

tential of high efficiency and high power

density. Again this is independent on the

numbers of primary layers, so the results

are general and the primary layers can be

used to control the voltage gain of the PT.
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4.5 Interleaved interdigitated electrode PT

4.4.3 Prototype

Unfortunately no operational prototypes were built, due to the challenge of the very

high build-up height. The 20 mm build-up height proved that it was very challenging

to maintain consistency trough the build-up of 606 layers of 33 µm thick tape, to

maintain consistent inter tape connection and to mill out the high structure. Table 4.4

lists the design specification of a 8 x 8 x 20 mm sized PT, having a voltage gain of 98.8.

This design is pushing the limits of the build-up and manufacturing of our suppliers

manufacturing capabilities, but not the limits of the thickness mode principle and

operation, in terms of voltage and electrical field levels.

4.5 Interleaved interdigitated electrode PT

Figure 4.8: The Interleaved IDE PT struc-

ture (top) and principle of the IDE structure

(bottom). For simplicity the PT structure,

which has a size of 30 x 10 x 2 mm, only shows

two primary layers and the arrows indicate

the polarization direction. The IDE structure

consists of a stack of thin horizontal electrode

”line” (70 µm), which is printed on every tape

layer, forming a vertical electrode.

As it was described in the previous sec-

tion, a thickness mode PT has a much

higher potential for high efficiency and

high power density, due to the high elec-

tromechanical coupling k33 of thickness

mode vibrations. But as the build-up

proved too challenging to manufactured,

the Interleaved thickness mode PT was

not the design to proceed with and an-

other solutions was required. The ba-

sic principle of the Interleaved interdigi-

tated electrode PT, is that it is a thick-

ness mode PT, with at interleaved pri-

mary section, just as the Interleaved

thickness mode PT. But instead of hav-

ing the high build-up height of the Inter-

leaved thickness mode PT, the structure

is pushed over, so it is built-up ”side-

ways”, giving it a much lower build-up

height. In this manner it combines the

performance advantages of the thickness

mode PT and the manufacturing advan-

tages of the Rosen type PT. A detailed

analysis and description of the research,

can be found in [D.5].
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4.5 Interleaved interdigitated electrode PT

4.5.1 Structure

Figure 4.8 illustrates the structure of the Interleaved interdigitated electrode PT and

the principle of the interdigitated electrodes (IDE). As it can be seen the IDE struc-

ture consists of a stack of thin horizontal electrode ”lines”, instead of a single vertical

electrode, as the tape casting technology only permits electrodes to be printed in the

same plane as the tape (in-between the tape layers). The lines have a width of 70 µm,

which is relatively wide compared to the thickness of 2-3 µm, and is limited by the

printing technology. The lines are printed on every tape layer, which complicates the

build-up process somewhat. In this manner a vertical electrode is constructed, that

permits a low build-up height, which enables the utilization of simple tape casting

manufacturing for long thickness mode structures.

Figure 4.9: FEM simulation illustrating

the operation in the first longitudinal mode

shape, at 47.5 kHz, where light colors refer to

a low displacement and dark colors to a high

displacement.

The operational vibration resonance is

along the longitudinal direction and

is operated in its first longitudinal

mode shape, as illustrated in Fig-

ure 4.9. The Interleaved IDE PT

has the same potential of high soft

switching and high voltage gain ca-

pabilities, as the Interleaved thickness

mode PT. The voltage gain is also

here directly proportional to the sec-

ondary and primary layer thickness ra-

tio.

The drawback of utilizing IDE’s, when

designing for high gain i.e. a high num-

ber of primary layers is needed, is that

as the electrode lines have a finite width

(70 µm) the IDE’s occupy a significant

part of the primary section. As the

piezoelectric material enclosed by the

IDE’s is inactive1, the active part of the

primary section has been reduced, which

degrades the effective coupling and performance. A high gain design is therefore

a trade-off between the number of layers and the inactive volume occupied by the

electrodes. Furthermore the layer thickness should be significantly thicker, than the

spacing between the electrode lines (tape thickness of 33 µm), in order for the IDE

structure to appear as a solid vertical electrode and produce a uniform electrical field

1No electrical field can be generated across the material by the IDE structure, thus making it

impossible to polarize and excite it.

45



4.5 Interleaved interdigitated electrode PT

across the layer. Therefor the ratio between the primary layer thickness and the tape

thickness, should be kept sufficiently large, preferably lager than 10.

4.5.2 Soft switching optimization

The Interleaved IDE PT achieves its native soft switching capabilities, through the

optimization of the primary section size and position, just as the Interleaved Rosen

type PT. Here again the interleaving design is key. The primary section is placed

right in the middle of the excitation stress curve, as illustrated in Figure 4.10. As the

Figure 4.10: Visualization of the displacement and stress across the soft switching opti-

mized Interleaved IDE PT.

IDE’s occupy a significant and inactive part of the primary section, the effective cou-

pling and hence soft switching capability is degraded somewhat. Therefor a primary

section size of 30 % is not sufficient, as it were for the Interleaved thickness mode PT.

Table 4.5 illustrates how the effective coupling factors and the ZVS factor are depen-

dent on the size of the primary section and the IDE’s, of designs with 40 primary

layers. As it can be seen a primary section size of 33 % and 36 % is needed, in order

to achieve a sufficiently large ZVS factor, for a 30 mm and 20 mm design. The IDE’s

of the 30 mm design occupies 27.6 % of the primary section, which is high, but for

the 20 mm design, the IDE’s occupies an astonishing 37.9 % of the primary section,

which really is pushing the limits of the concept, but maintains a decent effective

coupling. Moreover the primary layer to tape thickness ratio for a 20 mm design is as

low as 3.3 and the IDE’s cannot be considered as solid electrodes any more, and the

results are somewhat optimistic and misleading. The 30 mm design has a primary

layer to tape thickness ratio for 5.5, which still is pushing the limits. Here the soft

switching capability is not independent on the numbers of primary layers, but the

primary layers can still be used to control the conversion ratio and voltage gain of

the PT.
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4.5 Interleaved interdigitated electrode PT

Thickness mode IDE structure

PT length 30mm 30mm 30mm 20mm 20mm

Primary volume 30% 33% 33% 33% 36%

Primary layers 40 40 40 40 40

IDE vol. of Pri 27.6% 41.4% 37.9%

ZVS factor V ′P 110.3% 125.9% 106.2% 96.1% 105.3%

keff Pri 53.8% 55.9% 49.5% 45.0% 46.8%

keff Sec 42.4% 40.1% 39.8% 39.3% 37.7%

Pri th./Tape th. 5.4 2.9 3.3

Table 4.5: Soft switching optimization of the Interleaved IDE PT, achieved by primary

section volume optimization and is generated through FEM simulations. The FEM simula-

tion is a 2D simulation of a 30x10x2 mm structure, with 40 primary layers, where the IDE

structure has been simplified to solid vertical electrodes. The results are independent of

the size of the structure, but it is clear that it is dependent on the IDE volume (Primary to

IDE volume ratio). The effective coupling factors are calculated from the FEM simulated

primary and secondary impedance, and (4.2) is used to calculate the ZVS factor.

As it is evident, the high gain and high voltage requirements are really pushing the

limits of IDE PT concept and dilutes the obvious advantages and high performance.

The advantages of the IDE PT concept may be exploited in other more suited ap-

plications, of lower gain and lower numbers of primary layer, such as step-down

applications or lower step-up applications2.

4.5.3 Prototype

The discoveries of the previous section led to the development of three specific de-

signs, which are shown in Figure 4.11(left). They all have a width of 10 mm and a

height of 2 mm, which is very suitable for tape casting technology, and lengths of

20 mm, 25 mm and 30 mm.

Table 4.6 lists the specification of the three developed designs, possessing voltage

gains from 44 to 47. These lower gains are the result of the limited opportunity of

increasing the amount of primary layers. In the hunt of high gain and high voltage,

the designs are really pushing the limits of the concept. Both in terms of inactive

material in the primary section and the primary layer to tape thickness ratio, as

describe in the previous section.

2If this DEAP application were to be driven by a higher supply voltage.
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4.5 Interleaved interdigitated electrode PT

Figure 4.11: Picture of prototype PT’s (left) of different sizes (length from left: 30 mm,

25 mm and 20 mm) and operational waveforms of a 25 mm prototype (right), operated

at 24 V half-bridge voltage and a matched resistive load. The relative slow rising switch-

ing flanks and the MOSFET body-diode conduction voltage drop, at supply rails, clearly

demonstrates ZVS operation.

Figure 4.11(right) illustrates the operation of the developed 30 mm IDE PT. As the

waveforms reveals the half-bridge is clearly operated under ZVS, demonstrating the

PT’s soft switching capabilities. Moreover the PT has a moderate voltage gain, of

approximately 38, in to a matched load. The drop in gain is due to the shortcomings of

some of the IDE approximations and is elaborated further in [D.5]. As demonstrated

earlier the FEM simulations formed a good development tool and there were a good

correlation between the design and the manufactured prototypes.

PT length 20 25 30 mm

Primary volume 35.7% 33.3% 33.1%

Primary length 7.13 8.33 9.93 mm

Primary layers 40 40 40

Primary layer ”thickness” 110 140 180 µm

IDE width 70 70 70 µm

IDE vol. of Pri 38.3% 32.8% 27.5%

Gain 46.9 47.0 44.0

Table 4.6: Design specifications of the Interleaved IDE PT, where the primary thickness

have been rounded off in order to simplify the mechanical layout, which results in the bit

odd primary volumes, compared to the ones of Table 4.5.
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4.6 Summary

4.6 Summary

In this chapter several PT designs have been presented, all targeted at achieving high

gain voltage and native soft switching capabilities. Furthermore the soft switching

factor of section 3.2 is related to the structure of the PT, through the effective elec-

tromechanical coupling factors. This is advantageous as the effective coupling factors

to some extent can be related directly to the mechanical structure and the excitation

stress, enabling a much more intuitive design process and it has been heavily relied

on through the research of soft switching optimized PT’s.

The Interleaved Rosen type PT distinguish itself by being very straight forward

and easy to manufacture, as the build-up structure and process is the same as for

a simple multilayer Rosen type PT. The design possesses high voltage gain capa-

bilities, demonstrating a voltage conversion ratio of 68, as well as it demonstrates

soft switching capabilities. The main drawback is its low efficiency, due to the low

electromechanical coupling k31. A detailed analysis and presentation of the design is

found in [D.3].

The Interleaved thickness mode PT has a high potential for higher efficiency,

as both the primary and secondary section utilizes thickness mode vibrations, which

has the highest electromechanical coupling. The challenging part of utilizing a pure

thickness mode structure is the relative high build-up height, which is the result of

the targeted high voltage output. A 20 mm high design is proposed, which possesses

soft switching capabilities and a high voltage conversion ratio of 98. But the build-up

of 606 layers of tape proved too challenging and as a result no operational prototypes

were manufactured. The design is pushing the limits of the manufacturing process

and improvements and optimizations are necessary, in order to exploit a pure thick-

ness mode high voltage PT.

The Interleaved interdigitated electrode PT distinguish itself by having a

higher efficiency, as both the primary and secondary section utilizes thickness mode

vibrations, which has the highest electromechanical coupling. The usage of inter-

digitated electrodes and low build-up height, retain some of the easy manufacturing

advantages. The drawback of using interdigitated electrodes and a high number of

primary layers is that the electrodes occupy a significant part of the primary section,

which degrades its performance. The design only demonstrates a moderate voltage

gain of 38, due to the limited amount of primary layers, which is the result of a

design trade-off between the number of layers and the inactive volume occupied by

the electrodes. But the design does demonstrate soft switching capabilities and the

advantages of the design may be exploited in other more suited applications, such as

step-down applications. A detailed analysis and presentation of the design is found

in [D.5].
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Chapter 5

Piezoelectric transformer based power

converter control

A big part of the research in this study has been focused on control methods for PT

based power converter, in order to overcome some of the control challenges, prompted

by the nature of the PT. As described in Overview and State of the art chapter 2 the

PT resonance is of very high quality factor and the band of optimal and efficient oper-

ation is very narrow. The band of operation is even further reduced when employing

inductor-less topologies (chapter 3), that utilizes PT’s with native soft switching ca-

pabilities (chapter 4). As the resonant frequency is subject to variations, caused by

internal or external influences, such as temperature, load variations, aging etc., the

main objective is to ensure optimal operation and a tight control of the operating

frequency. Even small deviations from the optimal operating frequency can easily

totally destroy the operation and efficiency.

Furthermore efforts have been made to develop a bi-directional control method, as

this will greatly improve the performance of the overall system, of the highly capac-

itive DEAP load. But also because no bi-directional PT concepts exist to date and

it will have a huge potential in various other applications, such as enabling line and

load regulation.

An additional challenge of the DEAP application is the high output voltage (up to

2.5 kV) and high output impedance, as it makes it quite difficult to have an output

feedback, without dissipating a significant part of the output power or adding any

significant parasitic component to the switching node. A detailed analysis of a high

impedance and high voltage measurement (HVM) circuit is presented in [D.1] and is

used for output voltage feedback.

5.1 Self-oscillating control

As it was shown in section 3.2, soft switching optimized PT’s possess an optimal point

of operation, where inductive behavior and resonating energy of the PT is maximized,

maximizing soft switching capability. This point of operation was closely linked to

the phase and magnitude of the PT voltage gain and resonant current. As the PT

resonance is of very high quality factor, the phase will change rapidly just around the

resonance. The phase shift is locked to the resonance, as well as the point of maximal
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5.1 Self-oscillating control

soft switching capability. And as the phase lag at the point of optimal operation stays

constant, despite changes in frequency, makes it a very applicable feedback signal.

Control methods such as PLL relies on this phase response, but also the phase shift

self-oscillating control takes advantages of the phase response, which can be exploited

in PT based converters. Self-oscillating control is widely used for class-D amplifiers

[86, 87, 88, 89] and has also been used in PT based converters [42, 66], but has never

been used in connection with inductor-less topologies and soft switching optimized

PT’s.

The combination of inductor-less PT based power converters and self-oscillating con-

trol has shown to be very advantageous, due to the high requirements of a tight

frequency control, and has led to the patent application [D.8]. Furthermore, the

concept is fairly simple, as well as it has a very fast response to track and ”hit” the

resonant frequency at startup, which is beneficial when utilizing burst-mode control

(see subsection 2.4.4).

5.1.1 Self-oscillating control with voltage feedback

Figure 5.1 illustrates the basic principle of the self-oscillating control with voltage

feedback. The concept is simply to have a phase shift in the closed loop of a multiple

of 360o, making it highly unstable, which induces self-oscillation. As the PT has a

output voltage phase lag of 102o, at the optimal operating point, the remaining parts

in the closed loop should be adjusted, so they add up to 360o. As the output voltage

is a sine-wave an additional phase lag can be added by a simple low-pass filter, which

is easily adjusted. But also other circuits can be utilized, such as a time delay or

Figure 5.1: Block diagram of the self-oscillating control scheme with voltage feedback,

where the PT has a output voltage phase lag of 102o, at the optimal operating point.
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even a high-pass filter, where the total phase lag of the loop should add up to 0o.

Common for them all are that the phase response will occur much slower than for

the PT, making the phase lag of the PT the determining factor in the closed loop.

Furthermore the inverting comparator, which generates 50 % PWM from the sine-

signal, adds a phase lag of 180o, and some delay in the gate drive is expected, as well

as the gate drive handle the dead-time of the switches. Adding everything up, result

in a required phase lag of the low-pass filter of 68o, in order to lock to the optimal

operating point.

The method is also applicable for rectified outputs, where the feedback signal will be

squarish, but a simple low-pass filter can still be utilized and add phase lag.

5.1.2 Self-oscillating control with current feedback

Due to the challenges of high output voltage (up to 2.5 kV) and high output impedance,

the self-oscillating control with voltage feedback might not be the most obvious and

straightforward choice. An obvious alternative is to use the PT resonant current as

feedback signal instead, as it also was shown that the optimal operating point was

linked to a resonant current phase lag of 56o.

Figure 5.2: Block diagram of the self-oscillating control with resonant current feedback,

where the PT has a resonant current phase lag of 56o, at the optimal operating point.

Figure 5.2 illustrates the basic principle of the self-oscillating control with current

feedback, where the phase summation is analogue to voltage feedback, though needing

a higher phase lag of the low-pass filter, in order to achieve a total of 360o. But as

the resonant current only is externally available when the switches are conducting,

only parts of the resonant current can be measured directly.
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5.1.3 Resonant current estimation

The missing parts of the resonant current can be estimated as shown in [63, 64],

by differentiating the voltage of the switching flanks, as the input voltage over the

input capacitor Cd1 reflects the resonant current, when it is charged and discharged.

This principle can be used to generate the feedback for the self-oscillating control, as

illustrated in Figure 5.3.

Figure 5.3: Block diagram of the self-oscillating control with resonant current feedback

and the implementation of the current estimation.

As it can be seen a differential coupled operational-amplifier is used to subtract the

two measurements, instead of a adding configuration. This has the advantage of a bit

more straightforward configuration of the measurement resistors RE and RS, which

retain common ground for the entire circuit. Furthermore the gain of the differential

amplifier can be controlled by R1 and R2, so that a large and clear signal (VE−S)

is passed on to the low-pass filter. RS is a simple current measurement resistor,

which measures the conducted resonant current. RE and CE forms a simple high-

pass filter, which acts as a differentiator, when configured with a crossover frequency

considerably higher than the operating frequency. Through the component values

of the high-pass filter, the gain can to some extent be controlled and matched to

the gain of RS. Figure 5.4 illustrates the operational wave-forms of the current

estimation and of the remaining components in the closed loop. As it can be seen,

the two measurements VE and VS resembles the resonant current, as well as the

inversion of the differential amplifier and the added phase lag by the low-pass filter,

can be observed. Furthermore the slow rising switching flanks of the input voltage

VIn clearly reveals soft switching operation, which confirm operation at the optimal
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Figure 5.4: Operational wave-forms illustrating the functionality of the current estimation

and the self-oscillating control.

point of operation and validates the self-oscillating control.

5.1.4 Experimental verification

The self-oscillating control has been substantially used throughout this study and

primarily together with the resonant current estimation, in order to avoid the high

Figure 5.5: Operational wave-forms demonstrating the functionality of the current estima-

tion, as well as demonstrating that the self-oscillating control locks to the point of optimal

operation, as the slow rising switching flanks clearly reveals soft switching operation. The

utilized PT is a 25x10x2 mm Interleaved Rosen type PT [D.2] (section 4.3).
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voltage output. Figure 5.5 demonstrates the functionality of the self-oscillating con-

trol with resonant current feedback and resonant current estimation, where it can be

seen that the magnitude of the two current estimation measurements are matching

each other. Moreover it validates the self-oscillating control, as the slow rising soft

switching flanks confirms operation at the optimal point of operation.

The self-oscillating control with resonant current feedback and resonant current es-

timation has proven to have some obvious advantages, primarily being the tight fre-

quency control, but also the avoidance of the high voltage output. Another obvious

advantage is that no signal from the secondary side is required, which is desirable in

isolated applications, as it is inconvenient and troublesome to transfer signals across

the isolation boundary. A thorough description of the self-oscillating control and

resonant current estimation can be found in [D.8].

5.2 Forward conduction mode control

As it was shown in section 3.2 the point of optimal operation was closely linked to

the phase and magnitude of the PT resonant current. The forward conduction mode

(FCM) control proposed in [D.7], relies on the phase response of the PT resonant

current, just as the self-oscillating control, but in a manner that resembles the PLL

control. The FCM control method depends on a detection of the forward conduction

period of the half-bridge switches, which can be measured with a simple sense resistor.

The resonant current phase lag is reflected in the forward conduction period, as the

switches forward conduction is getting limited at increasing phase lag, which can be

used as a feedback signal. Furthermore the FCM control is very simple and hence low

cost, as well as it is purely primary based, avoiding the need of crossing any isolation

Figure 5.6: Functional block diagram of the FCM control method, composing a forward

conduction detector (Comp.), an averaging low-pass filter, an error signal generating sub-

tracter, an integrator and a VCO.
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boundary, which is desirable in isolated applications.

5.2.1 Operational principle

Figure 5.6 illustrates the functional block diagram of the FCM control, where the

sense resistor RS and the comparator detects the forward conduction period of the

low side switch. The comparator produces a square-wave signal VSQ, which is passed

through an averaging low-pass filter, where the average signal is proportional to the

forward conduction period and duty cycle (FCD) (5.1).

VSQ,avg = VCC ·
TForward

T
= VCC · FCD (5.1)

Together with a reference, the average signal is used to control a VCO, which drives

the gate-drive, closing the loop around the half-bridge. In this manner the FCM con-

(a) 29.6 % FCD (b) 26.8 % FCD

(c) 25.5 % FCD (d) 16.4 % FCD

Figure 5.7: Forward conduction mode control operation waveforms, at different operation

frequencies and with constant dead-time, illustrating the forward conduction period and

duty cycles (FCD) variation. In (a) and (d) the half-bridge (VIN ) is clearly operated under

hard switching, whereas (b) and (c) is operation under ZVS. (b) and (c) are furthermore

close to the boundary of soft switching operation, where the optimal point of operation is

located roughly right in-between (b) and (c).
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5.2 Forward conduction mode control

trol seeks to maintain a constant forward conduction duty cycle, of approximately

26 %, and henche a constant resonant current phase lag, ensuring operation at the

optimal operation point. Compared to the self-oscillating control, the FCM con-

trol achieves the same objectives of operating at the optimal operating point, but

a drawback could be the much slower control loop. Figure 5.7 illustrates the oper-

ational wave-forms of the FCM control, at different operation frequencies. As the

wave-forms reveals the forward conduction period and the average signal VSQ, are

modulated continuously over the frequency range, which makes it a very applicable

and reliable feedback signal. In Figure 5.7 (b) and (c) the slow rising switching flanks

of the input voltage VIn clearly reveals soft switching operation, and in-between these

two operating points soft switching operation is maintained and the optimal point of

operation is located roughly right in-between (b) and (c).

5.2.2 Experimental verification (PFC LED drive)

A clear advantage of the FCM control is that the feedback signal is independent on the

magnitude of the resonant current, as the forward conduction period measurement

is independent of the magnitude. And as the FCM control ensures a constant and

optimal operating point, the PT is essentially equivalent to a transformer with a

constant gain. This has been utilized in a simple passive PFC LED application,

where the half-bridge voltage is allowed to vary with the rectified AC mains voltage,

resulting in a AC mains current modulation, and is presented in [D.7].

Figure 5.8: Block diagram of the PT LED drive, employing passive PFC and Forward

Conduction Mode (FCM) control.

Figure 5.8 illustrates the block diagram of the proposed PT LED drive, with the

intention of acting as a simple resistive load, without load and line regulation. The

passive PFC is achieved by having a sufficiently small half-bridge supply voltage

buffer capacitor, after the input full-bridge rectifier, allowing the voltage to follow

the rectified AC mains voltage. As the PT can be assumed to have a constant gain
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5.2 Forward conduction mode control

(assuming a constant operation point and load), the resonant current will be propor-

tional to the rectified AC mains voltage and the resulting current drawn from the

AC mains will therefore also be proportional to the AC mains voltage. This is a very

simple way of achieving PFC, no additional components or control are needed, on

the contrary it minimizes the voltage buffer capacitor, which typically is quite large

in order to buffer energy for 10 ms (100 Hz). The drawback of doing it in this way is

that the output power will also be modulated by the AC main. This modulation is

acceptable for this LED application, but for other DC output applications this PFC

method might not be applicable.

Figure 5.9: Forward conduction mode waveforms, demonstrating the FCM functionality

and has a 26.4 % FCD.

Figure 5.9 demonstrates the functionality of the FCM control, near AC mains peak

voltage, where the current sense VS, the comparator square-wave VSQ and input volt-

age VIn are shown. As it can be seen the half-bridge switches are operated under soft

switching, which confirms that the PT is operated at the optimal point of operation

and validates the FCM control.

Figure 5.10 demonstrates the functionality of the passive PFC, where the input volt-

age VAC and current IAC are shown. As the figure reveals the voltage and current

are in phase, as well as the current somewhat resembles a sinusoidal, although it

has some distortion. The main reason for this distortion, is the fact that the LED

load does not represent a perfect constant load, as assumed. This results in some

variation in the operating point, hence variation in gain, as the very slow control

loop (14.2 Hz crossover frequency), of the implemented FCM control, is unable to

track this variation. The slow control loop is implemented in order to overcome the

challenge of the AC zero voltage crossing1, as the resonant current also reaches zero,

1The AC zero voltage crossing is also a challenge for all other control methods and is typically

managed by having a very slow control loop.
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Figure 5.10: AC mains input voltage and current, having an input power of 9.5 W and a

power factor of 0.96.

making it impossible to detect the forward conduction period. With a power factor

of 0.96, the circuit demonstrates the ability of PFC, but with room for improvements.

This simple PFC LED application demonstrates the functionality of the FCM control,

as well as its usage in PFC applications. Further details of the PFC LED application

and FCM control can be found in [D.7].

5.3 Bi-directional control

As described in chapter 2 the targeted DEAP load is highly capacitive and the objec-

tive is to performing a controlled voltage modulation of the DEAP load, or in other

words charge and discharge the capacitive load. So far the discharge of the DEAP has

been performed by dissipating the energy in a resistive network, which is inefficient,

but very simple. As only a small fraction of the electrical applied energy is converted

to mechanical energy (2-5 %) and the remaning energy is stored as electrical energy

in the capacitance of the DEAP, a resistive discharge results in a very inefficient

overall system. Since the electrical stored energy is recoverable, it is very desirable

to develop a bi-directional PT concept, as this will greatly improve the efficiency and

performance of the overall system.

Furthermore no bi-directional PT concepts exist to date and it will have a huge

potential in various other applications, such as enabling line and load regulation

applications. The proposed bi-directional control method of the following section has

demonstrated fully bi-directional capabilities, which has led to the patent application

[D.9], where a thorough description of the control method can be found.
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5.3.1 Active phase shift

The proposed bi-directional control concept is fairly simple, as illustrated in Fig-

ure 5.11, but as it will be evident in the following, the implementation becomes a bit

more complex, when employing self-oscillating control.

Figure 5.11: Block diagram of the bi-directional control method, with the addition of an

active output rectifier.

The fundamental basis of the bi-directional control is the replacement of the simple

diode output rectifier, with an active MOSFET half-wave rectifier. Instead of con-

trolling the rectifier switches directly and synchronized with the PWM of the input

half-bridge, the rectifier is just acting as a simple active rectifier, for now. Where

active diodes simply turn ON when exposed to a forward current. The reason not

to use control or gate signals directly derived from the half-bridge PWM, is due to

the varying ON-time of the rectifier switches, which is a result of the PT output

capacitor Cd2. When the PT resonant current is reversed, the currently conducting

diode stops to conduct, as it is getting reversed biased. But before the second diode

is forward biased and starts to conduct the current, the resonant current need to

charge or discharge Cd2. And as the rectifier output voltage is variable, hence the

charge and discharge voltage of Cd2 is variable, the charge and discharge time is also

variable, making it very difficult to determine the exact turn ON-time.

In this approach the simple active diodes turns ON when exposed to a forward

current, but are allowed to conduct a reverse current until it is turned OFF. The

turn OFF signal is derived from the half-bridge PWM and this signal can then be

phase shifted from the point where only a forward current is conducted, to the point

where almost only a reverse current is conducted. In this manner the power can
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be continuously modulated from full forward power, to full reverse power, enabling

bi-directional power flow and energy recovery.

Figure 5.12 illustrates a functional block diagram of the bi-directional power con-

verter, where the explained blocks can be recognized, being the MOSFET based half-

wave output rectifier and the turn OFF control signal, derived from the half-bridge

PWM. The signal is passed through time delay circuits, which adds and controls the

phase shift. Furthermore the self-oscillating control with current feedback can be

recognized (subsection 5.1.2), as well as the remaining power converting blocks. The

additional blocks compose a resonant current control and an output voltage control.

Moreover, it can be seen that the high-side gate drive of the rectifier is not connected

to the driving signal of the low-side gate drive, but it is in fact indirectly controlled

by the same signal and a detailed description will follow in subsection 5.3.3.

Figure 5.12: Functional block diagram of the bi-directional control method, employing

self-oscillating control with current feedback.

The output voltage control simply compares the output voltage with a reference

voltage and adjust phase shift accordingly, depending on if a charge or discharge is

needed. Moreover, it can totally shut down the converter, if no change is needed,

and thereby reduce the idle power consumption, in a burst mode manner (subsec-

tion 2.4.4).

The resonant current control ensures a consistent resonant current magnitude, which

is required as a result of the change in the PT phase response. The PT phase
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response change is caused by the change in impedance of the resonant tank, which is

a result of the phase shift of the output rectifier. As the self-oscillating control relies

on the PT phase response, the phase shift in the closed loop needs to be adjusted

accordingly, in order to maintain operation at the optimal point of operation, this is

achieved by the inserted time delay. This complicates the self-oscillating control and

the implementations somewhat, which is inconvenient. But this is also a challenge

for all other controls that relies on the PT phase response, such as PLL and FCM

control, which also need an adjustment of the targeted phase, in order to ensure a

constant and optimal operation point.

(a) POut = 2.6 W (full forward) (b) POut = 1.4 W

(c) POut = 0 W (d) POut = -2.4 W (full reverse)

Figure 5.13: Operation waveforms of the bi-directional control, at different phase shifts,

illustrating the variation in forward and reverse conduction of the output half-bridge.

Figure 5.13 illustrates the operational wave-forms of the bi-directional control, at

different phase shifts and power flows. As it can be seen the active diode current can

be shifted from full forward to full reverse current, where a 2.6 W forward power flow

is sifted to a 2.4 W reverse power flow.
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Figure 5.14: Power flow in the bi-directional PT based power converter, showing the shift

and reversal in power flow, in relation to the applied time shift.

Figure 5.14 illustrates the power flow change from full forward power to full reverse

power flow, in relation to the time delay, which causes the phase shift. As the figure

reveals the power flow can be modulated smoothly from full forward power to full

reverse power.

5.3.2 Discussion and potential

I this manner bi-directional power flow is achieved in a PT based power converter,

which enables energy recovery for this DEAP application and greatly improves the

efficiency of the overall system. Furthermore the concept incorporates self-oscillating

control, taking advantage of its qualities, but the concept is not limited to self-

oscillating control and other PFM control methods can be used. Moreover the pro-

posed bi-directional concept is not limited to this DEAP application and has a huge

potential in various other applications, such as applications of line and load regula-

tion. Another huge potential is its enabling of soft switching operation of non-soft

switching optimized PT in inductor-less topologies. This can be achieved through

the phase shift of the output rectifier and by adding a small phase shift, the retained

current will help to charge and discharge Cd1 and enable soft switching operation.

This small phase shift can also be viewed as a change in impedance of the load, so

the soft switching operation is achieved by moving away from match load, which

increases the soft switching capability.
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5.3.3 High voltage high-side gate drive

As mentioned in the previous section, the high-side gate drive of this high voltage

DEAP application is a little special. Conventional gate drives are the most obvious

choice, but the availability of gate drives rated for more than 2.5 kV are very lim-

ited, as well as the high impedance output is very sensitive to any added parasitic

components, demanding quite high requirements for low parasitic component in the

switching node VOut. Therefore a new type of high-side gate drive has been proposed,

which is presented in this section and is included in [D.9] as well.

As a starting point, the most critical part of the switching node VOut is the capac-

itance, as any parasitic capacitance adds directly to the PT output capacitor Cd2,

which needs to get charge and discharged and retain some of the resonant current.

As the PT designs presented in chapter 4 [D.2,D.5] have a output capacitor Cd2 in

the range of 20 pF, a simple half-wave diode rectifier, with a diode capacitance of

2 pF, is already adding a significant capacitance to the switching node (4 pF). So

the main objective has been to minimize the capacitance of the high-side gate drive,

as it is directly connected to the switching node VOut. Figure 5.15 illustrates the

functional block diagram of the proposed high-side gate drive, which is connected to

the high-side switch DHigh in the rectifier and the output voltage of the PT VOut. As

it can be seen it utilizes a traditional bootstrap diode DBoot, which charges the local

energy supply VLocal, when the switching node VOut is at ground potential, just as for

a conventional gate drive. Furthermore the forward current sense can be recognized,

which turns ON the switch when a forward current is detected, just as described in

the previous section. But instead of using the same turn OFF signal as the low-side

gate drive and level shift the signal, a simple timer is in charge of the turn OFF.

Figure 5.15: Functional block diagram of the high voltage high-side gate drive, utilized

in the high voltage bi-directional concept.

The timer is set to half a cycle period and is triggered as the switching node VOut
leaves ground potential. In this manner the high-side switch will have the same phase

shift as the low-side switch, as the switching node VOut will not leave ground potential

before the low-side switch is turned OFF and any added phase shift will be transferred

to the high-side switch. Essentially the timer senses when the bootstrap diode DBoot
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is reverse biased, where the reverse biasing indirectly will force the voltage VR to drop

from the local supply voltage VLocal, to the local ground reference. The principle of

the circuit is quite simple and will only adds the parasitic of a single bootstrap diode,

as well as the parasitic of the surroundings, to the switching node VOut. But the timer

assumes a constant cycle period, which is not true, as the resonant frequency will vary

over temperature and aging. But as the variation in frequency is relatively small (up

to 1-2 %), a constant and predetermined timer is a durable solution. It should also

be remembered that it is only because of the high voltage and low impedance, that a

traditional gate-drive is avoided, which would not have this issue. In order to achieve

a perfect time delay of the timer, an additional circuit could be implemented, which

measures the cycle period time of VR and adjusts the timer accordingly (half the

period time), as VR has the period time of the operating frequency.

(a) POut = 1.06 W (full forward) (b) POut = 0.54 W

(c) POut = -0.46 W (d) POut = -0.93 W (full reverse)

Figure 5.16: Operational wave-forms for the prototype bi-directional PT based power

converter, at different phase shifts, illustrating the variation in forward and reverse con-

duction of the output rectifier. The converter utilizes the Interleaved IDE PT (section 4.5

[D.5]) and the output is connected to a voltage source, in order to achieve steady state

operation. Furthermore the PT output is inverted, giving the output wave-forms a 180o

phase shift, compared to the results of subsection 5.3.1.
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5.3.4 Experimental verification

The bi-directional control has been realized in a prototype PT based power converter,

in order to demonstrate its functionality and capabilities, and the full schematic of

the prototype can be found in Appendix C. The prototype utilizes a 27x10x2 mm

Interleaved IDE PT (section 4.5 [D.5]), which has a slightly increased ZVS factor

(36% primary volume), compare to the 30 mm version. The interleaved IDE PT

puts some limits on the achievable output voltage, due to the moderate voltage gain

of this PT type and therefor a full 2.5 kV output voltage were not pursued at this

point. On the contrary the output voltage and power level were fixed at a lower level,

which eases the setup and measuring somewhat, and the experiment primarily repre-

sents a demonstration and validation of the functionality of the bi-directional concept.

Figure 5.16 illustrates the operational wave-forms for the bi-directional prototype,

where the phase shift of the high-side rectifier DHigh can be recognized, which leads

to a reduction (Figure 5.16(b)) and reversal (Figure 5.16(c) and (d)) of the power

flow. As it can be seen both the input half-bridge VIn and output rectifier VOut are

operated under ZVS, which clearly validates the functionality of the bi-directional

control and concept. It can be observed in Figure 5.16(d) at full reverse power flow,

that yet a small forward current is conducted. This is required as the active diode

needs to detect a forward current, in order to turn itself ON, or else it will not turn

ON, which will led to a unstable situation, where it is conducting every second period

and really distort and corrupt the operation of the converter.

Input Output

Vin [V] Iin [mA] Pin [W] Vout [V] Iout [mA] Pout [W] η

Forward 24.1 85.3 2.05 300 5.67 1.70 83.0%

Reverse 24.1 -42.5 -1.02 300 -4.50 -1.35 75.9%

Table 5.1: Efficiency measurements of the bi-directional prototype. Showing the total

converter efficiency, excluding control consumption, in full forward and full reverse opera-

tion.

Table 5.1 lists the power and efficiency measurement of the bi-directional prototype,

at full forward and full reverse power flow. As it can be seen, the prototype possesses

an efficiency of 83.0 % in full forward operation, which is decent. In full reverse

operation the prototype possesses an efficiency of 75.9 %, which is an acceptable

drop in efficiency. The efficiency is somewhat to the low side and is mainly due to the

losses of the PT, as well as the half-wave output rectifier is not a real good match for

the PT. Both issues reduce the efficiency. Furthermore the efforts have been focused

more on the functionality and demonstration of the concept, than on optimizing the

efficiency in particular.
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5.4 Summary

In this chapter several control method, suited of PT based power converters, have

been proposed, all targeted at achieving optimal and soft switching operation of the

PT.

The Self-oscillating control takes advantage of the rapid phase response of the

PT right around the resonant frequency, where the self-oscillating control is locked to

a predetermined phase shift of the PT. As the optimal point of operation (where soft

switching capability is maximized) is closely related to the phase response of the PT,

a very tight and precise frequency control is achieved, ensuring optimal operation at

all time. The concept is simply to have a phase shift in the closed loop of a multiple

of 360o, making it highly unstable, which induces self-oscillation. Furthermore, it has

a very fast response to track and ”hit” the resonant frequency at startup, which is

beneficial when utilizing burst-mode control.

A configuration with current feedback and resonant current estimation has the ad-

vantage of avoiding the high voltage output. Another obvious advantage is that no

signal from the secondary side is required, which is desirable in isolated applications,

as it is inconvenient and troublesome to transfer signals across the isolation boundary.

The combination of inductor-less PT based power converters and self-oscillating con-

trol has shown to be very advantageous, and has led to the patent application [D.8].

The Forward conduction mode control relies on a detection of the forward

conduction period of the half-bridge switches, in a manner that resembles the PLL

control, as the PT resonant current phase lag is reflected in the forward conduction

period. As the switches forward conduction is getting limited at increasing phase lag,

the forward conduction period can be used as a feedback signal. The FCM control

seeks to maintain a constant forward conduction duty cycle, of approximately 26 %,

and henche a constant resonant current phase lag, which ensures a constant and op-

timal point of operation.

As the FCM control ensures a constant operating point, the PT is essentially equiva-

lent to a transformer with a constant gain, which has been utilized and demonstrated

in a PFC LED application [D.7]. Furthermore the FCM control is very simple and

hence low cost, as well as it is purely primary based, avoiding the need of crossing

any isolation boundary, which is desirable in isolated applications.

The Bi-directional control enables bi-directional power flow in a PT based power

converter, which is revolutionary for PT based power converters. The fundamental

basis of the bi-directional control is the insertion of an active MOSFET half-wave

output rectifier, where active diodes simply turns ON when exposed to a forward

current. The turn OFF point is then controlled and can be phase shifted from the

point where only a forward current is conducted, to the point where almost only a
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reverse current is conducted. In this manner the power flow can be continuously

modulated, enabling bi-directional power flow and energy recovery, which greatly im-

proves the efficiency of this DEAP application.

The demonstrated concept incorporates self-oscillating control, but is not limited to

self-oscillating control and other PFM control methods can be used. The utilization

of self-oscillating control showed that a resonant current control were needed, as a

result of the change in the PT phase response, caused by the phase shift of the out-

put rectifier. Moreover, the proposed bi-directional concept has a huge potential in

various other applications, such as applications of line and load regulation.

Another huge potential is its enabling of soft switching operation of non-soft switch-

ing optimized PT in inductor-less topologies, which can be achieved by reducing the

forward power slightly.

The research and development of a bi-directional control for PT based power con-

verter, has led to the patent application [D.9].

Furthermore, a high voltage high-side gate drive has been developed, with the quali-

ties of coping with the high voltages, as well as loading the switching node minimally,

by only adding the parasitic of a single bootstrap diode. The circuit is simple and

relies on a detection of the reverse biasing of the bootstrap diode, which triggers a

timer that determines the turn OFF time. As the bootstrap diode will be reverse

biased when the low side switch is released, any added phase shift will be transferred

to the high-side switch as well.
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Chapter 6

Conclusion

This thesis and associated publications are the result of the research into non-magnetic

piezoelectric transformer (PT) based power converters, for driving high voltage and

highly capacitive dielectric electro active polymer (DEAP) actuators. The PT tech-

nology has proven to be an applicable solution for driving DEAP actuators, in terms

of generating high step-up ratios and high voltages, non-magnetic, minimize size,

operate efficiently and recover the actuator stored energy. Furthermore most of the

achieved advancements are general and can be utilized in other applications and con-

texts.

The thesis gives an overview of the basic PT technology used in general power con-

verters, including the basic piezoelectric nature, converter topologies and control

methods. The fundamentals of piezoelectric transformer (PT) based power convert-

ers have been investigated. Special attention has been given to the research into the

inductor-less half-bridge topology, PT design and optimization for native soft switch-

ing capabilities, as well as control methods, which ensure and maintain a optimal

and consistent operation of the PT. As a result of this research the following major

contributions have been achieved:

• A thorough investigation of the utilized inductor-less half-bridge and its op-

eration has been conducted. The investigation has led to the derivation of a

soft switching factor (ZVS factor), which describes the maximal achievable soft

switching capability of the PT, which should be fulfilled in order to be employed

in inductor-less topologies. The empiric derived expression is simple and trans-

parent, clearly stating the strong dependency of the equivalent model input and

output capacitor ratio.

• Furthermore the soft switching factor is related to the structure of the PT

through the effective electromechanical coupling factors. The effective coupling

factors can to some extent be related directly to the mechanical structure and

the excitation stress, which is very advantageous as it enables a much more

intuitive design process.

• The investigation of the soft switching capability also revealed a operational

point of optimal soft switching capability, where inductive behavior and res-

onating energy is maximized. This optimal point of operation is closely linked

to the transfer functions of the PT and is related to a specific magnitude and

phase lag of the PT.
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• Design and development methods for PT development utilizing Finite Element

Modeling (FEM). Simulation and structure simplifications methods are made,

which greatly enhances the FEM tool usefulness and reduce simulation and

designe time.

• FEM design strategies for soft switching optimization and high voltage gain

PT’s have been obtained, which has led to the development of several soft

switching optimized PT’s, enabling utilization of inductor-less topologies. Es-

pecially the interleaved structure has been exploited in three major PT struc-

ture, being the Interleaved Rosen type PT, Interleaved thickness mode PT and

Interleaved interdigitated electrode (IDE) PT. Where the Rosen type PT has

a very straight forward manufacturing structure, the thickness mode PT has

the high efficiency of the thickness mode vibrations and the IDE PT retains

some of the easy manufacturing advantages, combined with the high efficiency

of the thickness mode vibration. All the proposed designs have been simulated,

optimized and manufactured, as well as experimental validated, except for the

Interleaved thickness mode PT, due to manufacturing challenges.

• Control methods for operating inductor-less PT based power converters under

sustained soft switching, ensuring optimal and efficient operation at all time.

A self-oscillating control method, which has a very tight and precise frequency

control, where the closed-loop takes advantage of the phase response of the

PT and accommodate changes in resonant frequency, ensures optimal and soft

switching operation. Furthermore a resonant current estimation circuit is de-

signed, which enables self-oscillating control with current feedback, as well as

having the advantage of being purely primary side based. A forward conduc-

tion mode control method (FCM), resembling PLL control, ensuring a constant

and optimal point of operation, which also has the advantage of being purely

primary side based.

• A revolutionary bi-directional control method for operating inductor-less PT

based power converters with bi-directional power flow. The utilization of ac-

tive phase shift of the active output rectifier, enables a continuously modulated

bi-directional power flow and energy recovery. Soft switching operation is main-

tained over the full power flow modulation range, ensuring optimal and efficient

operation.

• Furthermore a high voltage high-side gate drive has been made, with the qual-

ities of coping with the high voltages, as well as loading the switching node

minimally, by only adding the parasitic of a single bootstrap diode.
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6.1 Future work

The research conducted in this work has uncovered and clarified the fundamentals of

piezoelectric transformer (PT) based power converters, in relation to the inductor-less

half-bridge topology, PT design and optimization for native soft switching capabili-

ties, as well as control methods. But several of the advancements made have shown

potential for further research and utilization in other applications, as well as further

investigation and optimization:

• The continued research in to optimization of PT’s, new PT structures and

soft switching optimized PT’s is needed, in order to obtain high efficiency and

increased competitiveness. In terms of high gain high voltage soft switching

optimized PT’s, the limitations of manufacturing capabilities is to some extend

preventing the utilization of thickness mode vibrations. Both new PT struc-

tures, PT concepts and manufacturing optimizations can move these limitations

and improve the performance of high gain high voltage non-magnetic PT based

power converters.

• Further exploration of FEM modeling and increased understanding of the FEM

tool is required, in order to further enhance the FEM simulation and structure

simplifications, as well as enabling loss and efficiency simulations, which is not

yet fully understood and implemented. The introduction of an accurate loss

simulation will make it possible to make a realistic evaluation of the efficiency

before proceeding with the manufacturing, as well as a useful comparison of

different PT designs can be made. Furthermore the introduction of advanced

structures, such as IDE structures, prevents some of the simulation and struc-

ture simplifications, as the structures produces inhomogeneous electrical fields

and polarization. Further investigation is required, in order to determine the

impact of the inhomogeneous electrical fields and polarization.

• The bi-directional control method and active phase shift demonstrated that it

was possible to achieve a continuously modulated bi-directional power flow and

energy recovery. The proposed bi-directional concept is not limited to DEAP

application and the continued research can lead to huge advancements in other

applications, such as applications of line and load regulation, with a potentially

paradigm change as a result.

• Another huge potential of bi-directional control is the possibility of achieving

soft switching operation of a non-soft switching optimized PT in inductor-less

topologies. This can be achieved through the phase shift of the output rectifier

by adding a small phase shift, the retained current will help to charge and

discharge Cd1 and enable soft switching operation. Further research is needed

in order to determine if the trade-off of an increase in PT performance is worth

the decrease in power flow and power density. The result might lead to new
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design approaches of PT’s or confirm that soft switching optimized PT’s are

the optimal solution for inductor-less topologies.

• The bi-directional control method itself could be further optimized, especially

the physical implementation. The sub-circuit can definitely be optimized fur-

ther, as well as major parts of the circuit can be integrated in to a integrated

circuit (IC) and increase the possibility of miniaturization and a compact solu-

tion.

• Lastly the simple high voltage high-side gate driver might be feasible in other

applications and non-PT based power applications as well as the concept can

be further optimized.
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Reference guide

The following table lists the relevant reference by subject, with the intentions of

helping the reader to quickly find literature on the subjects. Some references might

be relevant in several subjects and hence are listed several times.

Subject References

Electro Active Polymer [1, 7, 8, 9]

Dielectric Electro Active Polymer [7, 8, 9]

Danfoss PolyPower DEAP actuator [10, 11, 12, 13, 14]

The piezoelectric transformer (PT) [4, 16, 21, 22, 23, 27]

Piezoelectricity [15, 16, 17, 18, 19, 20, 21]

Modeling of piezoelectric transformers [22, 24, 26, 27, 28, 48, 50, 51]

Model parameter determination [24, 26, 30, 32, 36, 38, 45, 52, 53]

Piezoelectric loss and PT loss [16, 17, 18, 21, 29, 69, 70]

Piezoelectric transformer design [26, 53]

Rosen type PT [2, 3, 30, 31, 32]

Radial mode PT [26, 33, 34, 35, 36, 37, 38]

Thickness mode PT [39, 40, 41, 42, 43, 44, 45, 46, 47]

Soft switching optimized PT’s [36, 38, 39, 40, 71],[D.2,D.5]

The PT based power converter [23, 50]

Topologies [23]

Push-pull [4, 72]

Class-E [58, 60, 68]

Half-bridge [5, 66, 67, 73, 74]

The inductor-less half-bridge [40, 50, 51, 54, 63, 64, 74, 75, 76],[D.7]

Soft switching factor [26, 36, 50, 51, 54],[D.3]

Control methods [23]

Controlled oscillator [23, 44, 56, 57, 58, 59, 60]

Phase lock loop (PLL) [5, 23, 61, 62, 63, 64, 65],[D.7]

Self-oscillating control [42, 66],[D.8]

Burst-mode modulation [42, 66, 67, 68],[D.1,D.6]

Bi-directional control [D.9]
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Appendix A

ZVS capability simulation circuit

ZVS capability OrCad PSpice simulation circuit, where the ZVS capability is mea-

sured as the peak voltage of the V Cd1 node. The circuit has adaptive dead-time,

which ensures an optimal dead-time for any given operation point, and the measure-

ment is performed after steady state operation is achieved.
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Appendix B

Schematic: Uni-directional PT based

DEAP driver

In the following section the schematic of the developed uni-directional PT based

DEAP driver can be found. The developed driver is small enough to be integrated

into the core of a 110x32 mm DEAP actuator, forming a low voltage (24V) interfaced

DEAP actuator. The driver can be configured with a half-bridge or full-bridge, but is

targeted for half-bridge operation, utilizing the Interleaved Rosen type PT (section 4.3

[D.2]). The component values is optimized for a 30x10x2 mm Interleaved Rosen type

PT and the functionality and operation of the circuits are described in detail in this

thesis and associated publications.
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Appendix C

Schematic: Bi-directional PT based DEAP

driver

In the following section the schematic of the developed bi-directional PT based DEAP

driver can be found. The developed driver is not small enough to be integrated into

the core of a DEAP actuator and the prototype is developed to demonstrate and vali-

dation of the functionality of the bi-directional concept. The driver can be configured

with a half-bridge or full-bridge, but is targeted for full-bridge operation, utilizing

the Interleaved interdigitated electrode PT (section 4.5 [D.5]). The component val-

ues is optimized for a 27x10x2 mm Interleaved interdigitated electrode PT and the

functionality and operation of the circuits are described in detail in this thesis and

associated publications.
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ABSTRACT 

Today’s Dielectric Electro Active Polymer (DEAP) actuators utilize high voltage (HV) in the range of kilo volts to fully 
stress the actuator. The requirement of HV is a drawback for the general use in the industry due to safety concerns and 
HV regulations.  
In order to avoid the HV interface to DEAP actuators, a low voltage solution is developed by integrating the driver 
electronic into a 110 mm tall cylindrical coreless Push InLastor actuator. To decrease the size of the driver, a 
piezoelectric transformer (PT) based solution is utilized. The PT is essentially an improved Rosen type PT with 
interleaved sections. Furthermore, the PT is optimized for an input voltage of 24 V with a gain high enough to achieve a 
DEAP voltage of 2.5 kV. The PT is simulated and verified through measurements on a working prototype. With the 
adapted hysteretic based control system; output voltage wave forms of both impulse response and sinusoidal shapes up to 
2.5 kV are demonstrated. The control system, together with a carefully designed HV output stage, contributes to low 
power consumption at a static DEAP force. The HV stage consists of a HV measurement circuit and a triple diode 
voltage doubler optimized for low leakage current drawn from the DEAP. 
As a result, a 95 mm x 13 mm x 7 mm driver is integrated in a 110 mm x 32 mm actuator, forming a low voltage 
interfaced DEAP actuator. 
 
Keywords: Piezoelectric Transformer, high voltage, Dielectric Electro Active Polymer, PolyPower, hysteretic control, 
integrate, actuator, converter   
 

1. INTRODUCTION 

DEAP devices are based on polymer materials and change shape as a result of the electrostatic forces, generated by an 
applied voltage. The DEAP technology has a wide potential in applications such as surgical tools, grippers for material 
handling and valve actuators for example. The DEAP material can be modulated as a high voltage capacitor with a very 
low leakage current, where the force from the DEAP is related to the applied voltage. The DEAP technology available 
today requires a high voltage (HV) to fully utilize it as an actuator. The voltage is dependent among other by the 
thickness of the DEAP film. The film thickness is around 80 µm [2][13] and has a maximum working voltage of 2.5 kV. 
One of the barriers for using these actuators commercial is the need of a HV source. The HV interface is undesirable for 
practical and safety reasons. The approach in this paper is to construct a DEAP actuator with a low voltage interface, by 
integrating a HV driver inside the actuator. This has some requirements for the DEAP actuator and the driver itself. The 
actuator need to be hollow to make space for the driver inside. For that purpose a coreless Push InLastor actuator [2][13] 
is used for prototyping the concept. As for the driver its primary goal is to be small enough to fit inside the actuator and 
to deliver adequate power.  
The driver typically consists of a step-up switch mode power converter and trough out this paper, the driver is also 
referred to as a converter. To date, conventional converters utilize electromagnetic components for converting the energy 
and are the only available HV sources for driven DEAP actuators. However these HV converters have poor efficiency, 
are bulky and provide limited opportunities for miniaturization. Piezoelectric Transformer (PT) based converters, 
however, is compact and offers high efficiency, especially in high step up applications. The PT based converter is a 
perfect match for DEAP technology and offers the miniaturization possibilities needed to integrate it in to a core less 
DEAP actuator. PTs were originally developed by Rosen in 1957 [1] and uses piezoelectric ceramics to convert electrical 
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energy trough mechanical vibrations and are already commonly used  for backlighting LCD displays, but are still limited 
to these simple applications (with constant high frequency AC load). In the last decade a lot of research in to the area of 
PTs has improved Rosen’s fist transformer and new types of transformers has been designed [4][15][17][18][20]. 
 

2. PIEZOELECTRIC TRANSFORMER 

A piezoelectric material is a material that has an electromechanical coupling. This coupling generates a charge 
displacement, which is proportional to the deformation of the material. A PT is basically two piezoelectric elements 
which is joined together to form a transformer. The primary side element is then exited by an electrical voltage, which 
induces a deformation of the two joined elements, that generates a voltage on the secondary side element. With a proper 
design of the PT, a desired voltage conversion can be obtained from the primary to the secondary side. In order to 
convert power at a high efficiency, the PT is operated in one of its resonance modes [14][16][17][20]. PT resonates each 
time it is possible to generate a standing wave in the element. However the design is usually optimized for one specific 
resonance mode in order to gain the highest efficiency [14][17].  
The PT resembles a distributed network, but for simplicity and mathematical representation, only the resonance mode of 
interest is modeled [14][16][17]. One of the most used PT models is the lumped parameter model, which was first 
derived by Mason in 1942 [3] and is show in figure 1. 
 

 
Figure 1: Lumped parameter model, which describes the behavior of the PT in narrow band around the resonance mode. 

The circuit is basically a LCC resonance tank and the behavior of the PT based converter is also quit similar to a 
traditional resonance converter. 
 

2.1 PT design 

The Piezoelectric Transformer (PT) developed for this application is essential an interleaved multi layer Rosen-type, as 
the one presented in [4]. 
To the left in figure 2 the structure of the PT is shown, which consists of a primary section with 12 layers and one split 
secondary layer.  
 

 
 

Figure 2: Left: PT structure, where the arrows indicate the polarization direction. Right: COMSOL finite element method 
simulation of the PT, operating in the first longitudinal mode shape, at 65.1 kHz. The coloring illustrates the total 
displacement, where dark colors refer to a low displacement and light colors to at high displacement, as the color bar 
indicates. 

R C L
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Piezoelectrical Transformer

n:1
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The figure only illustrates two primary layers, for simplicity, and the arrows indicate the polarization direction. The PT is 
build using tape casting technology. The piezoelectric material used is the NCE46 [19] and the PT has the following 
dimensions 25 mm x 10 mm x 2 mm. 
The PT design is quite similar to one presented in [4], with the exception of the secondary polarization. The operational 
vibration resonance is along the longitudinal direction and is generated trough the electromechanical coupling factors 
k31 and k33, primary and secondary respectively. To the right in figure 2 a finite element method (FEM) simulation of 
the operational vibration resonance is shown. The PT operates in its first mode shape and it can be seen that it has a 
nodal line in the center of the structure. 
One of the drawbacks of this design, for this application, is the split secondary. This results in a differential output 
voltage symmetrical around ground, which complicates the electronics somewhat, which is addressed in section 0. One 
could have polarized the two half secondary layers in opposite directions, which results in a two layer secondary 
structure, with a common voltage potential with reference to ground, as in [4]. But this approach would also half the gain 
of the PT, because of two secondary layers instead of one. For this application we need a high gain, so the extra effort in 
the electronic is rewarded with a doubling in gain. 
 
In order to evaluate the electrical characteristics of the PT, the lumped equivalent parameters are found trough the 
method described in [5]. Trough a FEM simulation of the PT impedance the following equivalent parameters are found. 
 

R C L Cd1 Cd2 1/n 
114 mΩ 9.8 nF 609 µH 91.7 nF 17.5 pF 93.5 

Table 1: PT lumped equivalent parameter obtained trough FEM simulations. 

From these equivalent parameters some more general performance properties of the PT can be calculated, as the matched 
load (1), efficiency (2) and gain (3). 
 
When the load is matched to the PT output, the PT operates at its highest efficiency [5]. Match load condition (1) is 
depended on the terminal capacitance on the secondary side and the operating frequency. 
 
The total loss mechanisms of piezoelectric materials are not fully implemented in the FEM simulation. The efficiency (2) 
is only a non stressed efficiency (derived in [5]), because the simulation is performed with small signals. Therefore this 
efficiency is generally a measure between different designs. 
 

 
2

1
match

d r

R
C 

   (1) 

 

 2
2

2
1 d

match

RC

n LC
     (2) 

 
The gain (3) is the maximal obtainable gain, from the input of the PT to the split output. The maximum gain occurs at 
resonance. 
 

 max

2
A

n
   (3) 

 
The following table contains the found PT properties. 
 

Amax Rmatch ηmatch 
130 138 kΩ 98.6 %

Table 2: PT performance properties calculated from FEM simulated equivalent parameters. 
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Evaluating these properties it can be seen that it has a high efficiency and a high gain, which results in a 1258 Vrms output 
voltage, in to a matched load, with a PT modulation of 9.67 Vrms. The PT modulation voltage is the first harmonic, of the 
24 V input voltage, as derived in [5].   
 

2.2 Prototype verification  

After receiving the prototype PTs, the functionality and properties were verified. The following equivalent parameters 
and performance properties are found. 
 

R C L Cd1 Cd2 1/n 
461 mΩ 6.74 nF 922.7 µH 111.7 nF 24.8 pF 88.6 

Table 3: PT lumped equivalent parameter obtained trough prototype measurements. 

Amax Rmatch ηmatch 
116 100 kΩ 93.3 % 

Table 4: PT performance properties calculated from prototype measured equivalent parameters. 

Comparing these numbers, it can be seen that the gain are 10 % lower than expected. This is partly because the prototype 
buildup were 2.1 mm high, instead of the intended 2 mm, and therefore the primary layers are 5 % higher, which results 
in a 5 % decrease in gain. Furthermore there is some inactive piezoelectric material in the primary section, due to the 
termination of the primary electrodes on the side of the PT. This is not included in the FEM simulation and accounts for 
some of the remaining 5 % deviation. Hence there is a very good correlation between the FEM model and the prototype 
concerning the gain.  
Looking at the capacitances Cd1, Cd2 and the efficiency, the correlation is not very good. This is expected to be caused by 
a bad correlation between the NCE46 material parameters in the FEM model and what they in fact are in real life, as well 
as an incomplete loss model in the simulation. This problem will be addressed in a future paper. Nevertheless the FEM 
simulation makes it possible to design PTs with a desired gain, as well as the possibility to compare the efficiency 
between different designs. For this specific case there is not a well defined resistive load and therefore the matching 
inaccuracy is not a problem. 
 

3. CONVERTER STRUCTURE 

The converter structure contains several parts: control circuit, a power stage, the PT, a voltage doubler rectifier, 
discharge circuit and a high voltage measurement circuit. A block diagram is shown in figure  3 including a capacitor for 
modeling the DEAP. The PT based converter is essentially just a resonance converter, with some unique PT 
characteristics [12][14][16][17][18]. One of the characteristic of the PT is that the resonance network is of a high quality 
factor, hence giving it a very narrow bandwidth of operation. Therefore a good and precise control of the operating 
frequency is important, in order to maximize efficiency and ensure proper operation. The power stage of the converter is 
a typical half-bridge solution. The discharge of the DEAP is performed trough a resistive load controlled by the 
controller. The power stage and discharge circuit will not be addressed in this paper [14][21]. 
 

 
Figure 3: Block diagram of the PT based converter including the DEAP model. 
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4. VOLTAGE DOUBLER RECTIFIER 

The sinusoidal output of the PT is rectified in a voltage doubler rectifier [8], which in this case consists of three diodes 
(D1, D2, D3) unlike the normal two (D1, D2). The extra diode (D3) is added to support the PTs split output, which 
produces a differential voltage symmetrical around ground. Without D3 one of the DEAP terminals would be connected 
directly to the PTs output, resulting in the DEAP bouncing up and down, with the potential of the PT output. 
Furthermore this would load the output of the PT with the DEAP’s parasitic capacitance and lead to an increase in the 
common mode EMC. Beside a lower EMC, the third diode allows for the DEAP voltage to be steady around ground. 
This also has the advantage of lowering the current consumption in the high voltage measuring circuit, which is 
addressed in section 6. 
 

5. CONTROL 

As mentioned in section 3, the PT based converter is very sensitive to its operating frequency, thus a good and precise 
tracking of the resonance frequency is important, in order to compensate variations, caused by operating conditions and 
external influences. To insure this, a closed phase-loop is made, which is very similar to the one presented in [9]. This 
closed loop will tune itself to tracks the resonance frequency, ensuring optimal operation. 
A second loop is closed around the output voltage, in order to control the output voltage. The measurement of the output 
voltage is not trivial and is described in detail in the section 6. Figure 4 illustrates the implementation of the charge and 
discharge control, which controls the output voltage.  
The feedback signal (FB) is a 0 - 4 V feedback, which is proportional to the 0 - 2.5 kV variation of the output voltage and 
is compared to the reference voltage (Ref). R5 and C2 form a low-pass filter that limits the feedback bandwidth (BW) to 
500 Hz, as well as it suppresses high frequency noise. The reference voltage is passed through a voltage divider (R3 and 
R4), that makes a 0 - 5 V reference voltage swing correspond to the 0 - 2.5 kV output voltage swing. Together with C1 
they form a low-pass filter, which limits the reference voltage BW to 170 Hz. This is done to ensure an upper limit of 
operation, which should be at least 20 Hz. 
 

 
Figure 4: Hysteresis based control circuit, for the control of charge and discharge of the DEAP/output voltage, based on the HV 

measurement feedback. 

The two comparators (U1 and U2) and their two associated resistors (R6, R7 and R8, R9) form two hysteresis windows 
of 55 mV, which corresponds to approximately 34 V on the output voltage. The lower comparator (U2) controls the 
charge cycle and when the feedback signal (FB) drops below the lower boundary of the hysteresis, the converter is 
turned on and charges the DEAP. The converter is then charging until the feedback hits the upper boundary, which 
would be a 34 V charge, if the reference voltage was kept constant. The same applies for the upper comparator (U1), 
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with the difference that it discharges the DEAP when the feedback hits the upper hysteresis boundary, until it reaches the 
lower boundary. The DEAP is simply discharge trough a resistive load, until it hits the lower boundary. 
In order to separate these two hysteresis windows, R1, Q1 and R2 are added to the circuit. R1 and Q1 form a small 
current source, which generates a constant current. This current is passed through R2, resulting in a constant voltage 
across it, which separates the hysteresis windows with a constant voltage of approximately 150 mV, corresponding to 94 
V on the output voltage. 
Trough small bursts of charging and discharging, dependent on the reference voltage, the output voltage is kept within a 
limited range of the reference voltage. The separation voltage and hysteresis windows can be optimized further, in order 
to make the output voltage follow the reference even tighter. 
 

6. HIGH VOLTAGE MEASUREMENT 

The control circuit uses a feedback signal from a high voltage measurement circuit to regulate the output voltage. The 
high voltage measurement circuit has to handle voltages of at least 2.5 kV at frequencies below 20 Hz. The impendence 
of the measurement circuit becomes important in static operations, when a static force from the DEAP has to be 
maintained. In static operation the output voltage is maintained by the DEAP’s capacitance, however the impedance of 
the measurement circuit together with the DEAP’s leakage current will discharges the DEAP over time. The converter 
has to supply the current drawn from the DEAP to keep a constant output voltage. The overall power consumption in 
static operation depends on the current drawn from the DEAP. It is not in the scope of this paper to change the leakage 
current of the DEAP, it is therefore the objective to make the leakages current dominant compared to the current drawn 
by the measurement circuit. The leakage current of six DEAP samples is measured and spans from 14 nA to 959 nA, 
measured at 2 kV. For the DEAP leakages current to be dominant the total impedance of the measurement circuit has to 
be higher than: 143 GΩ - 2 GΩ (depending on the DEAP sample). For practical reasons it is not possible to work with 
physical small sized HV impedances in the 100 GΩ range, for comparison the volume resistivity of normal PCB is 1 - 
1000 GΩ·cm depending on humidity, temperature, etc. [10].  
 

6.1 Circuit analysis and design 

The output of the PT is equivalent with two ground connected AC current sources each in parallel with a capacitor and 
then rectified to form a positive rail (A) and a negative rail (B). The two output rails are ideally symmetrical around 
ground and together forms the output voltage (A - B = Vout).The converters output stage equivalent is shown to the left of 
figure 5. 

 
To the right hand side of figure 5 a resistive high voltage measurement circuit together with the DEAP equivalent is 
shown. A resistive voltage divider from the positive to the negative rail (R1 & R2 & R3) gives a low voltage signal, 
referenced to ground, which is proportional to the output voltage. This signal is buffered by an operational amplifier with 
a very high input impedance (>10 TΩ) and is used as the feedback signal (FB) for the converters controller circuit. To 
keep the output voltage symmetric around ground, the resistance from the two rails to ground must be equal. 

 
Figure 5: Left: Converter output stage equivalent circuit, with symmetric output voltage around ground. Right: High voltage 

measurement circuit, with resistive voltage divider, for low voltage ground referenced feedback signal. 
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The low frequency relationship between the output voltage and the feedback signal for the circuit in figure 5 is given by 
the transfer function (4).  

 

 2

1 2 3out

RFB

V R R R


 
  (4) 

 
For the circuit to handle dynamic measurements the parasitic capacitors in the circuit cannot be ignored. For this 
application the resistor values need to be comparable with the DEAP’s leakage current, in order to minimize discharge of 
the DEAP. These high value resistors together with a highly compact circuit layout increase the impact from the parasitic 
capacitors on the transfer function, resulting in a frequency depended feedback signal. Furthermore the parasitic 
capacitance from the DEAP to the surroundings introduces significant noise on top of the high voltage rails from the 50 
Hz mains. A model with the parasitic capacitors is seen to the left of figure 6. To eliminate the impact of the parasitic 
capacitors, without increasing the static discharge of the DEAP, a capacitive voltage divider is added. By using relatively 
large capacitors in the divider the impact from the parasitic capacitors is neglected. The transfer function for the 
combined resistive and capacitive voltage divider is given in (5) and is now frequency depended. By using the relation in 
(6) the transfer function becomes independent of frequency (7).  
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Figure 6: Left: High voltage measurement circuit including unknown parasitics. Right: High voltage measurement circuit with 
resistive and capacitive voltage divider to avoid the impact from parasitic components.   
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7. INTEGRATION 

The integration of the electronics into the DEAP actuator has been a main concern right from the start. Therefore the 
physical size and shape of the driver has also been a significant part of the development, as well as the mechanical 
interface and incorporation of the driver in the actuator. 
The actuator has a winding-insert in each end to support the coreless DEAP actuator. The cross-section area of the 
prototype converter is 12.8mm x 7.5mm and fits into the elliptical cross-section area of the winding-inserts, as seen to 
the left in figure . 

 

Figure 7: Left: Cross-section view of the converter surrounded by a winding-insert. Right: 3D view of the actuator with 
transparent DEAP material to illustrate how the converter is placed inside the actuator. 

 
In one of the winding-inserts a set of grooves in each side provide two functions. The first function is to guide the 
converter straight into the actuator, when sliding in the PCB. The second function is to fix the driver in only one end of 
the actuator. In the opposite end the PCB is narrowed to avoid friction with the winding-insert, this ensures that the rest 
of the actuator can move freely. Each end of the actuator is encapsulated with an end fitting, made of plastic. A 3D view 
of the actuator with end-fittings is seen to the right in figure , were the DEAP material is transparent to illustrate how the 
converter is placed inside. 
 
The physical size of the prototype driver is only 95 mm x 12.8 mm x 7.5 mm (L x W x H) and a photo of the prototype is 
seen in figure 8.    
 
 

 

Figure 8: Prototype driver showing the control circuit, a 30 mm PT, resistive discharge array and the high voltage measurement 
circuit. The voltage doubler rectifier is placed on the opposite side, underneath the high voltage measurement circuit. The 
power stage is also placed on the opposite side of the PCB and is located underneath the PT. 
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The external size of the actuator is 110x32 mm and a picture of the final DEAP actuator with the integrated driver is seen 
in figure 9. 

 

Figure 9: Left: Picture of the driver sliding into the DEAP actuator. Right: Picture of the final “low voltage” DEAP actuator.   

 
 

8. EXPERIMENTAL RESULTS  

8.1 High Voltage measurement 

Practical experience revealed that care should be taken when selecting the high voltage capacitors (C1 & C3) referred to 
figure 6. Voltage dependent capacitance (DC-bias) destroys the relation in (6) and splits the transfer function for the 
feedback signal into a static and a dynamic gain (8). For this application ceramic multilayer capacitors are preferred 
because of their high volumetric capacitance, which allows small package size. The widely used ceramic for high 
volumetric capacitors are ferroelectric and therefore inhere strong voltage dependent capacitance. Increased capacity per 
volume for these capacitor types increases the voltage dependency. To avoid the voltage dependency of ceramic 
capacitors the ceramic type to use is paraelectricity. The main component of temperature compensation type (C0G, NP0, 
U2J, etc.) is paraelectricity and therefore the capacity does not vary with voltage [11]. 
 

Figure 10: Measured illustration of the erroneous dynamic gain caused by non liner dielectric in HV capacitors C1, C3. Output 
voltage (Vout: 500 V/div & 500 ms/div) and the feedback signal (FB: 1 V/div & 500 ms/div) in closed loop at two different 
reference signals. Left: low voltage case. Right: high voltage case. 
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In figure 10 are the output voltage and the feedback signal measured with two different amplitude of a square wave 
reference input to the controller. The output voltage is adjusted by the converter so the feedback signal matched the 
square wave reference. C1 & C3 are both ceramic capacitors (100 pF– 2 kV) in category X7R. Table 5 compares the 
dynamic and static gain from the two measurements in figure 10. The dynamic gain is dominated by the capacitive 
voltage divider where as the static gain is dominated by the resistive divider. As the voltage increase the dynamic gain 
decreases because the capacitance of C1 & C3 decreases with applied voltage. This result agrees with the equation stated 
in (8).   
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   Voltage Gain Deviation 
Delta 

deviation 

Low voltage 
case 

Dynamic gain 
Vout 940 V 

1.43 mV/V -4.8 % 
Δ4.9 

FB 1.34 V 

Static gain 
Vout 860 V 

1.50 mV/V 0.1 % 
FB 1.29 V 

High voltage 
case 

Dynamic gain 
Vout 2405 V 

1.39 mV/V -7.1 % 
Δ9.7 

FB 3.35 V 

Static gain 
Vout 2165 V 

1.54 mV/V 2.6 % 
FB 3.33 V 

Table 5: Comparison of dynamic and static gain in both a low and high voltage case, with voltage dependent capacities. 

 
8.2 Control and operation 

The fully functionality of the converter is demonstrated in figure 11. The left plot illustrates how the converter is capable 
of charging the DEAP, to a desired voltage and the keep the output voltage steady at this voltage, trough small bursts of 
operation. 
 

 
Figure 11: Measurement of the output voltage across the DEAP (green –500 V/div), reference voltage (blue – 1 V/div ) and 

input  voltage (red –10 V/div). Left: Square-wave reference signal. Time base 50 ms/div. Right: Sinusoidal reference signal. 
Time base 100 ms/div. 
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The first stage, where the DEAP is charged, the output voltage has a certain rise time, this is essential the impulse 
response of the converter. This is due to the limited power available from the converter, it will take some time to deliver 
the needed energy. In the second stage, the converter is operated in a burst mode manner. The bursts have a separation of 
less than 50 ms, which indicates a rapid discharge of the DEAP. This discharge is in fact caused by the oscilloscope’s 
HV probe itself and is not a sign of a bad DEAP or HVM circuit. This is because of the impedance of the HV differential 
probes used, which has an impedance of 10 MΩ and accounts for a 162 mW discharge of the DEAP at 1.8 kV. Without 
the oscilloscope probes the only discharge of the DEAP, is caused by its own leakage, the leakage in the diodes and the 
HVM circuit. Without oscilloscope probes a burst-rate of 30 seconds separation has been observed. The third stage is the 
discharge of the DEAP and this is done trough a resistive load. 
The right plot in figure 11 demonstrates how the converter is capable of following a sinusoidal reference voltage, with a 
frequency of approximately 2 Hz. It can be seen how the burst periods becomes denser as the slope of the output voltage 
increases. Furthermore the energy needed to charge the DEAP is dependent on the voltage squared, resulting in the 
largest burst periods at a point where the voltage and slope is high. 
 

 
 

9. CONCLUSION 

The world first low voltage DEAP solution is presented. By utilizing a piezoelectric transformer, it is succeeded to 
design and produce a driver small enough to be integrated into a coreless DEAP actuator. Piezoelectric transformer 
simulations is verified by measurements to ensure a gain, high enough to produce the needed output voltage of 2.5kV 
from input voltage of 24 V to fully stress the DEAP actuator. 
There is a good correlation between the piezoelectric transformer prototype and finite element method simulations, 
concerning the gain. The correlation between the equivalent lumped parameters in general, could be improved. The 
presented control system only turns on the driver when necessary, in a burst-mode manner. That together with a careful 
design of the output stage, which minimizes the discharge current of the DEAP, the power consumption, at a static 
DEAP force is kept as low as possible. 
 

REFERENCES 

[1] C. A. Rosen, “Ceramic transformers and filters”, Proc. Electron. Comp. Symp. 205-211, (1957). 
[2] Tryson M, Kiil HE, Benslimane M, “Powerful tubular core free dielectric electro activate polymer (DEAP) 

‘PUSH’ actuator”, SPIE Vol. 7287, (2009) 
[3] Mason W. P., “Electromechanical Transducers and Wave Filters”, D. Van Nostrand Co , (1942) 
[4] Xiang-cheng CHU, Jun-fei WU, Zhi-han XU, Long-tu LI, “EXPERIMENT RESEARCH ON MULTILAYER 

PIEZOELECTRIC TRANSFORMER”, IEEE 978-1-4244-2891-5, 524-527 (2008) 
[5] Meyer K. S., Andersen M. A. E. ,” Parameterized Analysis of Zero Voltage Switching in Resonant Converters 

for Optimal Electrode Layout of Piezoelectric Transformers”, PESC IEEE 978-1-4244-1668-4, 2543-2548 
(2008) 

[6] Horsley, E.L.,  Nguyen-Quang, N.,  Foster, M.P.,  Stone, D.A., “Achieving ZVS in inductor-less half-bridge 
piezoelectric transformer based resonant converters”, PEDS2009, 446-451 (2009) 

[7] Alonso J. M., Ordiz C., Costa M. A. D., Ribas J., Cardesín J., ” High-Voltage Power Supply for Ozone 
Generation Based on Piezoelectric Transformer”,  IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 
VOL. 45 NO. 4, 1513-1523 (2009) 

[8] Ivensky G., Shvartsas M., Ben-Yaakov S.,“Analysis and modeling of a voltage doubler rectifier fed by a 
piezoelectric transformer”, IEEE Transactions on Power Electronics, Vol.19 Issue.2, 542-549 (2004) 

[9] Díaz J., Martín-Ramos J.A., Prieto M.J., Nuño F.,”A Double-Closed Loop DC/DC Converter Based On A 
Piezoelectric Transformer”, APEC 2004 Vol.3, 1423-1428 (2004) 

[10] [Low Level Measurements Handbook 6th edition], Keithley, Cleveland Ohio, (2004) 
[11] Waugh M. D., ”Design solutions for DC bias in multilayer ceramic capacitors”,  Electronic Engineering Times 

Europe, August (2010) 
[12] Bai C., Li S., Shen Q., Cui D., “A Converter of High Voltage Capacitor Charging Power Supply Using 

Piezoelectric Transformer”, APPEEC, (2009) 

D.1

112



[13] Benslimane M. Y., Kiil HE, Tryson M. J., “Dielectric electro-active polymer push actuators: performance and 
challenges”, Society of Chemical Industry, Wiley Interscience, 415-421 (2010) 

[14] LinC. Y., “Design and analysis of piezoelectric transformer converters,” PhD dissertation, Blacksburg Virginia 
(1997), http://scholar.lib.vt.edu/theses/available/etd-82097-163753/unrestricted/diss0917.pdf 

[15] Navas J. C. J., Bove T., Breboel K., “Miniaturised battery charger using piezoelectric transformers,” Applied 
Power Electronics Conference and Exposition, APEC 2001 Sixteenth Annual IEEE, vol.1, 492–496 (2001) 

[16] F. L. CY Lin, “Design of a piezoelectric transformer converter and its matchingnetworks”, Power Electronics 
Specialists Conference, PESC’ 94 Record, (1994) 

[17] Lin R. L.,“Piezoelectric Transformer Characterization and Application of Electronic Ballast”, PhD dissertation, 
Blacksburg Virginia (2002) 

[18] Baker E. M.,“Design of Radial Mode Piezoelectric Transformers for Lamp Ballast Applications”, PhD thesis, 
Blacksburg Virginia (2002) 

[19] Noliac A/S Piezo ceramics datasheet, 
http://www.noliac.com/Files/Billeder/02%20Standard/Ceramics/Noliac_CEramics_NCE_datasheet.pdf 

[20] Horsley E.L., Foster M.P., Stone D.A.,“State-of-the-art Piezoelectric Transformer Technology”, European 
Conference on Power Electronics and Applications, 1-10 (2007) 

[21] Erikson W. R., Maksimovié D., [Fundamentals of Power Electronics], Springer Science+Business Media inc., 
(2001) 

D.1

113



D.1

114



D.2

D.2 Design of interleaved multilayer Rosen type

piezoelectric transformer for high voltage

DC/DC applications

Conference paper

PEMD 2012 - Power Electronics, Machines and Drives Conference

27 - 29 March 2012

University of Bristol, United Kingdom

http://conferences.theiet.org/pemd/

115

http://conferences.theiet.org/pemd/


DESIGN OF INTERLEAVED MULTILAYER ROSEN TYPE 

PIEZOELECTRIC TRANSFORMER FOR HIGH VOLTAGE 

DC/DC APPLICATIONS 

M. S. Rødgaard*, T. Andersen*, K. S. Meyer 
†
, M. A. E. Andersen* 

*Technical University of Denmark, DTU Elektro, Ørsteds Plads, building 349, DK-2800 Kgs. Lyngby, Denmark, 

msr@elektro.dtu.dk 

†Noliac A/S, Hejreskovvej 18, 3490 Kvistgaard, Denmark 

 

 

 

Keywords: Piezoelectric transformer, step-up, converter, soft 

switching 

Abstract 

Research and development within piezoelectric transformer 

(PT) based converters are rapidly increasing as the technology 
is maturing and starts to prove its capabilities. Especially for 

high voltage and high step-up applications, PT based 

converters have demonstrated good performance and DC/AC 

converters are widely used commercially. The availability of 

PT based converters for DC/DC applications are very limited 

and are not that developed yet. I this paper an interleaved 

multi layer Rosen-type PT for high step-up and high output 

voltage is developed, for driving a 2.5kV dielectric electro 

active polymer actuator [17]. The targeted application utilises 

an inductor-less half-bridge driving topology, where the 

reward of eliminating the series inductor is a reduction in 

component count, size and price. The absence of a series 

inductance calls for other means to avoid large hard switching 

losses and obtain soft switching capabilities. This can be 

achieved by utilising an advantageous PT structure, which is 

the main advantage of the interleaved Rosen-type PT. 

Furthermore the design should be further optimised, in order 
to achieve soft switching capability. The goal of this paper is 

to develop a soft switching optimised PT, capable of 

generating output voltages higher than 2kV from a 24V 

supply voltage. Furthermore finite element method (FEM) has 

been the main tool through the PT development. 

 

 1 Introduction 

The piezoelectric transformer (PT) was originally developed 

by Rosen in 1957 [16] and utilises piezoelectric ceramics to 

convert electrical energy through mechanical vibrations. PT 

based converters have demonstrated good performance and 
DC/AC converters are widely used commercially, especially 

for high step-up and high voltage (HV) applications, like 

LCD backlighting. But they are still limited to these simple 

applications (with a constant and high frequency AC load) 

and the availability of PT based converters for DC/DC 

applications are very limited and are not that developed yet. 

However new applications, like electro active polymer (EAP) 

actuators [5][17], require a high and adjustable DC voltage 

and calls for DC/DC converters of high step-up and high 

output voltage. 

EAP devices are based on polymer materials and change 

shape as a result of the electrostatic forces, generated by an 

applied voltage. The EAP technology has a wide potential in 

applications such as surgical tools, grippers for material 

handling and valve actuators for example. The EAP material 

is essentially just a thin film of polymer with an electrode on 

each side. It can be modulated as a HV capacitor with a very 
low leakage current and the force generated by the EAP is 

related to the applied voltage. The voltage required is 

dependent among others by the thickness of the EAP film. 

The EAP technology available today has a film thickness of 

around 80 µm [5][17], it has a maximum working voltage of 

2.5 kV and requires a voltage above 2kV to fully utilise it as 

an actuator.  

 

 
Figure 1: Schematical diagram of the inductor-less half-bridge topology and the PT equivalent lumped parameter model. 
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To date, conventional converters utilize electromagnetic 

components and are the only available HV sources for driven 

EAP actuators. However these HV converters have poor 

efficiency, are bulky and provide limited opportunities for 

miniaturization. PT based converters, on the other hand, are 

compact and offers high efficiency, especially for high step-

up applications. This makes the PT based converter the 

perfect match for the EAP technology. 

In the last decade a lot of research in to the area of PT’s has 

improved Rosen’s fist PT and new types of PT’s have been 

developed [4][8][11][14][18]. I this paper an interleaved multi 

layer Rosen-type PT for high step-up and high output voltage 

is developed, for driving a 2.5kV EAP actuator [17]. The 

specific EAP actuator application is described in more detail 

in [1] and is similar to the one in [3]. Figure 1 illustrates a 
schematical diagram of the converter, which utilises an 

inductor-less half-bridge topology [2][13]. An inductor in 

series with the PT is usually necessary, in order to achieve 

soft switching and efficient operation. The absence of a series 

inductance calls for other means to avoid large hard switching 

losses and obtain soft switching capabilities. By utilising an 

advantageous PT structure, soft switching capability can be 

obtained, which is the main advantage of the interleaved 

Rosen-type PT. Furthermore the design should be optimised 

further, in order to obtain soft switching capability. This 

optimisation has been performed through iterative FEM 

simulations, as well as the optimisation of the gain and the PT 

properties in general. Due to the increasing complexity of PT 

structures and the complexity of the electromechanical 

behaviour in general, a pure mathematical solution of PT 

design problems is very challenging, as well as a high degree 

of knowledge of the electromechanical domain is needed. 
With today’s multi physics FEM simulators, one can fine-

tune PT structures, without having to rewrite the math every 

time. 

As a result an interleaved Rosen-type PT, with a soft 

switching factor [13] of 1.43 and a gain of 68 has been 

developed. 

2 Piezoelectric transformer 

PT’s are based on a piezoelectric material. This material has 

an electromechanical coupling and through this coupling a 

charge displacement is generated, which is proportional to the 

deformation of the material. A PT is basically two 

piezoelectric elements which is joined together to form a 

transformer. The primary side element is then exited by an 

electrical AC voltage, which induces a deformation of the two 

joined elements. This deformation generates an output voltage 

on the secondary side element and with a proper design of the 
PT, a desired voltage conversion can be obtained from the 

primary to the secondary side.  

In order to convert power at a high efficiency, the PT is 

operated in one of its resonance modes [8][9][10][11]. The PT 

resonates each time it is possible to generate a standing wave 

in the element. But the design is usually optimised for one 

specific resonance mode, in order to obtain the highest 

efficiency [9][11]. 

The PT resembles a distributed network, but for simplicity 

and mathematical representation, only the resonance mode of 

interest is modelled [9][10][11]. One of the most used PT 

models is the lumped parameter model, which was derived by 

Mason in 1942 [12] and is illustrated in Figure 2. 

 

 
Figure 2: Lumped parameter model, which describes the 

behaviour of the PT in a narrow band around the opperating 

resonance mode. 
 

The model is basically a LCC resonance tank and the 

behaviour of a PT based converter is also quite similar to a 

traditional resonance converter [6]. 

2.1 Piezoelectric transformer design  

The PT developed for this application is essential an 

interleaved multi layer Rosen-type, meaning that the primary 

section of the PT has been interleaved into the secondary 

section. Figure 3 illustrates the structure of the PT, which 

consists of a primary section with 12 layers, of 166µm in 
thickness and one split secondary layer. For simplicity the 

figure only shows two primary layers and the arrows indicate 

the polarization direction. The PT is build using tape casting 

technology and the NCE46 piezoelectric material [15]. The 

PT has the dimensions of 25mm x 10mm x 2mm, but PT’s of 

20mm, 30mm and 35mm in length were also designed and 

produced in the same process.  

 

 
Figure 3: The interleaved multi layer Rosen-type PT 

structure, where the arrows indicate the polarization direction. 

 

The PT design is quite similar to the one presented in [18], 

but differs with the polarization of the secondary being in the 

same direction, as well as it has been optimised for soft 

switching. Meaning that it is capable of operating the half-
bridge under zero voltage switching (ZVS), without any 

added inductance in series with the PT. The operational 

vibration resonance is along the longitudinal direction and is 

generated through the electromechanical coupling factors k31 

and k33, primary and secondary respectively. In Figure 4 a 
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FEM simulation of the operational vibration resonance is 

shown. The PT operates in its first longitudinal mode shape 

and it can be seen it has a nodal line in the center of the 

structure. 

 

 
Figure 4: FEM simulation of the PT, operating in the first 

longitudinal mode shape, at 65.1 kHz. The colouring 

illustrates the total displacement, where dark colours refer to a 

low displacement and light colours to at high displacement, as 

the colour bar indicates. 

 

One of the drawbacks of this design, for this application, is 

the split secondary. This results in a differential output 

voltage symmetrical around ground, which complicates the 

electronics somewhat. One could polarise the two half 

secondary layers in opposite directions, which results in a two 

layer secondary structure, obtaining a common voltage 

potential with reference to ground, as in [18]. But this 

approach would also divide the gain by two, because of two 

secondary layers, of half the thickness, instead of one full 

thickness secondary. For this application we need a very high 
gain, so the extra effort in the electronic is rewarded with a 

doubling in gain. 

2.2 Piezoelectric transformer development 

The major part of the development has been performed 

through iterative FEM simulations, where the two main 

design criteria have been a high gain and the capability of 

inductor-less operation. In order to utilise an inductor-less 

topology, the PT should poses soft switching capabilities. 

This is achieved through the relative location and size of the 

primary section. Furthermore the PT is operated slightly 
above the resonance frequency, where the series resonance 

network becomes inductive and contains enough resonating 

energy, to charge and discharge the input capacitance Cd1. 

The interleaving of the primary section is the main advantage 

of this design, as this increases the soft switching capability. 

This is due to the placement right in the middle of the stress 

curve, which is a half-wave sine wave for the first resonance 

mode. Furthermore the primary section size has been 

optimised in order obtain soft switching capability. 

Rosen-type PT’s has a native high gain, which is good for this 

application. The gain is mainly determined by the thickness of 

the primary layers, but of course the primary section size also 

affects the gain. 

Figure 5 shows a frequency sweep of the primary and 

secondary impedance, around the operating resonance mode. 

In order to evaluate the electrical characteristics of the PT, the 

lumped parameter model should be created. 

 

 
Figure 5: FEM simulation of the PT primary and secondary 

impedance magnitude, with the opposite side shorted. 
 

The lumped parameters are calculated from the primary and 

secondary impedance resonance and anti-resonance, plus a 

DC impedance measurement, as described in detail in [13]. 

Trough the FEM simulation of the PT impedance Figure 5, 

the equivalent parameters of Table 1 are found. 

 

R C L Cd1 Cd2 1/n 

114mΩ 9.8nF 609µH 91.7nF 17.5pF 93.5 

Table 1: PT equivalent lumped parameters obtained through 

FEM simulations. 

 

From the lumped parameters some more general performance 

properties of the PT can be calculated, as the soft switching 

factor, matched load, power in matched load, gain and 

efficiency.  

The load is usually matched to the output capacitance Cd2 of 

the PT, Equation (1), or the other way around, because this 

maximises the power transfer of the resonance network to the 

load. Furthermore all the following performance properties 
assume a matched load. 

 2

1
match

d r

R
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(1) 

Equation (2) expresses the soft switching factor or ZVS 

factor, which is derived in [13] and is a measure of the PT’s 

soft switching capabilities. If the ZVS factor is more than 1, 

the PT is capable of performing ZVS at the half-bridge, 

operated with a matched load.  
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Through our own experience, this equation has its short 

comings, properly because of some of the assumption in the 

derivation, which is demonstrated in detail in [7]. But it has 

shown to predict soft switching when working with factors 

above approximately 1.4 and it is very simple and straight 

forward to use, compared to the one derived in [7]. 

Equation (2) is the maximal obtainable soft switching 

capability, which is located slightly above the resonance 

frequency, where the series resonance network becomes 

inductive and contains enough resonating energy, to charge 

and discharge Cd1, if the soft switching factor is above 1.4. 

The efficiency Equation (3) is a small signal efficiency, 

because the FEM simulation is only a small signal simulation 

of the impedance. Furthermore the loss mechanisms of 

piezoelectric materials are not fully implemented in the FEM 
simulation, therefore the efficiency is mostly just a measure to 

compare between different designs. 
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match
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(3) 

The following PT properties of Table 2 are found from the 

equivalent parameters of Table 1 and the index “ZVS” is 

referring to that the PT is operating at its maximum ZVS 

point.  

 

V’P AZVS PZVS Rmatch η Vout,rms 
1.45 75.3 3.79W 138kΩ 0.986 728V 

Table 2: PT equivalent lumped parameter model performance 

properties. 

 

Evaluating these properties it can be seen that it has a 

sufficient high ZVS factor of 1.45, which enables the 

inductor-less operation, a high efficiency and a high gain. The 

high gain results in a 728 Vrms output voltage, into a matched 

load, with a PT modulation voltage of 9.67Vrms. The PT 

modulation voltage is the first harmonic, of the 24V input 

voltage, as derived in [13].  

3 Experimental results 

In the following section the functionality and properties of the 

received prototype PT’s are verified. 

 

 
Figure 6: Picture of prototype PT’s of different sizes (length 

from left: 35mm, 30mm, 25mm and 20mm). 

Figure 7 shows an impedance measurement of one of the 

prototype PT’s and from these measurements the equivalent 

lumped parameters of Table 3 and the performance properties 

of Table 4 are calculated. 

 

 
Figure 7: Measurement of prototype PT primary and 

secondary impedance magnitude, performed with a HP4194A 
impedance/gain-phase analyzer. 

 

R C L Cd1 Cd2 1/n 

462mΩ 6.74nF 923µH 112nF 24.8pF 88.6 

Table 3: Prototype PT equivalent lumped parameters obtained 

through impedance measurements. 

 

V’P AZVS PZVS Rmatch η Vout,rms 

1.43 67.5 4.23W 100kΩ 0.933 653V 

Table 4: Prototype PT equivalent lumped parameter model 

performance properties. 

 

 
Figure 8: Measurement of the output voltage in to a matched 

load (green) and input half-bridge voltage (yellow), which 

clearly is operating under ZVS. Time base [5µs/div], output 

voltage [200V/div] and input half-bridge voltage [5V/div]. 

 
Figure 8 shows the PT operating with a half-bridge voltage of 

20V and with a matched resistive load. From the input 

voltage waveform, it can clearly be seen that the half-bridge 

is operating under ZVS, which verifies the designs soft 
switching capability. Looking at the output voltage it 

resembles a nice sine wave, with a peak voltage of 
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approximately 780V, from which the gain of Equation (4) can 

be calculated. 

  

(4) 

Where 0.57 is the approximate amplitude of the first 

harmonic of a trapezoidal waveform, as derived in [13]. 

When employing a rectifying voltage doubler instead of a 

matched load, voltages over 2kV can be achieved for DC/DC 

applications. 

4 Discussion  

Comparing measured figures (Table 3 and Table 4) with  the 

FEM simulation obtained figures (Table 1 and Table 2), it can 

be seen that the gain (AZVS) is 10% lower than expected. This 
is partly because the prototype build-up were 2.1mm high, 

which is 0.1mm higher than expected, making the primary 

layers 5% higher and this results in a 5% decrease in gain. 

Furthermore there is some inactive piezoelectric material in 

the primary section, due to the termination of the primary 

electrodes on the side of the PT, as shown in Figure 6. For 

simplicity the termination is not included in the FEM 

simulation, which accounts for some of the remaining 5 % 

deviation. Hence there is a very good correlation between the 

FEM model and the prototype concerning the gain. 

Comparing the gain of Equation (4) with the calculated from 

the lumped parameters (Table 4), it can be seen that there is a 

very good correlation between a fully stressed PT and the 

small signal impedance measurement. 

The correlation between the soft switching factors (V’P) is 

also very good. 

Looking at the capacitances Cd1, Cd2 and the efficiency, the 
correlation is not that good. This is expected to be because of 

a bad correlation between the NCE46 material parameters in 

the FEM model and what they are in real life, as well as an 

incomplete loss model in the FEM simulation. Nevertheless 

the FEM simulation makes it possible to design soft switching 

optimised PT’s for inductor-less operation, having a desired 

soft switching factor, a desired gain, as well as the possibility 

to compare the performance between different designs. For 

this specific case there is not a well defined resistive load and 

the load matching inaccuracy is therefore not a problem. 

5 Conclusion 

In this paper a new interleaved multi layer Rosen-type 

piezoelectric transformer (PT), optimised for soft switching, 

inductor-less operation and high output voltage has been 

developed. The development has been performed through 

iterative finite element method simulations, which has proven 
its capabilities as a good design tool for PT development. The 

measurements of the prototype PT showed a good correlation 

between the design and the prototype. The prototype PT has 

demonstrated to have a sufficiently high soft switching factor 

of 1.43 to operate in an inductor-less topology, as well as 

having a high gain of 68, enabling the generation of high 

output voltages. 
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Abstract 

Research and development within piezoelectric transformer 

(PT) based converters are rapidly increasing, as the 

technology is maturing and starts to prove its capabilities. 

High power density and high efficiencies are reported and 

recently several inductor-less converters have emerged 

[1][2][7][10][13], which demonstrates soft switching 

capabilities. The elimination of a bulky inductor, reduces size 

and price of the converter, but demands a soft switching 

optimised PT. Several attempts of expressing the soft 

switching capability have been made [5][12], with some 

shortcomings. The goal of this paper is to derive a simple 

expression of the maximal obtainable soft switching 

capability (ZVS factor), for a specific PT design, assuming a 

matched load. The expression has been derived through series 
of parametric sweep simulations of the inductor-less half-

bridge topology, which revealed that a linearization of the 

maximal soft switching capability can be performed, in the 

area of interest. This expression is intended to form a basic 

tool for development of soft switching optimised PT’s, which 

enables the utilisation of inductor-less topologies. 

1 Introduction 

Piezoelectric transformer (PT) based converters have been 

around for some time now, but within resent years PT based 

converters have emerged, that exploit an inductor-less 

topology [1][2][7][10][13]. The elimination of the bulky 

inductor reduces size and price of the converter. But the 

parasitic input capacitance of the PT usually prevents the 

utilisation of an inductor-less power stage and an external 

series inductance is typically inserted in order to achieve soft 

switching capabilities. In a simple half-bridge power stage the 
input capacitance can lead to hard switching losses in the 

same range as the output power, resulting in a very poor 

efficiency. This calls for other means in order to avoid large 

hard switching losses, obtain soft switching capabilities and 

efficient operation. This can be achieved by utilising an 

advantageous PT structure and optimised design. But in order 

to evaluate the properties of the PT, a better understanding of 

the PT and what factors influences the soft switching 

capability is required. Several attempts of deriving a 
mathematical expression of the soft switching capability, 

directly from the lumped parameter model Figure 1 [11], have 

been made [3][5][10][12]. Great progress has been achieved, 

but they still have some shortcomings. 

 

 
Figure 1: Lumped parameter model, which describes the 

behaviour of the PT in a narrow band around the operating 

resonance mode. 

 

The approach in [5] has been to derive the full mathematical 

problem of the lumped parameter model, with respect to the 
input voltage, which should reach at least the half-bridge rail 

voltages, in order to soft switch. The result is a very precise 

expression of the soft switching capability. Its advantages are 

that it takes all the lumped parameters and the load resistance 

in to account, meaning that the soft switching capability can 

be calculated for any given PT and load, as well as the result 

is very accurate. The drawback of taking all the parameters 

and the load resistance in to account are a very complex 

expressing, making it quit computational heavy, as well as the 

expression still is a function of dead time and frequency. 

Furthermore there are no transparent relation between the 

parameters and the soft switching capability. 

The approach in [12] has been to derive the expression in the 

frequency domain, as the lumped parameter model is of 

frequency domain nature. The derivation assuming matched 

load and has been accomplished by making a couple of 

assumptions. Equation 1 expresses the derived ZVS (zero 

voltage switching) factor, which is the maximal obtainable 
soft switching capability.  

   
  

 

  

   

   

    

   
                               

It has the advantages of being very short and handy, as well 

as being transparent, providing a very good relation between 

the parameters and the ZVS factor. And as it can be seen, it is 

only a few parameter of the model that affects the ZVS factor. 
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The drawback is that it is too optimistic. Through 

employment of the expression, within PT development and 

experimental work, it is found that a ZVS factor of at least 1.4 

is needed in order to achieve soft switching. 

The approach of this paper has been to perform a series of 

parametric sweep simulations of the lumped parameter model, 

searching for linearization opportunities in respect to the soft 

switching capability. The ZVS factor Equation (1) has been 

the starting point for the simulations and search, as it has 

demonstrated to relate to the soft switching capability, 

although it is optimistic. And as this paper will demonstrate, 

linearization opportunities were found in the area of interest. 

As a result a simple expression of the ZVS factor is derived, 

which demonstrates good accuracy and is only a function of 

the input and output capacitor ratio and the efficiency, just as 
Equation (1). 

1.1 Piezoelectric transformer 

PT’s are based on piezoelectric materials, which usually is a 

ceramic material. This material has an electromechanical 

coupling and through this coupling a charge displacement is 

generated, that is proportional to the deformation of the 

material. A PT is basically two piezoelectric elements joined 

together to form a transformer. The primary side element is 

then exited by an electrical AC voltage, which induces a 
deformation of the two joined elements. This deformation 

generates an output voltage on the secondary side element 

and through a proper design of the PT, a desired voltage 

conversion can be achieved from the primary to the secondary 

side.  

The PT is operated in one of its resonance modes, in order to 

convert energy at a high efficiency [6][8][9][10]. The PT 

resonates each time it is possible to generate a standing wave 

in the element, but the design is usually optimised for one 

specific resonance mode, in order to achieve the highest 

efficiency [8][10].  

The PT resembles a distributed network, but for simplicity 

and mathematical representation, only the resonance mode of 

interest is modelled [8][9][10]. The lumped parameter model 

is one of the most frequently used PT models and was derived 

by Mason in 1942 [11]. The model is illustrated in Figure 1 

and is basically a LCC resonance tank, as well as the 
behaviour of a PT based converter is quite similar to a 

traditional resonance converter [4]. 

2 Inductor-less half-bridge 

Figure 2 illustrates the inductor-less half-bridge topology, 

where the absence of a series inductance and the parasitic 

input capacitor Cd1, calls for a soft switching optimised PT. 

The topology is quite simple, making it easy to understand the 

subject of soft switching. But the soft switching requirements 

of the PT for a bit more advance topologies, like the full-

bridge, are the same. However for the more advanced 

topologies, like the PFC charge pump topologies [7], the 

requirements to the soft switching capability of the PT are 

higher, as the apparent parasitic input capacitance is 

increased. 

The PT is loaded with a matched load as this maximises the 

power transfer of the resonance network, as well as this is the 

worst case condition for the soft switching capability [12]. 

 

 
Figure 2: Schematical diagram of the inductor-less half-

bridge topology and the PT equivalent lumped parameter 

model. 

 

The target of soft switching is to achieve ZVS of the switches 

in the half-bridge. This can be achieved by operating the PT 

slightly above its resonance frequency, where the series 

resonance network becomes inductive and contains enough 

resonating energy to charge and discharge Cd1. And as it will 

be shown in the following section, there is an optimum where 
the resonance networks inductivity and energy is maximised, 

to make the largest energy transfer to Cd1. Furthermore there 

should be a certain dead time in between the two switches, in 

order to let the charge and discharge occur.  

 

 
Figure 3: Input voltage and resonance current waveforms of 

the inductor-less half-bridge topology. From the input voltage 

it can clearly be seen that the half-bridge is operating under 

ZVS. 

 

Figure 3 illustrates the operation of the inductor-less half-

bride and as it can be seen the resonance current possesses 

sufficient phase shift and magnitude, to achieve ZVS. There 

is also sufficient dead time (ZVS region) in between the 

switches and it can clearly be seen that Cd1 is charged and 

discharged, obtaining ZVS. 
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3 Soft switching factor 

In the following section an expression of the maximal 

obtainable soft switching capability, also referred to as the 

soft switching factor or ZVS factor, is derived. The derivation 

is based on a series of parametric sweep time domain PSpice 

simulations of the inductor-less half-bridge, where the figures 

of Table 1 are the used lumped parameters. The figures 

origins from the interleaved multi layer Rosen-type PT design 
presented in [14], but as the lumped parameter mode is 

independent of PT design, the results should be general. The 

simulations have been preformed with at least 100 cycles 

before any measurements were made, in order to insure 

steady-state operation. Furthermore the simulated circuit 

utilises idealised switches and body diodes. 

 

R C L Cd1 Cd2 1/n 

98mΩ 11.7nF 733µH 112nF 14.6pF 112 

Table 1: FEM simulated PT equivalent lumped parameters 

obtained through impedance measurements. 

 

From Equation (1) the ZVS factor of [12] can be calculated, 

as well as the match load and efficiency [12][14], as well as 

the resonance frequency. And as it can be seen from Table 2, 

the design possesses a ZVS factor which is sufficient to 

achieve soft switching. 

 

V’P-Old Rmatch η fR   

1.43 198kΩ 0.987 55.2kHz   

Table 2: FEM simulated PT equivalent lumped parameter 

model performance properties. 

 
Equation (1) revealed that the soft switching capability is 

strongly dependent of the input and output capacitance. 

Figure 4 illustrates a frequency swept series of simulations, 

with the parameter of the input capacitance Cd1 being swept 

as well. 

 

 
Figure 4: Simulated PT soft switching capability over 

frequency, with different input capacities Cd1 (capacitor ratio 

KC). 

 

As it can be seen the soft switching capability is strongly 

dependent of the input capacitance Cd1 and the frequency. As 

for the shape of the curves there are a very good correlation to 

what were discovered in [5][12]. From the curves the 

maximal obtainable soft switching capability can be 

extracted, which is the parameter of interest. This ZVS factor 

can then be plotted in relation to the input capacitance Cd1 or 

more interesting, in relations to the input and output capacitor 

ratio KC Equation (2), which is illustrated in Figure 5.  

   
 

  

   

   

                                     

The ZVS factors extracted from Figure 4 resemble the second 

topmost line in Figure 5. Moreover the series resistance R has 

been swept, creating several curves relating the ZVS factor to 

the PT efficiency.  
 

 
Figure 5: Simulated PT maximal soft switching capability 

(ZVS factor) in relation to the capacitor ratio KC, at different 

efficiencies. 

 

As Figure 5 reveals, there is a fine linear relation between the 

capacitor ratio KC and the ZVS factor. By making a linear 

regression of the topmost line (η ≈ 100%), the most simplified 

expression of the ZVS factor is found Equation (3). 

          
        

 

  

   

   

                        

This expression is as simple as it gets, it is very handy and 

holds for high efficient PT’s, which in the end is the ultimate 

goal of PT development. 

But when working with less efficient PT’s (< 97%), the 

efficiency should be taken in to account as well, in order to 

get a reliable result. Taking a look at Figure 5 it can be seen 

that the curves, which are lines of different efficiency, are 

nearly parallel. By taking a closer look at the curves it is 

found that they intersect the x-axis in roughly the same point, 

which indicates that the ZVS factor Equation (3) can be 

adjusted with an efficiency dependent factor. 
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Figure 6 illustrates how the ZVS factor is dependent on the 

efficiency at different capacitor ratios KC and here as well the 

figure reveals a clear dependency of the efficiency. Although 

the dependency is not perfectly linear and differentiates a bit 

over the capacitor ratio KC, a linear regression is made.  

 

 
Figure 6: Simulated PT normalised maximal soft switching 

capability in relation to the efficiency. 

 

The result is the correction factor Equation (4), which joined 
together with Equation (3) forms the final ZVS factor 

Equation (5). 

                                       

   
        

 

  

   

   

                          

The expression is verified through comparison with the 

already simulated data of Figure 5 and as can be seen in Table 

3 there are a very good correlation.  

4 Experimental results  

In order to fully validate the developed ZVS factor, the ZVS 

factor of a prototype PT has been measured.  

The prototype PT is of the same design as the one simulated 

[14], with the exception of a bit different polarisation, which 

divides the turn’s ratio (n) by two. Its properties are listed in 

Table 4 and Table 5, and as it can be seen it possesses a quit 

high ZVS factor. 
 

η = 100% η = 94% η = 80% 

Sim V’P Δ Sim V’P Δ Sim V’P Δ 

0,96 0,96 0,1% 0,93 0,93 -0,1% 0,85 0,85 -0,5% 

0,99 0,99 0,2% 0,96 0,96 -0,2% 0,88 0,88 -0,6% 

1,03 1,03 0,2% 1,00 1,00 0,0% 0,92 0,91 -0,6% 

1,08 1,08 0,1% 1,04 1,05 0,1% 0,96 0,95 -0,5% 

1,14 1,14 0,0% 1,10 1,10 0,2% 1,01 1,01 0,1% 

1,22 1,22 -0,3% 1,17 1,17 0,1% 1,07 1,07 0,6% 

Table 3: Comparison between some of the simulated and 

calculated ZVS factors. 
 

R C L Cd1 Cd2 1/n 

361mΩ 8.33nF 1052µH 129nF 93.2pF 55 

Table 4: Prototype PT equivalent lumped parameters obtained 

through impedance measurements. The measurements have 

been performed with the PT mounted in the test circuit, 

including the additional parasitic. 

 

V’P-Old V’P Rmatch η fR  

1.67 1.15 33.7kΩ 0.936 54.2kHz  

Table 5: Prototype PT equivalent lumped parameter model 

performance properties. 

 

By employing the inductor-less half-bridge, it is not directly 

possible to measure ZVS factors above 1, because of the 

clamping body diodes in the MOSFET’s. Only ZVS factor 

below 1 is measurable, as the measurement shown in Figure 

8.  

 

 

 
Figure 7: Schematical diagram of the inductor-less half-bridge, half-bridge driving circuit and the implemtatin of the soft 

switching capabability measurement circuit. 

Decreasing KC 
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A diode could be placed in series with the top MOSFET and 

the input voltage (Vin) is thereby allowed to rise above supply 

voltage. This will enable a ZVS factor measurement, but it 

will also change the shape of the input voltage somewhat, 

changing the operation point. However by utilising a 

MOSFET instead of a diode, as in Figure 7 Q1, the input 

voltage is only allowed to rise above supply voltage once in a 

while. This is implemented as shown in Figure 7, with an N-

channel MOSFET, a D flip-flop and a 8bit counter. The idea 

is to turn on Q1 and as Q2 and Q3 operates normally as a 

half-bridge, the counter counts the driving signal cycles. And 

when the counter reaches 256 cycles, the D flip-flop turns off 

Q1 for one cycle and resets the counter. In this manner the 

input voltage (Vin) is “released” and a ZVS factor higher than 

1 can be measured, just as shown in Figure 9. 
 

 
Figure 8: ZVS factor measurement of the prototype PT, with 

at capacitor ratio KC of 1.38 (Cd1 = 189nF). C3 and C4 shows 

gate signals, and C2 is the input voltage [4V/div]. 

 

 

 
Figure 9: ZVS factor measurement of the prototype PT, with 

at capacitor ratio KC of 2.16 (Cd1 = 129nF). C3 and C4 shows 

gate signals, and C2 is the input voltage [4V/div]. 

 

Two sets of ZVS factor measurements have been collected 

through the experimental work. The approach in the 

experimental work has been to make a stepwise increment of 

the input capacitor Cd1 and measure the drop in ZVS factor, 

just as the parametric sweep performed in the simulations. 

The tests have been performed with two different half-bridge 

supply voltages, 10V and 20V, as the increase in voltage 

should reflect a decrees in efficiency. This is due to the 

nonlinear nature of the piezoelectric loss. 

Figure 10 illustrates the test results and it can be observed that 

the measurements are not as linear as anticipated, but the test 

setup also involved a certain measurement inaccuracy. But 

just as expected the ZVS factor drops when employing a 

higher half-bridge supply voltage. 

 

 
Figure 10: ZVS factor measurement of prototype PT in 

relation to the capacitor ratio KC, compared with the ZVS 

factor equation. 

5 Discussion  

Comparing the predictions of the developed ZVS factor 

Equation (5) with the results extracted from the simulations, 

there is a very good correlation as illustrated in Table 3, 

where an accuracy below 1% is demonstrated. As for the 

results obtained through the experimental work Figure 10, it 

reveals that the ZVS factor is a bit more optimistic than the 

results. This is mainly due to the fact that the PT efficiency 

drops when the half-bridge voltage is increased. And as the 

lumped parameters of Table 4 are extracted from small-signal 

impedance measurements, the efficiency is also a measure of 

efficiency at small signals. The ZVS factor predictions of 

Figure 10 are based on this efficiency, so it is obvious that it 

will be a bit optimistic. Basically the efficiency used for the 

prediction should be modified as the working point changes 

to 10V and 20V. This is quite difficult though, because of the 

lack of a good and reliable efficiency measurement method. 
This is due to the high frequency AC load and standard power 

analysers are typically optimised for DC or low frequency 

50/60Hz AC mains. Taking a closer look at Figure 10 it can 

be seen that the results are not as linear as expected, nor 

parallel to the predicted ZVS factor. However just looking at 

the result with a ZVS factor above 1, they are quite linear and 

parallel to the predicted ZVS factor. Some of the deviation 

could defiantly be due to measurement inaccuracy, as the 

measurements are extracted by hand, from oscilloscope plots 

as Figure 8 and Figure 9. Nonetheless the deviations could 

Q1 

Q3 

Vin 

Q1 

Q3 

Vin 
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also origin from elements in the circuit, which is not include 

in the idealised simulation, such as the highly nonlinearities 

of semiconductor parasitic capacitances. Although not taking 

the efficiency drop in to account, the developed ZVS factor 

manages to do a prediction within 3% of the 10V test results 

and within 6% of the 20V test results. As a final note it can be 

noted that a capacitor ration KC of at least 1.55 is needed in 

order to achieve soft switching capability and a ZVS factor 

above 1. 

6 Conclusion  

Through a series of parametric sweep PSpice simulations an 

expression describing the maximal obtainable soft switching 

capability has been derived, also known as the ZVS factor. 

The expression is very simple and transparent, clearly stating 
the strong dependency of the input and output capacitor ratio, 

as well as the dependency of the efficiency. As a result the 

soft switching capability of a specific PT design can be 

evaluated easily and directly from the lumped parameter 

model. The ZVS factor forms a basic soft switching capability 

measuring tool, to assist through the development of ZVS 

optimised PT’s. The developed ZVS factor has been 

evaluated up against the simulations as well as against a 

developed prototype DC/AC inductor-less half-bridge 

converter. It demonstrated below 1% accuracy compared to 

the simulations, validating its functionality. And a 3-6% 

accuracy compared to the prototype, bearing in mind that a 

too optimistic efficiency for calculating the ZVS factor were 

used. 
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Abstract 
An adjustable high voltage active load circuit for voltage 
amplitudes above 100 volts, especially intended for resistive 
matching the output impedance of a piezoelectric transformer 
(PT) is proposed in this paper. PTs have been around for over 
50 years, were C. A. Rosen is common known for his famous 
Rosen type design back in the 1950s [1]. After the discovered 
of new piezoelectric materials and new PT designs have been 
invented, the PT based power converters are in the area where 
they can outperform tradition electromagnetic based 
converters in certain applications [2]. The performance of PTs 
can be measured and compared on its zero voltage switching 
(ZVS) factor [3-5], power density, and efficiency. Common 
for these three parameters are that they need to be measured 
with a match load connected at the output of the PT. 

1 Introduction 

A PT is a highly resonant electromechanical component 
where energy is transferred by acoustical waves. In order to 
transfer energy through the PT it is operated close to one of 
its resonant frequencies. For each resonance frequency there 
is a corresponding acoustical standing wave in the PT. The 
resonance frequencies are determined by the material, 
geometrical shape, temperature and its load conditions. Due 
to the relatively high quality factor of a PT (Q > 1000) the 
electrical behaviour around one of its resonance frequency 
can be described by the Mason model [6]. 

From the Mason equivalent model, figure 1, the efficiency of 
the transformer can be calculated for a given load [3, 7]. For a 
resistive load, the maximum efficiency is obtained if the load 
satisfied the match load condition as equation (1) and is 

 
Figure 1: Mason model of a piezoelectric transformer valid 
only around the resonance frequency. 

dependent on the operating frequency and the output 
capacitance Cd2 [7]. 

It can also be shown that the ZVS factor, the PTs ability to 
soft switch, has a global minimum at match load [3]. If the PT 
is capable of soft switching at mach load, it can soft switch 
for any resistive load. Measuring the power density of PTs is 
done where the efficiency is highest. Therefore a match load 
is connected at the output to obtain maximum efficiency. 
 
Prior art within resistive match loading, has been to solder 
off-the-shelf ¼ watt leaded resistors together in a manner to 
obtain the correct resistive value as well as handle the power 
dissipation (< 20 watt) and voltage stress (< 1.2kV). 
Potentiometers that can handle the power and the voltages 
suffers from high parasitic inductions and can therefore not be 
used. Figure 2 show a typical example of a match load 
construction. A standard ¼ watt resistor has a voltage rating 
of 250V. It is a time consuming process of solder a match 
load, especially for high voltage and high power.  

 

RMatch

 
Figure 2: 4 by 3 matrixes of leaded ¼ watt resistors.  
      
Each PT design usually requires a new match load design. It 
is also time consuming to adapt one match load matrix to 
another value.      

2 Active match load 
There is a need for an adjustable resistive load with low 
parasitic capacitance and parasitic inductance. The proposal 
in this paper is to control a MOSFET in its linear region to act 
as a resistor. In figure 3 the principle is illustrated. By 
measuring the voltage across the MOSFET as a reference 
signal and subtracting the current through the MOSFET an 
error signal is generated.  

,
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Figure 3: Simulated resistor by a MOSFET with feedback. 
Only valid for positive voltages. 
 
The error signal is then integrating and the result is a current 
proportional with the voltage; a resistor. The principle in 
figure 3 only works for positive voltages. At negative 
voltages the body diode of the MOSFET becomes forward 
biased and the voltage across the MOSFET is clamped to the 
forward voltage drop of the body diode. At negative voltages 
the circuit acts as a diode and not as a resistor. 
 
For the circuit to act as a resistor for both positive and 
negative voltages a full wave bridge rectifier is used. The 
voltage drop of the rectifier contributes to a non-resistor 
characteristic, especially at voltages comparable with the 
voltage drop of the rectifier. As the circuit is indented for 
sinus waveforms at amplitudes above 100 volts, it is of less 
concern. The output of the rectifier is a positive voltage with 
twice the frequency of the input. The principle circuit from 
figure 3 combined with a full wave bridge rectifier is 
illustrated in figure 4. 
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Figure 4: Simulated resistor for positive and negative 
voltages.  

2.1 Voltage measurement 

The voltage feedback signal is used as a reference signal for 
the current feedback. Ideally the voltage should be measured 
at the input terminals to the rectifier to avoid the voltage drop 
from the rectifier. Measuring the voltage on the input at the 
rectifier, require high common mode rejection to operate 
successfully, which complicates the voltage measuring 
circuit. As the circuit is indented for voltage amplitudes above 
100 volts the induced error by measuring the voltage after the 
rectifier is of little concern. However sacrificing the precision 
of the measurement by measure the voltage after the rectifier 
greatly reduces the complexity of the circuit. A resistive 
voltage divider can then be used. Changing the ratio of the 
divider is an easy way of adjusting the value of the active 
load. A potentiometer is used for the adjusting. 

2.2 Current measurement 

The current can be measured in different ways. One method is 
to the sense the voltage across a resistor placed in series with 
the source pin of the MOSFET, see figure 5. 

1
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AC+

AC-

+

Rsense

 
Figure 5: Simulated resistor using a sense-resistor (Rsense) in 
the MOSFETs source path to obtain the current feedback 
signal.   
 
The benefit of a sense-resistor (Rsense) in the source path of the 
MOSFET is clear from a measuring point of view. It is a low 
impedance and low voltage measurement directly related to 
ground potential of the circuit. However from a control point 
of view the resistor is not only measuring the current running 
into drain of the MOSFET but also the current running 
through the parasitic gate-source capacitance. In application 
where a high ohmic load is preferred in combination with 
high frequency, the drain current becomes comparable with 
the current running through the gate-source capacitance. The 
sense resistor sums both currents and feed them back, 
resulting in an error estimation of the real current (drain 
current). To compensate for the contribution from the gate-
source current an independent measurement of the gate-
source current is needed and will complicated the overall 
current measurement circuit. 
 
Another approach to measure the current is to use a current 
sense transformer (CST). With a CST the current in the drain 
path of the MOSFET can be measured even at high voltages. 
Measuring of the current at the input to the bridge rectifier 
can be done event at the high common mode voltages due to 
the low capacitive coupling between primary and secondary 
of a CST. Placing the CST at the input to the bridge rectifier 
ensures that non-linearity from the rectifier is measured. A 
block diagram is shown in figure 6. Measuring the current at 
the input has the drawback of complicating the measurement 
circuit compared to a drain current measurement. The input 
current is sinusoidal and therefore the output of the CST is 
also sinusoidal and cannot be used directly as a feedback 
signal before it has been rectified. A full wave bridge rectifier 
consisting of diodes cannot be used here, as the output 
voltages from the CST is lower or in best case comparable 
with the forward voltage drop of the rectifier itself. Instead an 
active rectification (ABS) circuit is used to rectifier the 
sinusoidal signal from the CST. Thereby the signal is rectified 
without any voltage drop. 
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Figure 6: Simulated resistor using a current sense 
transformer (CST) together with an active rectifier (ABS).   
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3 Results 
In this section the results from simulations as well as 
measurements will be conducted. Simulations are made in 
PSpice. Measurements are performed with a Rohde & 
Schwarz 2GHz RTO oscilloscope. A prototype is developed 
as illustrated in figure 7. Control together with ABS circuit is 
placed on the back of the PCB. Size of the PCB: 70mm x 
40mm. 
 

 
Figure 7: 3D model of the active load circuit. Control circuit 
is placed on the back of the PCB. 

3.1 Measurement setup 

For comparing the simulation and the measurement the setup 
illustrated in figure 8 is used. A tone-generator connected to 
an amplifier delivers a signal with maximum amplitude of 
200 volt at a frequency of 50 kHz. The active load circuit is 
connected through a 100 ohms resistor. The resistor is used to 
measure the current through the active load. In this way a 
voltage across the sense resistor of 100 mV equals 1.0 mA. 
The rectifier diodes are rated to 50 mA, at that current the 
voltage across the sense resistor reached 5 volt.    
 

Active 
Load 

Circuit

100Ω

Voltage
measurement

Current
measurement

 
Figure 8: Setup used for measuring input voltage [1V/V] and 
input current [0.01A/V]    

3.2 Simulations 

The active load circuit has been simulated in PSpice. The 
result of the simulation is shown at figure 9. The sinus wave 
(blue) is the voltage across the active load and is perfectly 
sinusoidal with an amplitude of 200 volts as expected. The 
square-like graph (red) is a plot of the current.  

 
Figure 9: PSpice simulation of input voltage (blue) and input 
current (red) an active load. Input: ±200V@50kHz   

3.3 Measurements 

Measurements on the active load circuit are performed 
accordant to the measurement setup in figure 8. The result is 
shown in figure 10 as a plot from the oscilloscope (note: 
colours are changed and enhanced for better visibility). The 
blue graph is the input voltage across the active load with an 
amplitude close to 200 volts and a frequency of 50 kHz. The 
red graph is the voltage measured across a 100 ohms resistor 
and equivalent to the input current.   
 

 
Figure 10: Oscilloscope plot (colours are changed) measure-
ment on the prototype. Input voltage: 40V/div (blue). Input 
current: 1mA/div (red)  

3.4 Discussion 

The correlation between simulation and measurement is good. 
The current is in phase with the voltage indicating low 
parasitic capacitance and inductance. The asymmetry in the 
measured current is due to unmatched parasitic capacitance 
between the rectifier diodes as well as uneven influence from 
parasitic capacity from the surroundings to the circuit. Each 
time the voltage crosses zero a current peak is observed, this 
peak is caused by the parasitic capacitance in the diodes of 
the bridged rectifier.  
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MOSFET  

Rectifier 

Potentiometer  
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Conclusion 
A proposal for an active load circuit intended for resistive 
matching the output impedance of a PT is given. The 
correlation between simulation and measurement is good, 
however a more sinusoidal current shaped would have been 
preferred. The benefit compared with prior art is the ability to 
change the load simply by adjusting a potentiometer and 
thereby saving the time consuming process of construct a new 
resistor matrix.  
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Abstract— In applications of high voltage and low power 
capacitor charging, conventional magnetic based power 
converters often suffer from bulky components and poor 
efficiency. Piezoelectric transformer (PT) based converters 
however, are compact and efficient, especially at high step-up 
applications. In this paper an interleaved interdigitated electrode 
(IDE) multilayer PT utilizing longitude and thickness mode 
vibration for high step-up and high output voltage is developed, 
for driving capacitive loads of up to 2.5kV. The PT possesses 
native soft switching capabilities, enabling the utilization of 
inductor-less topologies. One of the main advantages of the IDE’s 
is that it enables the PT to operate in longitudinal vibration and 
thickness mode through the electromechanical coupling 
coefficient k33. This also permits the realization of the PT through 
a low build-up height (below 2-4mm), making the manufacturing 
much easier and cheaper. As a result an interleaved IDE PT, with 
a soft switching factor of 1.00 and a gain of 38 has been 
developed. 

Keywords-component; Piezoelectric transformer, step-up, 
converter, soft switching, Interdigitated Electrode (IDE) 

I. INTRODUCTION 

The piezoelectric transformer (PT) developed in this work, 
is targeted for high voltage and low power capacitor charging 
applications. The application is of high step-up conversion and 
for this specific application [1] stepping-up from a 48V supply 
voltage, to voltages of up to 2.5kV, giving a step-up ration of 
around 50. Conventional power converters are built of 
magnetic transformers and inductors, but in high step-up and 

low power applications, as this one, they often suffer from 
bulky components and poor efficiency. PT based converters 
however, are compact and efficient, especially for high step-up 
applications. The PT was originally developed by Rosen in 
1957 [2] and utilizes piezoelectric ceramics to convert 
electrical energy through mechanical vibrations. PT based 
converters have demonstrated good performance and DC/AC 
converters are widely used commercially, such as for LCD 
backlighting. But PT based converters for DC/DC applications 
are still very limited and are not fully developed. Fig. 1 
illustrates the PT based DC/DC converter, which utilizes an 
inductor-less half-bridge topology [3-5] and the specific 
application is described in more detail in [1] and is similar to 
the one of [6]. Usually an inductor in series with the PT is 
necessary, in order to achieve zero voltage switching (ZVS) 
and avoid large hard switching losses, achieving efficient 
operation. The absence of a series inductor calls for other 
means to obtain soft switching capabilities, which can be 
achieved by utilizing an advantageous and soft switching 
optimized PT structure. 

In this paper an interleaved interdigitated electrode (IDE) 
multilayer PT utilizing longitude vibration for high step-up and 
high output voltage is developed, for driving a 2.5kV EAP 
actuator [7]. The main advantage of this interleaved PT 
structure is its native good soft switching capabilities. Another 
big advantage is the build-up with IDE’s, which enables the PT 
to operate in longitudinal vibration and thickness mode through 
the electromechanical coupling coefficient k33, where the 
direction of polarization and vibration are the same. The IDE 

Danish National Advanced Technology Foundation grant no. HTF-008-
2008-3 

 

Figure 1.  Schematically diagram of the inductor-less half-bridge topology and the PT equivalent lumped parameter model. 
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structure essential permits the realization through a low build-
up height (below 2-4mm), resulting in a much easier and 
cheaper manufacturing. The PT structure and section size are 
optimized further, in order to obtain a sufficient soft switching 
capability, similar to the optimisation of [8]. As the complexity 
of PT structures increases, as well as the complexity of the 
electromechanical domain in general, the PT design 
optimization has been performed through iterative finite 
element method (FEM) simulations. It is very challenging to 
derive a pure mathematical solution of PT design problems and 
with today’s multi physics FEM simulators, one can fine-tune 
PT structures, without having to rewrite the mathematical 
problem. The main objective of this work has been to achieve a 
soft switching optimized PT design, where gain and load 
matching have been secondary, and hence is not treated in 
detail. 

A. The piezoelectric transformer 

PT’s are based on a piezoelectric material. This material 
has an electromechanical coupling and through this coupling a 
charge displacement is generated, which is proportional to the 
deformation of the material. A PT is basically two piezoelectric 
elements joined together to form a transformer. The primary 
side element is then exited by an electrical AC voltage, which 
induces a deformation of the two joined elements. This 
deformation generates an output voltage on the secondary side 
element and with a proper design of the PT, a desired voltage 
conversion can be obtained from the primary to the secondary 
side.  

In order to convert power at a high efficiency, the PT is 
operated in one of its resonance modes [9-12]. The PT 
resonates each time it is possible to generate a standing 
acoustical sound wave in the element. But the design is usually 
optimized for one specific resonance mode, in order to obtain 
the highest efficiency [10, 12]. 

The PT resembles a distributed network, but for simplicity 
and mathematical representation, only the resonance mode of 
interest is modeled [10-12] . One of the most used PT models 
is the lumped parameter model, which was derived by Mason 
in 1942 [13] and is illustrated in Fig. 2. The model is basically 
a LCC resonance tank and the behavior of a PT based 
converter is also quite similar to a traditional resonance 
converter. 

II. PIEZOELECTRIC TRANSFORMER DESIGN  

The PT developed is an interleaved IDE thickness mode 
PT, meaning that the primary section of the PT has been 
interleaved into the secondary section. Fig. 3 illustrates the 
structure of the PT, which consists of a primary section with 40 

layers, having a layer thickness of 180μm and one split 
secondary layer. For simplicity the figure only shows two 
primary layers and the arrows indicate the polarization 
direction. The PT dimensions is 30x10x2mm, but PT’s of 
20x10x2mm, and 25x10x2mm were also designed and 
produced in the same process.  

Both sections is operated through the thickness mode 
electromechanical coupling coefficient k33, which is the most 
efficient mode [10, 12, 14], giving it a high potential for high 
efficiency, contrary to the classical Rosen type PT where only 
the secondary section is operating in thickness mode. Fig. 4 
illustrate a FEM simulation of the operational vibration 
resonance of the PT operating in its first longitudinal mode 
shape, where it also can be noticed that it has a nodal line in the 
center of the structure. 

One of the drawbacks of this design is the split secondary, 
which results in a differential output voltage symmetrical 
around ground. This complicates the electronics somewhat, 
compared to a ground referenced output. But for this 
application we need a very high gain, so the extra effort in the 
electronic is rewarded with a high gain. 

The PT is build using tape casting technology, using the 
NCE46 piezoelectric material [15] and platinum electrode 
prints. Furthermore the design utilizes IDE’s, where thin 
platinum lines (70μm) are printed on every tape layer, resulting 
in a stack of lines placed on top on each other, as illustrated in 
Fig. 5. The electrode lines are shorted through a termination on 
the side of the PT and thereby forms a vertical electrode. Tape 

 

Figure 2.  Lumped parameter model, which describes the behavior of the PT 
in a narrow band around the operating resonance mode 

Figure 3.  The interleaved multilayer PT structure, where the arrows indicate 
the polarization direction. 

Figure 4.  FEM simulation of the PT, operating in the first longitudinal mode 
shape, at 47.53 kHz. The coloring illustrates the total displacement, where 

light colors refer to a low displacement and dark colors to at high 
displacement. 
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casting does not allow implementation of vertical electrodes, 
meaning that this design should have a build-up height of 
30mm, when using traditional electrodes, making it almost 
impossible to produce. The IDE structure enables the 
utilization of thickness mode operation, while retaining some 
of the easy manufacturing advantages, of the low build-up 
height. 

The drawback of using IDE’s is that the electrodes have a 
finite thickness of 70μm (line print width), compare to the 
negligible 2μm thickness of traditional electrodes. As there are 
production limits to how thin the IDE layers can be made, a 
certain part of the primary section is going to consist of the 
electrodes and hence inactive material. The percentage of 
inactive material is determined by the IDE thickness and the 
primary layer thickness. The percentage of inactive material is 
desired to be as low as possible, as it only contribute to higher 
losses, and will degrade the performance of the primary 
section. Furthermore the tape thickness should be small 
compared to the primary layer thickness, so that the IDE 
appears as a consistent vertical electrode. With a tape thickness 
of 33μm and a primary layer thickness of 180μm, the tape 
thickness is only 5.5 times smaller, but has shown to be 
sufficient. 

III. PIEZOELECTRIC TRANSFORMER DEVELOPMENT 

In order to utilizes inductor-less topologies and utilize ZVS 
operation, the PT should possess soft switching capabilities. 
Furthermore the PT is operated slightly above the resonance 
frequency, where the series resonance network becomes 
inductive and contains enough resonating energy, to charge and 
discharge the input capacitance Cd1. The main design 
optimization criterion has been the soft switching capability, as 
well as a reasonable high ratio of active and inactive material is 
desired.  

The main advantage of the interleaved primary section is its 
native good soft switching capabilities. This is due to the 
placement right in the middle of the excitation stress curve, 
which is a half-wave sine wave for the first resonance mode, as 
illustrated in Fig. 6. The primary section size has been 
optimized in order to obtain sufficient soft switching capability. 
The gain is mainly determined by the primary and secondary 
layer thickness ratio, but it is also affected by the primary 
section size. And as a small primary layer thickness is desired, 
hence a high gain, the percentage of inactive material is pushed 

to its limits. So in the end this percentage has also been 
optimized, as well as it affects the soft switching capability and 
gain. In order to simplify the PT structure for the FEM 
simulation, the IDE’s have been approximated by solid vertical 
electrodes, of inactive piezoelectric material with an electrode 
thickness of 70µm, as well as only a 2D simulation has been 
performed. 

Fig. 7 shows a frequency sweep of the primary and 
secondary impedance of the resulting design, in the vicinity of 
the operating resonance mode. In order to evaluate the 
electrical characteristics of the PT, the lumped parameter has 
been calculated from the impedance measurements. From the 
primary and secondary impedances resonance and anti-
resonance, plus a DC impedance measurement, the lumped 
parameters has be calculated, as described in detail in [4, 11, 
16]. Through the FEM simulation of the PT impedances Fig. 7, 
the equivalent parameters of table I are found. The lumped 
parameters does not tell much about the performance of the PT, 
but some more general performance properties can be 
calculated, such as the soft switching factor, matched load, 
power in matched load, gain and efficiency.  

Figure 5.  The interleaved multilayer PT structure, illustrating the IDE 
structure, with 10 primary layers and exaggerated electrode prints. 

Figure 6.  The interleaved multilayer PT structure, illustrating the stress and 
displacement in its first mode shape. 

 

Figure 7.  FEM simulation of the PT primary and secondary impedance 
magnitude, with the opposite side shorted. 

TABLE I.  PT EQUIVALENT LUMPED PARAMETERS OBTAINED THROUGH 
FEM SIMULATIONS. 

R C L Cd1 Cd2 1/n 
262mΩ 4.56nF 2.46mH 14.85nF 8.23pF 54.1 
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Usually the load is matched to the output capacitance Cd2 of 
the PT, Equation (1), or the other way around, as the load 
matching maximizes the power transfer of the resonance 
network to the load. Where ωr is the operating frequency and 
can be approximated as the resonance frequency. Furthermore 
all the following performance properties assume a matched 
load. 

 2

1
match

d r

R
C 


 

(1) 

Equation (2) expresses the soft switching factor or ZVS 
factor [5] which is a measure of the PT’s soft switching 
capabilities. If the ZVS factor is greater than 1, the PT is 
capable of performing ZVS operation of the half-bridge, where 
the matched load is the worst case condition [4].  
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The soft switching factor is an expression of maximum 
obtainable soft switching capability. This point of maximum 
soft switching capability is located slightly above the resonance 
frequency and if the soft switching factor is greater than 1, the 
resonance network contains sufficient resonating energy, to 
charge and discharge Cd1. 

Equation (3) expresses the efficiency of the PT, in to a 
matched load, with the simplified loss resistor R [4]. The loss 
resistor extracted from the FEM simulation is only a small 
signal simulation of the impedance and hence only results in a 
small signal efficiency. Furthermore the loss mechanisms of 
piezoelectric materials are not fully implemented in the FEM 
simulation, therefore this efficiency is more a relative measure 
to compare between different FEM designs.  
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The performance properties for the interleaved IDE PT 
design are calculated in table II. The gain AZVS from the first 
harmonic input to the output, output power PZVS and output 
voltage Vout,rms [17], is the respective gain, power and voltage, 
at a 48V half-bridge voltage, when operating at the maximum 
ZVS point. 

With a soft switching factor of 1.03 the PT possesses soft 
switching capabilities, which enables the inductor-less 
operation. It has a high efficiency and a high gain, that results 
in a 851Vrms output voltage, into a matched load, with a PT 
modulation voltage of 19.3Vrms, which is the first harmonic, of 
the 48V half-bridge voltage [4]  

A. Volume optimization 

With 40 primary layers of 180µm and IDE thickness of 
70µm, the primary section occupies 33% of the PT structure, 
where the IDE’s occupies 27.7% of the primary section. In 
table III it can be seen that the primary section size has to be 
approximately 5% larger than a normal thickness mode 
structure (no inactive material). As the 27.7% of inactive 
material degrades the performance of the primary section and 
hence degrades the soft switching capability. Furthermore the 
ratio of the primary layer thickness and the tape thickness is 
shown and for a 20mm IDE PT design, this ratio is as low as 
3.3 and the IDE’s cannot be considered as solid electrodes any 
more. Furthermore the primary section size has to be increased 
from 33% to 36%, in order to achieve soft switching, where as 
38% of the primary section is inactive material and this 20mm 
design is pushing the IDE PT structure beyond its limits. 

B. Power density 

Power density is a figure of merit with in power electronic 
to compare different topologies, designs and components [18]. 
By definition power density is the ratio between output power 
and volume (4). However the output power of the PT depends 
on a lot of external factors: Input amplitude, input wave shape 
(e.g. sinus or square), frequency, temperature and cooling, load 
condition and mechanical fixture, are all factors that have 
influence on the output power of the PT [4, 10, 12, 19-21].  

 

oP

Vol
 

 

(4) 

For the volume parameter it is normal to only include the 
actual volume of the PT itself. The limiting factor of the power 
density is the ability to dissipate the power loss of the 
component. A temperature rise of 40ºC is at typical allowable 
temperature rise [17]. 

IV. EXPERIMENTAL RESULTS 

Several prototypes were produced, as shown in Fig. 8, and 
in the following section the functionality and properties of the 
30x10x2mm prototype PT is investigated. 

A. PT impedance and performance 

Fig. 9 illustrate the impedance measurement of the 
prototype PT, showing a clear resonance and anti-resonance of 
the operational resonance mode. From the impedance 
measurements the equivalent lumped parameters of table IV 
and the performance properties of table V are calculated. 

TABLE II.  PT EQUIVALENT LUMPED PARAMETER MODEL PERFORMANCE 
PROPERTIES. 

V’P AZVS PZVS Rmatch ηmatch Vout,rms

1.03 44 1.78W 389kΩ 0.996 851V
 

TABLE III.  PT PRIMARY VOLUME AND SOFT SWITCHING CAPABILITY 
OPTIMIZATION. 

 Thickness mode IDE structure 
PT size 30mm 30mm 30mm 20mm 20mm 
Pri vol. 30% 33% 33% 33% 36% 
IDE vol. of Pri   27.7% 41.6% 38.2% 
Pri th./Tape th.   5.5 2.9 3.3 
V’P 1.096 1.255 1.028 0.955 1.039 
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As it can be seen that the prototype PT is right on the 
boundary of soft switching capability, having a ZVS factor of 
1.028 and has shown to be insufficient to operate under ZVS 
with a matched load, as the half-bridge does add some parasitic 
capacitance. But when utilizing an output rectifying circuit, the 
matched load condition is not fulfilled and ZVS operation is 
possible, as illustrated in Fig. 10. 

B. Power density measurements 

The power density of the prototype PT have been measured 
and compared with the Interleaved Rosen type PT [22], and as 
they have the exact same dimensions, giving them the same 
volume, surface and ability to dissipate power, they can be 

compared directly. The measurements have been performed 
with an applied AC excitation voltage and a matched load. The 
excitation voltage has been stepwise increased, increasing the 
output power, and the settling temperature rise has been 
measured. Furthermore the PT is excited at the frequency of 
maximal soft switching capability, in order to reflect the 
performance of the actual operation. The power density 
measurements of Fig. 11 show that a power density of 
11W/cm3, of the interleaved IDE PT, can be expected, with a 
temperature rise of 40ºC. The interleaved IDE PT also 
demonstrates close to 5 times better power density compared to 
the Interleaved Rosen type PT. 

V. DISCUSSION  

In order to evaluate the design the measured figures of table 
IV and V, is compared with the FEM simulation obtained 
figures of table I and II. As it can be seen the correlation 
between the soft switching factors (V’P) is very good, despite it 

Figure 8.  Picture of prototype PT’s of different sizes (length from left: 
30mm, 25mm and 20mm). 

 

Figure 9.  Measurement of the 30x10x2mm prototype PT primary and 
secondary impedance magnitude, performed with a HP4194A 

impedance/gain-phase analyzer. 

TABLE IV.  PROTOTYPE PT EQUIVALENT LUMPED PARAMETERS OBTAINED 
THROUGH IMPEDANCE MEASUREMENTS. 

R C L Cd1 Cd2 1/n 
789mΩ 3.91nF 2.32mH 27nF 18.62pF 47.8 

TABLE V.  TABLE 1: PROTOTYPE PT EQUIVALENT LUMPED PARAMETER 
MODEL PERFORMANCE PROPERTIES. 

V’P AZVS PZVS Rmatch ηmatch Vout,rms 
1.00 38 3.37W 158kΩ 0.978 738V 

Figure 10.  Measured driving PWM (red) and input half-bridge voltage 
(yellow), where the relative slow rising switching flanks (resonance current 
charges Cd1) and body-diode conduction voltage drop, when reaching the 
supply rails, clearly reveals ZVS operation. Time base [5µs/div], driving 

PWM [1V/div] and input half-bridge voltage [4V/div]. 

Figure 11.  Power density measurement of the Interleaved IDE PT, compared 
with the Interleaved Rosen type PT [22], operated at the maximum soft 

switching frequency. 

Pri 
termination Sec 

termination 
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being too low to operate under ZVS at matched load condition. 
But it has shown to be sufficient when operating with an output 
rectifier. Looking at the lumped parameters Cd1, Cd2 and the 
efficiency, the correlation is not that good. This is expected to 
be caused by a bad correlation between the NCE46 material 
parameters in the FEM simulation and what they are in real 
life, as well as the FEM simulation has an incomplete loss 
model for piezoelectric materials. Looking at the gain (AZVS) it 
is also 15% lower than expected. All in all the correlation 
between the FEM simulation and the prototype are not that 
good, except for the soft switching factor, but we did also face 
inconsistence results, when reproducing the prototypes. The 
two most likely reasons for this, is the FEM simulation 
simplification of consistent vertical electrodes, instead of the 
real IDE structure, and with a primary layer thickness to tape 
thickness ratio as low as 5.5, this simplification does simply 
not reflect reality. The second reason is the physical 
consequences of such a low ratio, as the electrical fields of the 
IDE’s do not produce a relative homogeneous field across the 
primary layers, which can result in an inefficient polarization, 
leading to even more inactive or inefficient material [23]. 
Nevertheless the interleaved IDE PT does demonstrate soft 
switching capabilities, as well as it demonstrates its potential in 
power density Fig. 11. If the IDE PT structure is to exploit its 
potential, a less aggressive design than the one presented here, 
should be used. The main concern is to have a higher primary 
layer to tape thickness ratio, preferably higher than 10, which 
can simply be achieved by decreasing the tape thickness for 
this design. It can obviously also be achieve by increasing the 
primary layer thickness, which could be accomplished by 
doubling the driving voltage, demanding half the PT gain, 
resulting in a doubling of the primary layer thickness. 
Furthermore the inactive material should be minimized, where 
the IDE thickness is primarily determined by production 
limitations. In the end the IDE PT structure might be better 
suited for other applications, with higher input voltage and 
lower gain requirements. 

VI. CONCLUSION 

In this paper an interleaved interdigitated electrode (IDE) 
multilayer piezoelectric transformer (PT) utilizing longitude 
and thickness mode vibrations has been developed. The PT is 
optimized for soft switching, inductor-less operation, high step-
up and high output voltage, for driving a 2.5kV EAP actuator. 
The development has been performed through iterative FEM 
simulations. With a primary layer thickness to tape thickness 
ratio as low as 5.5, the simplified FEM model did have some 
shortcomings, resulting in a degrade correlation. Furthermore 
this low ratio is pushing the physical limits of the IDE PT 
structure, resulting in inconsistent prototypes, as well as a 
further degradation of the correlation. Nevertheless the 
developed 30x10x2mm prototype PT has demonstrated to 
possess soft switching capabilities, with a soft switching factor 
of 1.00, which enables the utilization of inductor-less 
topologies, as well as having a high gain of 38. Furthermore it 
demonstrates its high efficiency potential, having a power 
density of 11W/cm3. 
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Integrated high voltage power supply utilizing burst 
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Abstract: 
Through resent years new high performing Dielectric Electro Active Polymers (DEAP) have emerged. To fully 
utilize the potential of DEAPs a driver with high voltage output is needed. In this paper a piezoelectric 
transformer based power supply for driving DEAP actuators is developed, utilizing a burst mode control 
technique. Controlling and driving a DEAP actuator between 250V to 2.5kV is demonstrated, where discrete 
like voltage change and voltage ripple is observed, which is introduced by the burst mode control. 
Measurements of the actuator strain-force reveal that the voltage ripples translates to small strain-force ripples. 
Nevertheless the driver demonstrates good capabilities of following an input reference signal, as well as having 
the size to fit inside a 110 mm x 32 mm cylindrical InLastor Push actuator, forming a “low voltage” DEAP 
actuator. 

Keywords: Dielectric Electro Active Polymers, Driver, Power supply, Piezoelectric transformer

Introduction

The resent years emergence of new high performing 
DEAP materials, calls for higher performing drivers 
in order to fully utilize its potential. Figure 1 top 
illustrates the state of the art driver for driving the 
cylindrical InLastor Push actuator. The driver is 
electromagnetic transformer (EMT) based and 
converts the input DC voltage of 24 volt to an output 
voltage between 250V and 2.5kV depending on a 
control signal. 

 
Figure 1: Converters for driven DEAP actuators. 
Top: The state of the art electromagnetic (EMT) 
based driver. Bottom: Novel piezoelectric 
transformer (PT) based driver 

At the bottom of figure 1 the novel piezoelectric 
transformer (PT) based driver is illustrated. It 
utilizes an inductor less topology which enables 
operation in high external magnetic fields, as well as 
the elimination of bulky inductors reduces overall 
volume. The decrease in volume of the PT based 
driver allows the driver to be integrated into a 
cylindrical DEAP actuator, which is illustrated in 

figure 2. The benefits of integrating the driver into 
the DEAP are to avoid the high voltage interface. 
Issues regarding high voltage safety are avoided. 
The availability of low voltage power supplies is far 
greater than for high voltage. 

 
Figure 2: Cylindrical DEAP actuator with 
integrated driver. The driver is pulled a bit out of 
the actuator for the purpose of illustration 

In this work the performance of the novel PT based 
driver is compared with the state of the art EMT 
based driver. The general design will be presented, 
as well as the basic operation and functionality. The 
efficiency and EMI performance will be compared 
and evaluated. Furthermore the performance of the 
resulting integrated cylindrical DEAP actuator is 
presented and evaluated. 
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Inductor-less PT based driver 

The principle of an inductor-less PT based driver 
relies on a half-bridge driven PT topology [1]. The 
electrical equivalent of a PT, valid in the vicinity of 
a single resonance mode, can be modeled with the 
Mason lump parameter equivalent [2-4]. The Mason 
equivalent connected with a half-bridge is illustrated 
in figure 3. The capacitance Cd1 is large, easily 100 
times greater than the output capacitance of the two 
MOSFETs. The high capacity load on the half-
bridge is a disadvantage. Each time the half-bridge 
voltage (V1) is hard switched the stored energy in 
Cd1 is dissipated in the MOSFETs. 

 
Figure 3: Inductor-less PT topology. Half-bridge 
connected with the Mason equivalent model of a 
piezoelectric transformer 
 
To improve efficiency of the converter the half-
bridge must be soft switched instead of hard 
switched. Soft switching is in this case referred to as 
zero voltage switching (ZVS) and occurs when the 
voltage across the MOSFET is zero when it turns on. 
ZVS can be obtained by the PT, however the PT and 
the control must be optimized for ZVS operation [1, 
5-7].  
 
The driver utilizes an interleaved multilayer Rosen 
type transformer [8], which is ZVS optimized. 
Figure 4 sketches the structure of the PT and the 
polarization directions and for simplification only 
two primary layers are shown. 

 
Figure 4: The interleaved multi layer Rosen-type PT 
structure, where the arrows indicate the polarization 
direction. Size: 30mm x 10mm x 2mm 
 
The secondary sections of the transformer are 
polarized in the same direction. Thereby the output 
voltage of the two secondary electrodes is 180 

degrees out of phase, which increase the gain of the 
transformer. The equivalent model of the PT is 
illustrated in figure 5. To further increase the overall 
step-up ratio of the converter a voltage doubler 
rectifier circuit is utilized at the output of the PT [9, 
10]. However a three diode version is used instead 
of the standard two diode solution. This is necessary 
for the ground referred output voltage feedback 
circuit to work correctly, as well as avoiding a large 
common mode voltage signal over the actuator. 

 
Figure 5: Electrical equivalent of the interleaved 
Rosen type transformer, with both secondary 
sections polarized in the same direction 
 
To ensure high efficiency of the converter a inner 
closed-loop control circuit similar to [11] is used to 
maintain ZVS operation of the PT. An outer closed-
loop is controlling the output voltage in a bust mode 
(quantum-mode) manner [11-13]. Feedback from 
the output voltage across the DEAP actuator closes 
the outer loop. Decrease of the output voltage is 
done by discharging the DEAP actuator through a 
resistive network. Figure 6 illustrates the driver with 
the DEAP connected. 

 
Figure 6: Block diagram of inductor-less PT 
converter with voltage doubler rectifier, discharging 
circuit and DEAP actuator connected 
 
A reference signal (Vref) is controlling the voltage 
across the DEAP actuator. When the output voltage 
feedback is below the reference signal the driver is 
turned on. When the output voltage feedback is 
above the reference signal the driver is turned off 
and the discharging circuit is turned on.  
With a constant reference signal, the driver will 
charge the DEAP to the output voltage 
corresponding to the reference signal and then turn 
off the driver. The DEAP will retain the output 
voltage, however leakage current within the DEAP 
and the diodes together with the current drawn by 
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electrode GND electrodes 
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the output voltage feedback circuit is slowly 
discharging the DEAP. When the DEAP is 
discharge below a certain lower threshold of the 
reference signal, the driver is turned on again to 
charge the DEAP until a certain upper threshold of 
the reference signal. This control method is referred 
to as burst mode control. Figure 7 shows an 
oscilloscope plot of the PT driver in action. Notice 
that the voltage of the DEAP is attenuated by 1000 
times. The time between each burst is determined by 
the discharge rate of the DEAP and the hysteretic 
window around the reference signal. The time length 
of each burst is controlled by adjusting the hysteretic 
window around the reference signal. The size of the 
hysteretic window is a trade-off between efficiency 
and output voltage ripple. As the hysteretic window 
goes towards zero the burst frequency and burst time 
length goes towards zero, decreasing the output 
voltage ripple. However efficiency will drop as the 
time length of each burst decreases. The explanation 
is that it takes time to build up the necessary 
resonance current within the PT for ZVS operation. 
Every start-up of the PT is therefore very inefficient 
compared to ZVS operation. 

 

 
Figure 7: Oscilloscope plot of the PT based driver 
with a square wave reference signal. Burst mode 
control of the half-bridge is observed. DEAP voltage 
is attenuated by x1000 
 
Driver performance 

In this section the electrical properties of the PT 
based driver is compared to the state of the art EMT 
based driver. 
 
Efficiency 
The efficiency of the driver is defined as the ratio 
between energy stored in the DEAP and energy 
delivered to the driver (1). Figure 8 shows the used 
setup for measure the efficiency of the two drivers. 
Prior to the measurement output is discharged to 
zero volt.  The input voltage is 24 volt and the 

DEAP is substituted with a fixed capacitance of 
47nF. The input current is measured as the output 
capacity is charged from zero to 1.9kV. 
 

 
20.5DEAP DEAP DEAP

input DC in

E C V

E V I dt
  
 

 
 (1) 

 

 
Figure 8: Setup for measure efficiency of the driver 
 
The measured input current for the PT based and 
EMT based driver is plotted in figure 9. When the 
output voltage reached 1.9kV the control circuit 
turns off the half-bridge stage and the input current 
drops sudden and only auxiliary current 
consumption is left. 

 
Figure 9: Measurement of input current while 
charging the output voltage from 0V to 1.9kV 
 
From the measured input current and the definition 
(1) is the efficiency calculated for both drivers, see 
table 1.   
 

Driver type: Einput 
(24V) 

EDEAP 
(47nF) 

Efficiency 

PT based 138mJ 81.2mJ 58.8% 
EMT based 182mJ 82.4mJ 45.3% 

Table 1: Efficiency of PT based and EMT based 
driver 
  

 
, ,

,

41%loss EMT loss PT
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loss EMT

E E
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   (2) 

 
The energy loss for PT based driver is reduced by 
41% compared to the EMT based driver (2).  

Reference (Vref) 

Half-bridge (V1) 

DEAP voltage 
(1/1000) 

Output voltage 
feedback 
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Figure 10: EMI measurement of PT based driver at 
4 watts output power 
 
EMI 
As the PT based driver does not contain any 
magnetic components, the emitted magnetic fields 
are expected to be low. But this also means that the 
driver has no input filter to suppress the fundamental 
switching frequency. As the PT based driver is a soft 
switched resonance converter, the general EMI 
performance is expected to be good. 
The setup used for the measurement the conducted 
EMI is illustrated in figure 11. The LISN network is 
connected to an EMC receiver. The utilized EMC 
receiver requires a steady state operation of the 
device under test in order to measure the EMI 
correct. The driver is therefore loaded with a 
resistive load (RL) instead of a capacitive load.  
 

 
Figure 11: Setup for measure conducted EMI 
 
The result of the EMC receiver is shown in figure 10 
and figure 12 for the PT based and the EMT based 
driver respectively. Both measurements are 
performed with an output power of 4 watts. None of 
the drivers have any dedicated EMI filtering. As 
expected both drivers lacks the ability to suppress 
fundamental frequencies with a peak of around 
80dBµV. However the PT based driver performs 
well in the high frequency region (above 1MHz) 
with a ≈25dBµV decrease between the peak values 
compared with the EMT based driver. 
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Figure 12: EMI measurement of EMT based driver 
at 4 watts output power 
 
DEAP performance with integrated driver 

The mechanical performance of the integrated 
DEAP actuator is evaluated trough a Stroke-Force 
measurement. The measurement is performed by 
prevent the movement of the actuator, when 
applying the voltage. The actuator is then slowly 
released, while the force and stroke is measured. 
Stroke-Force measurements of the DEAP actuator, 
with and without driver integration, are shown in 
figure 13. 
 

 
Figure 13: Stroke-Force measurement of the DEAP 
actuator, with and without driver integration, at 
different DEAP voltages 
 
It can be seen that the integration do decrease the 
stroke performance somewhat. Approximately 12% 
decrease in stroke. This is due to increased tension 
and friction, as the PCB is attached in one end of the 
actuator and is sliding in a slot in the other end. 
Furthermore small jumps can be observed on the 
measurements. This is small burst from the driver, as 
the voltage drops due to the increase in capacitance, 
as the film is getting thinner. The driver will 
counteract this drop as it will maintain a constant 
output voltage. 
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Conclusion 

The basic structure and operational functionality of 
the novel PT based DEAP actuator driver are 
presented in this work. Furthermore the performance 
is compared with the state of the art EMT based 
driver, as well as the performance of the resulting 
integrated DEAP actuator is evaluated. The PT 
based driver demonstrated a 14% point increase in 
efficiency, compared to the EMT based driver, 
resulting in a 41% loss reduction. The EMI 
performance of the PT based driver showed a good 
improvement of 25dBµV in the high frequency 
region (above 1MHz). Finally the resulting 
integrated cylindrical DEAP actuator demonstrated 
full functionality, with approximately 12% decrease 
in stroke performance, compared to the original 
actuator. 
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Forward Conduction Mode Controlled Piezoelectric
Transformer based PFC LED Drive

Martin S. Roedgaard*, Michael Weirich†, Member, IEEE, Michael A. E. Andersen*, Member, IEEE,

Abstract—Light Emitting Diode (LED) illumination is getting
more and more common, as LED’s performance is rising, the
price is falling and is getting competitive. Some of the challenges
of AC mains supplied illumination is the requirement of Power
Factor Correction (PFC) and the competitiveness of a low priced
marked. In this paper a new Forward Conduction Mode (FCM)
control method for Piezoelectric Transformer (PT) based power
converters is proposed. A PT based LED drive facilitating
passive PFC is developed, utilizing and validating the FCM
control method. The drive utilizes a inductor-less half-bridge
topology and for circuit minimization and simplicity it has
no load regulation and has a 100 Hz output modulation. The
proposed FCM control method ensures that the PT is operated
at it’s optimal operation frequency, which ensures soft switching
operation and a constant gain. As a result a 6.5 W PT based
PFC LED drive has been developed, supplied from 230 V 50 Hz
AC mains, achieving a power factor of 0.96.

Index Terms—Piezoelectric Transformer, LED, PFC, Forward
Conduction Mode control.

I. INTRODUCTION

FOR low power applications, such as LED illumination [1],
[2], the Piezoelectric Transformer (PT) offers minimiza-

tion of component count and overall size [3]–[7], as well as
potential high efficiency [4]–[7] and low production cost. The
market of AC mains supplied illumination is very competitive,
demanding low product prices, making it challenging to enter
the market. But as LED’s performance is rising and the price
is falling, LED illumination is getting more and more popular
as an more environmentally friendly alternative to traditional
illumination [2], [8]–[13]. One of the challenges of AC mains
supplied illumination is the EN61000-3-2 requirement of
Power Factor Correction (PFC).
In this paper a new Forward Conduction Mode (FCM) control
method for PT based power converters is proposed, as well as
a PT based LED drive facilitating passive PFC is developed.
Fig. 1 illustrates a functional block diagram of the proposed
PT LED drive, which consist of an input filter, a full-bridge
rectifier, an inductor-less half-bridge drive, with FCM control
and the PT, followed by an output rectifier and the LED load.
In order to achieve consistent and efficient operation, the
inductor-less half-bridge topology requires a zero voltage
switching (ZVS) optimized PT [3], [14]–[16]. This application

Danish National Advanced Technology Foundation grant no. HTF-008-
2008-3

*Department of Electrical Engineering, Technical University of Den-
mark, Kongens, Lyngby DK-2800, Denmark (e-mail: msr@elektro.dtu.dk;
ma@elektro.dtu.dk)

†Fairchild Semiconductor GmbH, D-82256 Fuerstenfeldbruck, Germany (e-
mail: michael.weirich@fairchildsemi.com)

Fig. 1: Functional block diagram of the PT LED drive,
employing passive PFC and Forward Conduction Mode (FCM)
control

utilizes a 20 mm radial mode ZVS optimized PT [7], [17]–
[19]. Usually a series inductor is necessary, in order to achieve
ZVS operation and avoid large hard switching losses. But with
the elimination of a bulky series inductor, the size and cost of
the driver is minimized.
The operation frequency is one of the most critical parts, when
utilizing PT based converters, as the PT resonance frequency
is very narrow [3], [5]–[7], [14]–[16], [20]–[22]. Some of
the most common control methods are Phase Lock Loop’s
(PLL) [23]–[27] and resonance current control [28], but self-
tuned control has also been proposed [29]. In this work a new
FCM control method is proposed and relies on a detection
of the forward conduction period of the half-bridge switches,
which reflects the resonance current phase-lag. The control
method is fairly simple and ensures a controlled and optimal
operation frequency, which ensures soft switching operation
and a constant gain.
PFC can be obtained in various ways and for higher power

and high quality converters, this is typically obtained in the
first of two stages, but for low power and low price converters
only a single stage is feasible. In PT based converters several
single stage charge-pump topologies offers PFC [28], [30]–
[33], but has demanding requirements for the PT. In this
approach PFC is obtained simply by having a sufficiently
small input buffer capacitor, allowing the half-bridge supply
voltage to be modulated by the 100 Hz rectified AC mains
voltage. As a result the output power has 100 Hz modulation
as well, however this is acceptable for this LED application.
Furthermore this design has no load regulation, as the LED’s
resembles a fairly constant load and the implementation of
load regulation will just increase complexity and price.
In the following subsection a basic introduction to PT’s is
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Fig. 2: Lumped parameter model, which describes the behavior
of the PT in a narrow band around the operating resonance
mode [35].

TABLE I: Lumped parameter model parameters of the utilized
20 mm radial mode PT.

R L C Cd1 Cd2 n

12.4 Ω 9.46 mH 219 pF 1.19 nF 131 nF 8.15

given. Section II describes the utilized inductor-less half-
bridge topology, its operation and how passive PFC is ob-
tained. Section III presents and explains the proposed FCM
control. And finally section IV presents a developed prototype
PT LED drive, which is verified trough experimental results,
followed by a conclusion in section V.

A. The Piezoelectric Transformer

PT’s are based on piezoelectric ceramic materials, which
has an electromechanical coupling. A PT is basically two
piezoelectric elements joined together to form a transformer.
The primary side element is then exited by an electrical
AC voltage, which induces a deformation of the joined PT
structure. The deformation of the secondary element generates
an output voltage and through proper PT design, a desired
primary to secondary voltage conversion can be obtained. In
order to convert energy at a high efficiency, the PT is operated
in one of its resonance modes [6], [7], [34]. The PT resonates
each time it is possible to generate a standing sound wave
in the structure. But in order to obtain the highest efficiency,
the PT design is usually optimized for one specific resonance
mode [6], [7], [34].
The electromechanical structure resembles a distributed net-
work, but for simplicity and mathematical representation,
normally only the resonance mode of interest is modeled [6],
[7]. One of the most used PT models is the lumped parameter
model [6], [7], [21], [22], [35], which is illustrated in Fig. 2.
The model is basically an electrical LCC resonance tank and
the behavior of a PT based converter is also quite similar to
a traditional resonance converter.
The PT used for this application is a 20 mm radial mode PT
[7], [17]–[19] and its primary resonance frequency is approx-
imately 114 kHz. The PT is not designed for this particular
application, which results in a degradation in efficiency. The
PT has the model parameters of table I and is not treated in
further detail in this paper.

II. INDUCTOR-LESS HALF-BRIDGE TOPOLOGY

The proposed PT LED drive utilizes an inductor-less half-
bridge topology [3], [14]–[16], [22], [26], which eliminates
the bulky series inductor and only converts energy through

Fig. 3: Schematic diagram of the inductor-less half-bridge
topology.

Fig. 4: Operational waveforms of the inductor-less half-bridge
topology.

the electromechanical PT resonance tank. Fig. 3 illustrates
the inductor-less half-bridge, consisting of a MOSFET based
half-bridge, the lumped parameter mode, a half-bridge output
rectifier and a output voltage buffer capacitor, followed by
the LED load. Usually a series inductor is required in the
PT based half-bridge topology [5], [29], in order to achieve
ZVS operation of the half-bridge switches and avoid large
hard switching losses, in connection to the PT input capacitor
Cd1. But through a ZVS optimized PT design, soft switching
can be obtained without auxiliary components [3], [14]–[16],
[19]. However ZVS operation of a ZVS optimized PT is only
obtainable in a narrow frequency band, located just above the
operating resonance frequency, where the series resonance (L
and C of the lumped parameter model) becomes inductive and
possesses enough resonating energy to charge and discharge
Cd1. Hence the excitation frequency is key, in order to achieve
ZVS, consistent and efficient operation.

A. Operational principle

Fig. 4 illustrates the steady-state operation of the inductor-
less half-bridge PT topology, which is operated slightly above
its resonance frequency, where inductivity and resonating
energy are maximized. The circuit (Fig 3) has 6 modes of
operation, divided into the following periods:
t0 − t1: Both switches are turned of in this period and the
reverse resonance current IL charges the input capacitor Cd1.
t1 − t2: When the input capacitor Cd1 is charged to the
supply voltage the body diode of M1 conducts the reverse
resonance current IL and it is in this period M1 is switched
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Fig. 5: Magnitude and phase plot of the resonance current IL
(2), at a 152V rms AC input voltage VIn (first harmonic of the
half-bridge applied VIn), as well as a magnitude plot of the
voltage conversion. It can clearly be seen that the resonance
current phase-lag increases as the frequency increases above
the resonance frequency, as well as the resonance current and
voltage conversion magnitude decreases.

on, achieving ZVS.
t2 − t3: At t2 the resonance current IL is inverted, switch
M1 conducts the resonance current IL and transfers energy
to the resonance tank.
t3 − t4: At t3 switch M1 is turned off and the resonance
current IL discharges the input capacitor Cd1.
t4 − t5: When the input capacitor Cd1 is totally discharged
the body diode of M2 conducts the resonance current IL and
it is in this period M2 is switched on, achieving ZVS.
t5 − t6: At t5 the resonance current IL is reversed and the
resonance current IL is freewheeling through switch M2. The
period ends at t6, where M2 is switched off and a new cycle
begins.

As mentioned the switches should be turned on in between
the time periods t1 − t2 and t4 − t5, so sufficient dead-time
should be supplied to the gate signals, in order to utilize the
ZVS capability.

B. Power factor correction

The PT LED drive utilizes passive PFC, which is achieved
by having a sufficiently small supply voltage buffer capacitor
CB , after the input full-bridge rectifier. In this way the half-
bridge supply voltage VB will follow the rectified AC mains
voltage and the resonance current will be proportional to the
excitation voltage, as shown in (2) (assuming a consistent op-
eration point and load). The transfer function (1) describes the
voltage conversion of the lumped parameter model (Fig. 2) and
(2) describes the resonance current, where an AC input voltage
VIn is applied, ZIn is the PT input impedance (excluding Cd1)
and RL is the load resistance.

VOut

VIn
=

1
jωCd2

∥∥RL

(R+ jωL+ 1
jωC )/n2 + ( 1

jωCd2

∥∥RL)

1

n
(1)

Fig. 6: Block diagram of the FCM control scheme, composing
a forward conduction detector (Comp.), an averaging low-pass
filter, an error signal generating subtracter, an integrator and
a VCO.

IL =
VIn
ZIn

=
VIn

R+ jωL+ 1
jωC + ( 1

jωCd2

∥∥RL)n2
(2)

Fig. 5 illustrates the resonance current magnitude and phase
in relation to the frequency, as well as the voltage conversion.
As it can be seen from (2) the resonance current is directly
proportional to the input voltage VIn, at a constant operating
frequency, which leads to the current drawn from the AC mains
is proportional to the AC mains voltage.
This is a very simple way of achieving PFC, no additional
components or control are required and in fact it minimizes the
components, as the buffer capacitor CB typically is quiet large,
in order to buffer energy for 10 ms (100 Hz). The drawback
of doing it this way is that the converted power is modulated
by the 100 Hz of the rectified AC mains, hence the output
power will also have this modulation. This 100 Hz output
power modulation is acceptable for this LED application, but
for other DC output applications this PFC method might not be
applicable. Furthermore this PFC method has no line and load
regulation, resulting in output power variations in connection
to AC mains voltage variations. This is again acceptable for
this application, but line and load regulation can be achieved
and implemented in the control to some extend, by modulating
the operation point.

III. PROPOSED FORWARD CONDUCTION MODE CONTROL
METHOD

As described in the previous section, a precise and con-
trolled excitation frequency is crucial, in order to achieve
sustained ZVS operation of the half-bridge switches, but also
to ensure a constant operation point. The resonance frequency
of the PT varies somewhat with temperature and aging, which
also should be tracked and compensated.
The proposed control method accommodate these challenges
and as the name implies, the control method relies on a
detection of the forward conduction period of half-bridge
switches, essentially measuring the periods t2− t3 and t5− t6
(Fig. 4). Besides having the advantage of sustaining a optimal
operation frequency, the FCM control is also very simple
and hence low cost, as well as it is purely primary based,
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(a)

(b)

(c)

(d)

Fig. 7: Forward conduction mode control operation wave-
forms, at different operation frequencies and with constant
dead-time, illustrating the forward conduction period variation.
a and d is clearly operated under hard switching, whereas b
and c is soft switching.

not needing signals to cross the primary secondary isolation
barrier.
The resonance current IL (2) has a phase-lag in relation to the
input voltage VIn, due to the operation above the resonance
frequency, in order to achieve ZVS operation. This phase-lag is
illustrated in Fig. 5 and is reflected in the forward conduction
period, as the switches forward conduction is getting limited at
increasing phase-lag and this can be used as a feedback signal.
At a specific phase-lag, hence a specific forward conduction
period, the inductivity and resonating energy are maximized
and ZVS capability is maximized.
Fig. 6 illustrates a functional block diagram of the proposed
FCM control method. The essential parts are the sense resistor
RS and the comparator, which detects the forward conduction
period of the low side switch. Only a low side current
measurement is performed, since this is very simple with a
sensing resistor, and using both low and high sensing only
increases sensitivity, on the expense of circuit complexity.
The comparator produces a square-wave signal VSQ from the
current measurement VS , containing the forward conduction
period information, and in this configuration the signal is
inverted, assuming a high output when the sensing signal VS
is zero. This signal is passed through an averaging low-pass
filter, where the average signal value is proportional to the
forward conduction period (3).

VSQ avg = VCC · T − TFW

T
= VCC(1−DFW ) (3)

The average signal is compared with a reference and the
error signal is passed to an integrator, that controls a voltage
controlled oscillator (VCO). The VCO drives the gate-drive,
which closes the loop around the half-bridge.
The FCM control operation is illustrated in Fig. 7, at different
operation frequencies. It can be seen how the forward conduc-
tion period increases, as the frequency is decreased towards
the resonance frequency, as well as the resonance current IL
increases and the average VSQ signal decreases. When the
frequency is increased away from the resonance frequency
the resonance current IL decreases, the forward conduction
period decreases and the average VSQ signal increases. The
two operating points at 117.7 kHz and 118.6 kHz (Fig. 7 b
and c) are located close to the boundary of ZVS operation and
in between these boundaries ZVS operation is sustained, which
also can be observed on the switching flanks of the input signal
VIn. Beyond these boundaries ZVS operation is not possible
and this is also clear at 115.3 kHz and 121.8 kHz (Fig. 7 a and
d), where hard switching of the input signal VIn is observed.
But most importantly the forward conduction period and the
average signal VSQ avg , are modulated continuously over the
frequency range, making it a very applicable feedback signal.
As the point of maximal soft switching capability and optimal
operation is located at a specific resonance current phase lag
of approximately 56o [3], [6], [7], [14]–[16], [20], this point
of operation is also linked to a specific forward conduction
duty cycle of approximately 26%.

The reference signal should be selected to match the average
signal VSQ avg (3) at this forward conduction duty cycle and
with a local supply voltage VCC of 15 V, a 11.1 V reference
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Fig. 8: Schematic of prototype PT LED drive, resembling the fundamental blocks of the converter and the FCM control, with
the addition of a start-up delay and dead time reference circuit.

signal is selected (4).

VRef = VSQ avg = VCC(1−DFW ) = 15 V (1−0.26) = 11.1 V
(4)

In this manner the FCM control seeks to maintain a constant
forward conduction duty cycle of 26%, and hence a constant
resonance current phase lag of 56o, ensuring operation at the
optimal point of operation.
A clear advantage of this control method is that the feedback
signal is not dependent on signal magnitude, such as the
resonance current, as the magnitude is modulated by the
AC mains for this passive PFC application. Although the
zero voltage crossing remains a challenge, as the resonance
current also reaches zero, making it impossible to detect a
forward conduction period. But this is also a challenge for
all other control methods and is typically managed by having
a very slow control loop. Furthermore the control method is
applicable for variable load and output power, as the optimal
point of operation still is linked to the resonance current phase
lag and forward conduction period. Although the gain and soft
switching capability are load dependent and are changing with
load variations.

IV. EXPERIMENTAL RESULTS

The presented designs were implemented and validated in a
developed prototype PT LED drive and the results is presented
and disused in the following section. Pictures of the prototype
PT LED drive is shown in Fig. 10 and Fig. 8 shows the circuit
schematic of the implementation. The prototype is developed
as a PT based solution of a Fairchild FL6961 Single-Stage
Flyback 8.4 W LED design proposal. The prototype is de-
signed for 230 V 50 Hz AC mains supply and 6.5 W output
power, it has an input filter and a full-bridge rectifier. It utilizes

a 20 mm radial mode PT and is operated at approximately
117 kHz. Furthermore 3 series coupled OSLON SSL 80
LED’s forms the LED load, where the LED load has a nominal
voltage of 9.6 V and current of 350 mA. In Fig. 9 the
operational waveforms of the LED load is shown, where the
100 Hz modulation is obvious.
The converter uses the FAN7387 controller, as it comes with
a build-in relaxation oscillator and a gate-drive, with a pro-
grammable dead-time. The control loop is build around U3A
and U2B, where the comparator U3A detects the forward
conduction period and produces the square-wave signal. The
averaging low-pass filter is implemented with two first order
RC low-pass filters, with a corner frequency of 6.6 kHz.

Fig. 9: LED load waveforms, with a 100 Hz output modulation
and an 6.5 W average output power. VLED [Ch3: 2 V/div],
ILED [Ch2: 200 mA/div], time base [5 ms/div].

D.7

156



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON POWER ELECTRONICS, 2012 6

Fig. 10: Developed prototype LED PT drive, showing the
top and bottom side of the PCB. It utilizes the FAN7387
controller and a 20 mm ZVS optimized radial mode PT,
operated at approximately 117 kHz. The PCB has a size of
39.5 x 65 mm.

The integrator is implemented around the operational am-
plifier U2B and it controls the resistance of the relaxation
oscillator, closing the control loop. For this PFC application
the crossover frequency of the integrator is 14.2 Hz, in order
to suppress the influence of the zero voltage crossing.
The relative high dead-time required resulted in an abnormal
startup of the controller, as the programmable dead-time pin
(ST/DT ) also functions as a shutdown input. In order to work
around this the operational amplifier U2A supplies the pin
with a low impedance voltage, instead of the traditional way
of setting the voltage with a resistor. Furthermore comparator
U3B ensures a certain startup delay, as well as it initializes
the integrator trough Q3, ensuring a smooth startup and
initialization of a high operation frequency.
The utilized radial mode PT occupies a relative large PCB
area, but offers a very low profile (4 mm PT thickness)
and small overall size of the prototype. The size can be

TABLE II: Size comparison of the prototype PT LED drive
and the Fairchild FL6961 LED design proposal.

Prototype Fairchild

Output power 6.5 8.4 W

Height 15.0 25.5 mm

Width 39.5 38.1 mm

Length 65.0 49.5 mm

Volume 38.5 48.1 cm3

Fig. 11: Thermal IR images of the developed prototype LED
PT drive, showing the top and bottom side of the PCB. The
colors indicate the temperature, with light colors being hot and
dark colors less hot. The temperature of the PT is misleading,
as the PT has a silver electrode on the top, which prevents IR
radiation. But a PT temperature of 73◦ C can be seen, as well
as the heat from the output rectifier can be observed through
the PCB.

minimized even further by replacing the electrolytic capacitors
with ceramic capacitors, as well as the input filter and circuit
can be further compressed, by using smaller packaging and
a denser layout. Furthermore the control circuits could be
integrated into a controller IC, which both minimizes cost and
size. In the design process the prototype size has not been
targeted in particular, but the prototype still offers a reasonable
small size, which is compared to the Fairchild FL6961 LED
design proposal in table II.

A. Power factor correction

The AC mains input current of Fig. 12 is both in phase
with the input voltage and it somewhat resembles a sinusoidal,
although it has some distortion. And with a measured power
factor of 0.96, the circuit demonstrates the ability of PFC.
In Fig. 13 it shown how the prototype complies with the
EN61000-3-2 standard for current harmonics of Class C
devices and as it can be seen the prototype fails to comply.
But it only slightly exceeds the limits for the second and
fifth harmonic and it is expected that the harmonics can
be improved through further optimization of the circuit and
control, which is discussed further in the following section.
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Fig. 12: AC mains input voltage and current, having an input
power of 9.5 W and a power factor of 0.96. VAC [Ch3:
100 V/div], IAC [Ch2: 20 mA/div], time base [5 ms/div].

Fig. 13: Comparison of prototype measurements and the
EN61000-3-2 standard for current harmonics of Class C
devices.

B. Forward conduction mode

As described earlier the FCM control method is based on a
forward conduction period detection, which is realized with
a current sense resistor and a comparator. The operational
waveforms of the current sense (VS) and comparator square-
wave (VSQ) are shown in Fig. 14, near AC mains peak
voltage, as well as the PT input voltage (VIn). The figure
demonstrates and validates the functionality of the proposed
FCM control method, as well as ZVS operation of the half-
bridge can be observed. On top of the sensed resonance current
a high frequency signal can be seen. This is one of the higher
frequency mode shapes of the PT, which is exited somewhat,
but does not affect the functionality of the FCM control.
Taking a closer look at the PT input voltage (VIn), it can be
observed that the half-bridge supply voltage has some variance
and is not constant as compared to Fig. 4. This is because of
the relative low buffer capacitor C10 of 22 nF, which allows
the resonance current to charge the voltage a little bit and then
discharge it, as the resonance tank is charged.

Fig. 14: Forward conduction mode waveforms, demonstrat-
ing the FCM functionality and has a 26.4 % forward duty.
VIn [Ch2: 100 V/div], VS [Ch3: 500 mV/div], VSQ [Ch4:
20 V/div], time base [2 µs/div].

In Fig. 15 the average square-wave feedback signal (VSQ,avg)
is shown in relation to the AC mains voltage (VAC). As
it can be seen, the feedback signal is fairly constant, with
the exception near zero voltage crossing. This is due to the
fact that the resonance current also reaches zero, making it
impossible to detect a forward conduction period. This issue
were expected and in order to have a minimal influence, it is
suppressed by having a integrator crossover frequency of only
14.2 Hz.
By taking a closer look at the average feedback signal
(VSQ,avg), it can be seen that the ”constant” part of the signal
in fact has a periodic modulation. Due to the very slow control
loop, this is not caused by a variation in operation frequency.
This is reflecting a change in operation condition and operation
point of the PT, as the LED load does not resemble a resistive
load. Therefore the load impedance seen by the PT also has a

Fig. 15: Forward conduction mode feedback signal in relation
to the AC mains voltage, revealing dropouts in the feedback
signal near the zero voltage crossing. VSQ avg [Ch2: 5 V/div],
VAC [Ch3: 200 V/div], time base [5 ms/div].
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100 Hz modulation, which results in a change in operation
condition and resonance frequency. This might suggest to
have a faster reacting control loop, which can compensate
this change in operation condition, and then take care of the
zero voltage crossing in another way. A solution could be to
freeze or pause the integrator near the zero voltage crossing
and thereby ignoring the dropout in the feedback.
The change in operation point has a negative influence on
the PFC and results in a distortion of the input current,
which was observed in the previous section. The passive PFC
requires a constant operation point, in order to achieve a
resonance current proportional to the AC mains voltage. As
the operation point changes the resonance current is in fact
not proportional to the AC mains voltage, which degrades the
fundamental operational principle of the passive PFC. This
results in a little too large resonance current at low voltages
and a little too small resonance current at high voltages
and explains the somewhat ”pressed down” and degraded
sinusoidal input current of Fig. 12, which degrades the PFC
performance. A faster reacting control loop will improve the
PFC performance, as the control will be able to track and
compensate these changes in operation condition. Again the
zero voltage crossing needs to be taken care of in another way.
The main advantage of the implemented slow control loop is
that it copes with the zero voltage crossing, as well as no
additional support circuits is needed.

C. Efficiency

The efficiency has not been the main focus point in this
research, as well as the utilized PT is not optimized for this
particular application, which results in a moderate efficiency.
By calculation the efficiency of AC mains input power of
Fig. 12 and the output power of Fig. 9, it results in a very
moderate efficiency of 68 % (5).

η =
POut

PIn
=
PLED

PAC
=

6.5[W ]

9.5[W ]
= 68 % (5)

As the thermal images of Fig. 11 reveals, the PT and the half-
bridge output rectifier are the biggest sources of heat. And
it is also within these components the biggest improvements
of the overall efficiency can be obtained. In table III a loss
breakdown is conducted, where it is obvious that the PT
is the most inefficient component, which is a result of the
utilized ”off the shelf” non-application optimized PT. The PT
is the main efficiency limiting factor for this prototype and
by utilizing an application optimized PT, efficiencies above
90 % are achievable. A optimized redial mode PT can be
achieved through the design process presented in [19] or [17],
where the PT is designed to match the applied load, have a
desired gain, which matches the input and output voltages,
as well as matching the desired load power, and finally the
PT is designed to possess soft switching capabilities. Other
step-down PT structures can also be utilized, such as thickness
mode PT’s [4], [36]–[38], using the same optimization criteria.
Furthermore by utilizing an active full-bridge output rectifier,
efficiency improvements of 2-5 % points can be expected.

TABLE III: Loss breakdown of the prototype LED PT drive.

Output power 6.51 W

MOSFET drive 0.26 W 2.7 %

PT 1.88 W 19.7 %

Output rectifier 0.60 W 6.3 %

Efficiency 68.3 %

V. CONCLUSION

A new Forward Conduction Mode (FCM) control method
has been proposed and investigated in this paper. The FCM
control method relies on the phase information of the PT
resonance current running in the half-bridge switches, which
is reflected in the forward conduction period of the switches.
The proposed FCM control has been investigated in detail and
has demonstrated to operate the PT at it’s optimal operation
frequency, which ensures soft switching operation and a con-
stant gain.
Furthermore a PT based PFC LED drive has been proposed
and developed. The devolved prototype is supplied from 230 V
50 Hz AC mains and produces a low voltage 6.5 W output, for
three series coupled LED’s. The background and functionality
of the utilized inductor-less half-bridge topology has been
investigated and explained in detail.
A very simple passive PFC method has been proposed, which
has demonstrated good PFC capabilities, demonstrating a
power factor of 0.96 and is on the boundary of comply with the
EN61000-3-2 standard. The resulting PFC capability has been
evaluated and suggestions for improvements have been put
forward, in order to improve the PFC capability and comply
with the EN61000-3-2 standard.
Moreover the developed prototype shows good opportunity
for minimization and the circuit can be compressed even
further. The control circuits can be greatly compressed or even
integrated, leaving the PT and the input filter as the only large
components.
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SELF-OSCILLATING LOOP BASED PIEZOELECTRIC POWER CONVERTER

FIELD OF THE INVENTION

[0001] Aspects of the present disclosure relate to a piezoelectric power converter, and more

particularly, to a self-oscillating loop-based piezoelectric power converter.

BACKGROUND OF THE INVENTION

[0002] Piezoelectric transformer based power converters have good potential to substitute

traditional magnetics based power converters in numerous voltage or power converting applica-

tions such as AC/AC, AC/DC, DC/AC and DC/DC power converter applications. Piezoelectric

power converters are capable of providing high isolation voltages and high power conversion

efficiencies in a compact package with low EMI radiation. The piezoelectric transformer is

normally operated in a narrow frequency band around its fundamental or primary resonance fre-

quency with a matched load coupled to the output of the piezoelectric transformer. The opti-

mum operating frequency or excitation frequency shows strong dependence on different param-

eters such as temperature, load, fixation and age. Hence, it is a significant challenge to maintain

the excitation frequency applied to the input section of the piezoelectric transformer at the opti-

mum frequency during operation of the power converter where the above-mentioned parameter

changes. This is particularly pronounced if burst-mode modulation of the input drive signal is

utilized because rapid lock-on to the intended excitation frequency is required to avoid large

driver losses by intermediate time periods where the input driver fails to operate under ZVS.

[0003] This problem is particularly pronounced for power converters that employ a piezoe-

lectric transformer with native ZVS properties, i.e. with a ZVS factor larger than 100%, and ex-

ploit this property to obtain ZVS in an input driver coupled directly to the primary section of the

piezoelectric transformer. In this context “directly” means without an external inductor arranged

in series or parallel between the input driver and the primary section of the piezoelectric trans-

former. ZVS operation of the input driver, typically based on a half-bridge or full-bridge MOS

transistor circuit, of piezoelectric power converters has traditionally been achieved by adding

such an external inductor in series with the input driver. The external inductor ensures that the

input of the piezoelectric transformer appears inductive across a relatively large frequency range
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such that capacitances at an output node of the input driver can be alternatingly charged and

discharged in accordance with the input drive signal without inducing prohibitive power losses.

[0004] However, the external inductor occupies space, adds costs and conducts and radiates

EMI in the power converter. It would therefore be advantageous to provide a power converter

based on a piezoelectric transformer with native ZVS properties capable of reliable ZVS opera-

tion despite changes in operational parameters of the piezoelectric transformer such as tempera-

ture, load, fixation and age. This has been achieved in a piezoelectric power converter in ac-

cordance with the present invention by the presence of a feedback loop operatively coupled be-

tween the output signal at the output electrode of the piezoelectric transformer and the input

driver to provide a self-oscillation loop around the primary section of the piezoelectric trans-

former. Electrical characteristics of the feedback loop are configured such that the excitation

frequency of the self-oscillation loop lies within the ZVS operation range of the piezoelectric

transformer.

[0005] The IEEE paper by J. Díaz et al. “A Double-Closed Loop DC/DC Converter Based

On A Piezoelectric Transformer” describes a piezoelectric power converter which comprises a

self-oscillating feedback loop. The input driver is, however, coupled to the input of a piezoelec-

tric transformer via a separate external input inductor to ensure ZVS operation.

SUMMARY OF THE INVENTION

[0006] The present invention relates to a piezoelectric power converter comprising an input

driver electrically coupled directly to an input or primary electrode of the piezoelectric trans-

former without any intervening series or parallel inductor. A feedback loop is operatively cou-

pled between an output voltage of the piezoelectric transformer and the input driver to provide a

self-oscillation loop around a primary section of the piezoelectric transformer oscillating at an

excitation frequency. Electrical characteristics of the feedback loop are configured to set the ex-

citation frequency of the self-oscillation loop within a zero-voltage-switching (ZVS) operation

range of the piezoelectric transformer.

[0007] A first aspect of the invention relates to a piezoelectric power converter comprising a

piezoelectric transformer which comprises an input electrode electrically coupled to an input or

primary section of the piezoelectric transformer and an output electrode electrically coupled to

secondary or output section of the piezoelectric transformer to provide a transformer output
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voltage. An input driver is electrically coupled directly to the input electrode of the piezoelectric

transformer without any intervening series or parallel inductor to supply an input drive signal to

the input electrode. A feedback loop is operatively coupled between the output voltage of the

piezoelectric transformer and the input driver to provide a self-oscillation loop around the pri-

mary section of the piezoelectric transformer, oscillating at an excitation frequency. Electrical

characteristics of the feedback loop are configured to set the excitation frequency of the self-

oscillation loop within a ZVS operation range of the piezoelectric transformer.

[0008] In accordance with the present invention, the zero-voltage-switching factor (ZVS fac-

tor) of the piezoelectric transformer is larger than 100%, preferably larger than 120%, such as

larger than 150% or 200%. This means that the piezoelectric transformer has native ZVS prop-

erties or characteristics.

[0009] The ZVS factor is determined at a matched load condition as:

��ܼܸܵൌ
ቀ̴ ೄ

షమ ቁି ଵ

ቀ̴ ು
షమ ቁି ଵ

0.882 ;

keff_P, being a primary side effective electromechanical coupling factor of the piezoelectric

transformer,

keff_S, being a secondary piezoelectric transformer effective electromechanical coupling fac-

tor, in which:

̴݇  = ඨ1 −
ೝೞ̴ 
మ

ೌ షೝೞ̴ 
మ ̴݇ ௌ = ට1 −

ೝೞ̴ ೞ
మ

ೌ షೝೞ̴ ೞ
మ

fres_p = resonance frequency and frequency of a minimum magnitude of an impedance func-

tion at the input electrodes of the piezoelectric transformer with shorted output electrodes,

fanti-res_p = anti-resonance frequency and frequency of a maximum magnitude of the imped-

ance function at the input electrodes of the piezoelectric transformer with shorted output

electrodes,

fres_s = resonance frequency and frequency of a minimum magnitude of the impedance func-

tion at the output electrodes of the piezoelectric transformer with shorted input electrodes,
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fanti-res_s = anti-resonance frequency and frequency of a maximum magnitude of the imped-

ance function at the output electrodes of the piezoelectric transformer with shorted input

electrodes.

[0010] A number of highly useful piezoelectric transformers for the present piezoelectric

power converters with both high power conversion efficiencies and native ZVS properties are

disclosed in the applicant’s co-pending European patent application No. 11176929.5.

[0011] The self-oscillating feedback loop around the native ZVS capable piezoelectric trans-

former with direct electrical coupling from the input driver to the input electrode without any

intervening series or parallel inductor both dispenses with the external inductor. Instead ZVS

operation of the input driver is ensured by the inductive behaviour of the piezoelectric trans-

former within the ZVS operation range of the piezoelectric transformer. Hence, the commonly

employed external inductor, which occupies space, adds costs, conducts and radiates EMI as

explained above, is avoided. In the direct coupling from the input driver to the input electrode,

the inductance of the ordinary external inductor is replaced by the mechanical equivalent in-

ductance already embedded in the vibratory mass of the piezoelectric transformer due to its na-

tive ZVS properties. Hence, the radiated EMI from the commonly employed external inductor is

largely eliminated. Furthermore, because the ordinary external inductor often employs a ferrite

core material the external inductor becomes prone to magnetic saturation from large static or

dynamic magnetic fields for example in applications such as MRI scanners, power plants etc.

Magnetic saturation of the ferrite core material may cause the piezoelectric power converter to

malfunction. This problem is also removed by the eliminated of the ordinary external inductor.

The self-oscillating feedback loop furthermore provides a mechanism for maintaining the opti-

mum excitation frequency despite the strong dependence of electrical characteristics of the pie-

zoelectric transformer on environmental parameters such as temperature, load, fixation and age.

[0012] The skilled person will understand that a parasitic wiring or cabling inductance natu-

rally will be associated with the direct electrical coupling between an output of the input driver

and the input electrode despite the lack of a separate input inductor. The power converter is

preferably designed such that the wiring inductance from the output of the input driver to the

input electrode of the piezoelectric transformer is smaller than 500 µH, preferably smaller than

100 µH, even more preferably smaller than 10 µH.
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[0013] The electrical characteristics of the feedback loop are preferably configured to set the

excitation frequency within the ZVS operation range of the piezoelectric transformer. The

bandwidth of the ZVS operation range is typically narrow and located slightly above a funda-

mental resonance frequency of the piezoelectric transformer depending on specific characteris-

tics of a design of the piezoelectric transformer. The bandwidth of the ZVS operation range of

piezoelectric transformers may vary widely between different transformer topologies, modes of

operation and physical dimensions. In some embodiments, the piezoelectric transformer is de-

signed or configured with a bandwidth of the ZVS operation which lies between 1 % and 5% of

a fundamental or primary resonance frequency of the piezoelectric transformer. In a number of

useful embodiments, the electrical characteristics of the feedback loop are configured to set the

excitation frequency to a frequency between 75 kHz and 10 MHz such as between 200 kHz and

20 MHz.

[0014] The phase-shift around the feedback loop must be an integer multiple of 360 degrees

where the distribution of individual phase shifts between components and circuits of the feed-

back loop can be effected in numerous ways. The self-oscillation provided by the feedback loop

ensures that the excitation frequency automatically tracks changing characteristics of the piezoe-

lectric transformer and electronic circuitry of the input side of the power converter. This effect

is particularly pronounced according to a preferred embodiment of the power converter wherein

the feedback loop comprises a phase shifting circuit for example a frequency selective filter

such as a high-pass, band-pass or a low-pass filter. According to this preferred embodiment, a

slope or derivative of a phase response of a transfer function of the piezoelectric transformer is

steeper than a slope or derivative of a phase response of the high-pass, band-pass or the low-

pass filter within the ZVS operation range of the piezoelectric transformer. The high-pass, band-

pass or the low-pass filter is preferably a low order filter such as a first or second order filter

which exhibits a relative gentle slope of the phase response. In this way, the slope of the phase

response of the piezoelectric transformer becomes much steeper than the slope of the phase re-

sponse of the frequency selective filter. The predetermined excitation frequency will as a conse-

quence become significantly more sensitive to changes to the frequency response characteristic

of the piezoelectric transformer than to changes of the response of the frequency selective filter

such that the self-oscillating feedback loop automatically maintains the predetermined excita-

tion frequency at an optimum frequency or within an optimum frequency band.
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[0015] According to one embodiment, the feedback loop comprises a cascade of a phase

shifter and a comparator. The phase shifter is coupled for receipt of the feedback signal and con-

figured to apply a predetermined phase shift to the feedback signal to provide a phase shifted

feedback signal. The comparator is coupled for receipt of the phase shifted feedback signal to

generate a square-wave feedback signal at a comparator output. The square-wave feedback sig-

nal is coupled to an input of the input driver so as to close the feedback loop.

[0016] The respective phase-shifts induced to the feedback signal by the phase shifter and

the comparator may be adjusted in various ways to achieve a certain total phase shift comple-

menting other signal phase shifts around the self-oscillating feedback loop. In one embodiment,

the comparator comprises an inverting zero-crossing detector to provide square-wave feedback

signal indicating zero-crossings of the phase-shifted feedback signal. In this manner, the inver-

sion introduces a phase shift of at least 180 degrees in the self-oscillating feedback loop. The

phase shifter may comprise a frequency selective filter and/or a time delay. The frequency se-

lective filter may comprise a high-pass, band-pass or a low-pass filter with an appropriately tai-

lored phase response. In the alternative, or in addition, the phase shifter may comprise an all-

pass type of filter inducing a predetermined phase shift to the self-oscillating feedback loop

without any frequency response filtration of the feedback signal.

[0017] The feedback signal to the feedback loop, which is operatively coupled between the

output voltage of the piezoelectric transformer and the input driver, may be derived in numerous

ways from the output voltage of the piezoelectric transformer. According to one embodiment,

the feedback signal of the feedback loop is derived from the transformer output signal at the

output electrode of the piezoelectric transformer. In this embodiment the feedback signal is de-

rived directly from the existing output electrode(s) which also supplies power to a DC or AC

output voltage node or terminal of the power converter. This embodiment is simple to imple-

ment because it uses existing signals and electrodes of the power convertor to provide the feed-

back signal. However, the feedback signal will be galvanically coupled to the output section of

the piezoelectric transformer unless expensive and bulky precautions are taken such as the inser-

tion of isolating optical couplers in the feedback loop. The output section of the piezoelectric

transformer may have a very high voltage level for example at mains voltage (110 V to 230 V)

or even higher voltages above 1 kV.
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[0018] In an advantageous embodiment, the potential safety and regulatory problems caused

by the galvanic coupling between the output section and output electrode and the input driver or

input side by the feedback signal are avoided by adding a separate feedback output electrode to

the output section or sections of the piezoelectric transformer. According to this embodiment,

the feedback signal of the feedback loop is derived from a feedback output signal at the feed-

back output electrode arranged in one or more separate layer(s) of the output section of the pie-

zoelectric transformer to galvanically isolate the feedback output electrode from the output elec-

trode by the electrically insulating piezoceramic material of the transformer. The piezoelectric

transformer may generally be configured such that a voltage gain, at the excitation frequency,

from the input electrode to the output electrode is larger, substantially equal to, or smaller than a

voltage gain from the input electrode to the feedback output electrode. In one embodiment, the

voltage gain from the input electrode to the output electrode is between 2 and 50 times larger

than the voltage gain from the input electrode to the feedback output electrode. This embodi-

ment is particularly helpful if the output section of the piezoelectric transformer is at a very high

voltage level such as at the mains voltage (110 V to 230 V) or higher as mentioned above. The

level of the feedback output signal can be stepped down to a manageable level for example be-

tween 5 and 10 V such that galvanic isolation and a voltage level that is compatible with a volt-

age range of the electronic circuitry of the feedback loop is simultaneously provided. According

to another embodiment, the voltage gain from the input electrode to the output electrode is be-

tween 2 and 50 times smaller than the voltage gain from the input electrode to the feedback out-

put electrode. This embodiment is particularly helpful if the output section of the piezoelectric

transformer operates at a relatively low voltage level such as CPU power supplies (e.g. 0.2 V to

5V DC). The level of the feedback output signal can then only be stepped down to a managea-

ble level for example between 5 and 10 V such that galvanic isolation and a voltage level that is

compatible with a voltage range of the electronic circuitry of the feedback loop is simultaneous-

ly provided.

[0019] In many applications, the feedback output electrode will not be required to deliver

any significant power in comparison to the required load power at/from the output electrode. It

may therefore be advantageous to design or construct the piezoelectric transformer such a vol-

ume of the separate layer of the output section enclosing the feedback output electrode is small-
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er than a volume of layers of the output section enclosing the output electrodes, as the power

output of an output electrode is proportional to the associated layer volume.

[0020] The skilled person will understand that separate feedback output electrode can be

highly useful for galvanic isolation, and other purposes, in piezoelectric power converters which

comprise the ordinary series or parallel inductor coupled between the input driver and the input

electrode.

[0021] The feedback signal to the feedback loop can also be derived in an indirect manner

from the input side of the piezoelectric power converter according to another preferred embod-

iment of the invention. Due to the lack of the ordinary series or parallel inductor between the

input driver and the input electrode, the transformer resonance current cannot be directly moni-

tored or detected at the input side of the power converter. However, the transformer resonance

current can be estimated or derived from the input drive signal and a transformer input current.

In this embodiment, the feedback signal of the feedback loop is derived by a transformer reso-

nance current estimator from a combination of the input drive signal and the transformer input

current running in the primary section of the piezoelectric transformer. This methodology may

be applied to build or estimate a continuous transformer resonance current signal. This is pref-

erably accomplished by differentiating the input drive voltage signal before adding/subtracting

this signal from the transformer input current signal since the slope of rising and falling edges of

the input drive signal indicates the transformer resonance current during time intervals of the

input drive signal where the input driver is off. Consequently, the resonance current estimator

preferably comprises:

- a first order differentiator coupled to the input drive signal to derive a first order derivative

signal of the input drive signal,

- a current sensor, coupled in series with the primary section of the piezoelectric transformer, to

supply a sensor signal representative of the transformer input current; and

- a subtractor configured to generate the feedback signal based on a difference between the first

order derivative signal and the sensor signal.

[0022] The input current sensor may comprise a resistance arranged in-between a ground

connection of the input driver and a ground connection of the piezoelectric transformer to sup-

ply a sensor voltage representative of the transformer input current. The first order differentiator

may comprise a first order high-pass filter having an input coupled to the input drive signal and
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an output supplying the first order derivative signal. A high-pass corner frequency of the first

order high-pass filter is preferably larger than a fundamental resonance frequency of the piezoe-

lectric transformer such as at least two times larger or preferably more than 10 times larger. In

this manner, it is ensured that the high-pass corner frequency of the first order high-pass filter

lies above the excitation frequency because the latter frequency typically is situated proximately

to the fundamental resonance frequency of the piezoelectric transformer where the ZVS opera-

tion range is located, ensuring that the high-pass filter operates as a true differentiator at the ex-

citation frequency. The subtractor may be implemented in various ways. One embodiment of

the subtractor comprises a differential amplifier having a first differential input coupled to the

first order derivative signal and the second differential input coupled to the sensor signal. The

differential amplifier preferably comprises an operational amplifier either as a separate standard

component or as sub-circuit of an ASIC integrating other types of electronic circuitry of the pre-

sent piezoelectric power converter thereon.

[0023] According to another preferred embodiment of the invention, the piezoelectric power

converter comprises a bi-directional switching circuit for reverse power transfer from the load at

the output or secondary side of the power converter back to the input side. According to this

embodiment, the piezoelectric power converter comprises:

- a bi-directional switching circuit coupled between the output electrode and an output voltage

of the power converter,

- a controller adapted to control first and second states of the bi-directional switching circuit

based on the input drive signal or the transformer output voltage such that:

- in a first state, forward current is conducted from the output electrode to the output voltage

through the bi-directional switching circuit during a first period of a cycle time of the trans-

former output signal to charge the output voltage,

- in a second state, reverse current is conducted from the output voltage to the output electrode

through the bi-directional switching circuit during a second period of the cycle time of the trans-

former output signal to discharge the output voltage and return power to the primary section of

the piezoelectric transformer.

[0024] The presence of the second state wherein reverse current is conducted from the output

voltage through the bi-directional switching circuit to the output electrode allows effective out-

put voltage regulation without sacrificing efficiency of the piezoelectric based power converter.

D.8

173



-11-

13890125.1 059244/000014PL01

This is because the reverse power is returned to the primary section or side of the piezoelectric

transformer. The transmission of reverse current during the second period of the cycle time ex-

ploits he inherent bi-directional power transfer property of piezoelectric transformers such that

power is transferred in opposite direction to the ordinary one, i.e. forward, power flow in the

power converter. Surplus power at the output voltage is transmitted back to the input power

source such as a DC supply voltage supplying power to the input driver. According to a pre-

ferred embodiment of the invention, the controller is in the second state further configured to

control the switching circuit such that both forward current and reverse current is conducted

during a single cycle of the transformer output signal. In this embodiment the forward current is

conducted during the first period of the cycle time and reverse current is conducted during the

second period of the same cycle of the transformer output signal. The second period may have a

length corresponding to about one-half or less than the cycle time cycle time of the transformer

output signal. The skilled person will appreciate that the degree of charge or discharge of the

output voltage may be controlled in a step-wise or substantially continuous manner by a corre-

sponding control of the relative length between the first and second periods of the same cycle of

the transformer output signal. In this manner, the controller may provide effective output volt-

age control through adjustment of the length of the second period of the cycle time. According-

ly, by appropriately balancing the length of the first period of the cycle time relative to the se-

cond period of the same cycle, the bi-directional piezoelectric power converter may be adapted

to transfer net power to the output voltage or to a load coupled thereto, transfer substantially ze-

ro power to the output voltage or transfer a negative power to the output voltage. The skilled

person will understand that if the controller sets the length of the second period of the cycle

time to zero, the bi-directional piezoelectric power converter conveniently transits from the se-

cond state to the first state wherein the bi-directional switching circuit conducts solely forward

current so as to charge the output voltage during the first periods of the cycle times. This leads

to an increasing level of output voltage e.g. the output voltage becomes more positive or more

negative depending on the polarity configuration of the bi-directional switching circuit. In gen-

eral, the controller may be adapted to terminate the second period of the cycle time, i.e. termi-

nating the reverse conduction of current through the switching circuit, synchronously or asyn-

chronously to the input drive signal or the transformer output signal. The controller preferably

comprises an adjustable time delay circuit providing an adjustable duration of the second period
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of the cycle time of the transformer output signal such that the amount of reverse power can be

controlled. The controller is preferably configured to derive a synchronous state control signal

from the input drive signal and apply the synchronous state control signal through the adjustable

time delay circuit to a switch control terminal of the second controllable semiconductor switch

and/or a switch control terminal of the first controllable semiconductor switch to control respec-

tive states of the first and second controllable semiconductor switches. In this manner, the

switching circuit is responsive to the synchronous state control signal indicating the termination

of the second period of the cycle time. The skilled person will understand that the synchronous

state control signal may be derived directly or indirectly from the input drive signal. Indirectly if

the synchronous state control signal is derived from another signal in the power converter that is

synchronous to the input drive signal such as the transformer output signal. In one such embod-

iment, the synchronous state control signal is derived from a zero-crossing detector embedded

in a self-oscillating feedback loop enclosing input section of the piezoelectric transformer.

[0025] The operation of the power converter during the second state of the bi-directional

switching circuit where reverse power is transmitted can be improved in accordance with one

embodiment of the invention. When reverse power is transmitted through the power converter

the excitation frequency set by the feedback loop decreases. This leads to an increase of the

transformer resonance current level and may be counteracted by adjustment of a time delay in

the self-oscillating feedback loop. In one embodiment, the feedback loop comprises an adjusta-

ble time delay coupled in cascade with the phase shifter and the comparator to adjust the excita-

tion frequency of the feedback loop. This embodiment may further comprise a current detector

configured to determine the level of the transformer resonance current and a current limiter

adapted to adjust the time delay of the adjustable time delay circuit to limit the transformer res-

onance current. In this manner an optimal operating point or excitation frequency of the feed-

back loop can be maintained during both forward power transmission and reverse power trans-

mission of the bi-directional piezoelectric power converter.

[0026] The feedback loop may in certain situations be unable to induce a reliable start of the

self-oscillation action due to amongst other factors the non-linear behaviour of the input driver

which makes the latter insensitive to low level fluctuations of its input voltage. This may for ex-

ample the situation if a bandwidth of the phase shifter is so low that noise signal components

within the feedback loop are small. Consequently, an advantageous embodiment of the inven-
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tion comprises a start-up circuit configured to inject a transient signal into the feedback loop at

power-up of the power converter to initiate oscillation at the excitation frequency in the feed-

back loop. The skilled person will understand that the start-up circuit could be configured in a

numerous ways to generate the desired transient signal. The transient signal could comprise a

one or more signal pulses of predetermined waveform shape and duration. In another embodi-

ment, the start-up circuit comprises an oscillator coupled into the feedback loop. The oscillator

may be configured to generate an essentially continuous transient signal that is removed from

the feedback loop by a suitable mechanism once self-oscillation has started. This may for ex-

ample be controlled by an output impedance of the oscillator which is so large that the continu-

ous transient signal is suppressed or eliminated once self-oscillation is initiated.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] Preferred embodiments of the invention will be described in more detail in connection

with the appended drawings, in which:

[0028] Fig. 1 is a schematic block diagram of a piezoelectric power converter comprising a

self-oscillating loop in accordance with a first embodiment of the invention,

[0029] Fig. 2a) is an electrical equivalent circuit of a piezoelectric transformer coupled to an

input driver of a piezoelectric power converter in accordance with a first embodiment of the in-

vention,

[0030] Fig. 2b) shown input drive voltage and input current waveforms of the piezoelectric

transformer in accordance with the first embodiment of the invention,

[0031] Fig. 3 a detailed schematic block diagram of a transformer resonance current estima-

tor coupled to an input section of a piezoelectric transformer of the piezoelectric power convert-

er in accordance with the first embodiment of the invention,

[0032] Fig. 4 is a schematic block diagram of a piezoelectric power converter comprising a

self-oscillating loop in accordance with a second embodiment of the invention,

[0033] Fig. 5 is a detailed schematic block diagram of a transformer output voltage detection

circuit coupled to an output section of the piezoelectric transformer of the piezoelectric power

converter in accordance with the second embodiment of the invention,
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[0034] Fig. 6 is a simplified schematic block diagram of a piezoelectric power converter

comprising a self-oscillating loop based on a separate feedback electrode in accordance with a

third embodiment of the invention,

[0035] Fig. 7 is a simplified electrical equivalent circuit of the piezoelectric transformer of

the piezoelectric power converter in accordance with the third embodiment of the invention; and

[0036] Fig. 8 is a schematic block diagram of a piezoelectric power converter comprising a

self-oscillating loop and a bi-directional switching circuit for reverse power transfer in accord-

ance with a fourth embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0037] The below appended detailed description of embodiments of the present invention

comprises various types of self-oscillating loops for DC/DC voltage step-up or voltage step-

down power conversion. However, the skilled person will understand that the below described

embodiments are highly useful for other types of power converting applications such as AC/AC,

AC/DC, DC/AC and DC/DC conversion, in particular conversion requiring high power conver-

sion efficiency and compact dimensions by ZVS operation of the input driver without an exter-

nal inductor at the input electrode.

[0038] Fig. 1 shows a schematic block diagram of a piezoelectric power converter 100 in ac-

cordance with a first embodiment of the invention. The bi-directional piezoelectric power con-

verter 100 comprises a piezoelectric transformer, PT, 104. The piezoelectric transformer, PT,

104 has a first input electrode 105 electrically coupled to an input or primary section of the pie-

zoelectric transformer 104, coupled to the input driver 103 of the piezoelectric power converter

and a second input electrode connected to ground, GND. A first output electrode 107a and se-

cond output electrode 107b of the piezoelectric transformer 104 are electrically coupled to sec-

ondary or output section of the piezoelectric transformer 104 to provide a differential transform-

er output voltage or signal to a rectification circuit 108. The rectification circuit 108 may com-

prise a half or full wave rectifier and an output capacitor to provide smoothed DC voltage at the

output node or terminal VOUT.

[0039] The piezoelectric power converter 100 additionally comprises an input driver 103

electrically coupled directly to the input electrode 105 without any intervening inductor so as to

apply an input drive signal to the input or primary section of the transformer 104. A driver con-
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trol circuit 102 generates appropriately timed gate control signals for NMOS transistors M2 and

M1 of the input driver 103. The input drive signal has a predetermined excitation frequency de-

termined by parameters of a self-oscillating feedback loop operatively coupled between the out-

put voltage of the piezoelectric transformer at output electrodes 107 and 107b and the input

driver 103. In the present embodiment, the transformer output voltage is detected indirectly by

estimating the transformer resonance current from a combination of the input drive signal sup-

plied at input terminal 105 and a transformer input current running in the primary section of the

piezoelectric transformer as explained in detail below in connection with Figs. 2 and 3 showing

schematic and signal waveforms of a resonance current detector 118 performing this task. Elec-

trical characteristics of the self-oscillating feedback are configured to set the excitation frequen-

cy of the self-oscillation loop within a ZVS operation range of the piezoelectric transformer.

The self-oscillating feedback loop comprises a feedback leg 114 coupling a resonance current

indicative signal ISENSE which is proportional of the transformer output voltage back to the input

driver through a cascade of low-pass filter 120 and a zero-crossing detector 122 such that the

loop is closed around the input section of the transformer. The phase-shift around the self-

oscillation loop feedback loop or simply feedback loop must be an integer multiple of 360 de-

gree and the respective phase-shifts induced by the resonance current detector 118, the low-pass

filter 120 and a zero-crossing detector 122 adjusted in an appropriate manner to achieve this

goal.

[0040] It is furthermore desired to maintain a phase shift of approximately 55 degrees be-

tween the input drive signal and the transformer resonance current as set by the resonance cur-

rent detector 118 because this phase difference ensures that the excitation frequency is located

within a narrow frequency band above the fundamental resonance frequency of the piezoelectric

transformer 104 where native ZVS operation is enabled. Within this narrow frequency band of

ZVS operation, the piezoelectric transformer 104 exhibits the above-described ZVS factor larg-

er than 100 % such as larger than 120 % and appears to possess inductive input impedance as

seen from the output of the input driver 103. To reach the desired phase shift around the feed-

back loop on the integer multiple of 360 degrees, the zero-crossing detector 122 may be invert-

ing to induce a further 180 degrees phase shift and a combined time delay of the input driver

103 and the driver control circuit 102 may amount to about 40 degrees of phase shift at the pre-

determined excitation frequency. These phase shifts add up to about 275 degrees such that the
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electrical characteristics of the low-pass filter 120 are designed to induce a phase shift of 75 de-

grees at the predetermined excitation frequency. This can be achieved by selecting an appropri-

ate cut-off frequency and order of the low-pass filter 120. The skilled person will understand

that many other distributions of phase shifts between the circuits of the feedback leg 114 are

possible. In one embodiment, the resonance current detector 118 is inverting to add another 180

degrees of phase shift. The low-pass filter 120 could be replaced by a band-pass filter or a pure

time delay designed to provide the desired amount of phase shift.

[0041] At the secondary side of the PT 104, a rectifier or rectification circuit 108 is electri-

cally coupled between a differential transformer output signal generated at the output electrodes

107a and 107b coupled to respective output sections of the PT 104. The rectification circuit 108

may be configured to provide half-wave or full-wave rectification of the transformer output sig-

nal supplied between the positive output electrode 107a and the negative, or opposite phase,

output electrode 107b. The rectification circuit 108 preferably comprise a rectifier capacitor of

appropriate capacitance (not shown) configured to generate a positive or negative DC output

voltage VOUT across the load resistance RLOAD of the power converter 100. The load may of

course comprise a capacitive and/or inductive component in addition to the depicted load resis-

tor RLOAD. During operation of the piezoelectric power converter 100 the level of the DC output

voltage VOUT is adjusted or controlled by a control mechanism or loop. The control loop com-

prises a DC output voltage detection or monitoring circuit 109 which supplies a signal to the

output voltage control circuit 110 indicating an instantaneous level of the DC output voltage. A

charge control circuit ΔQ compares the measured instantaneous level of the DC output voltage 

with a reference voltage Vref which for example represents a desired or target DC output voltage

of the power converter at VOUT. The charge control circuit determines whether the level of the

current DC output voltage is to increase or decrease based on the result of the comparison. The

output voltage control circuit 110 generates an Active/Shut-down (A/S) control signal for the

gate driver 101 such that the gate driver is disabled if the instantaneous level of the DC output

voltage is larger than the reference voltage Vref. If the instantaneous level of the DC output volt-

age is smaller than the reference voltage Vref the gate driver is enabled and in this burst-mode

manner power or energy is transferred to the converter output voltage through the rectification

circuit 108.
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[0042] Fig. 2a) is an electrical equivalent circuit of the piezoelectric transformer 104 coupled

directly to the input driver 103 and to the rectification circuit 108 of the piezoelectric power

converter 100 depicted on Fig. 1. As previously mentioned, the transformer output voltage

across the first and second output electrodes 107a and 107b is detected indirectly by estimating

the transformer resonance current IL from a combination of the input drive signal Vp at input

terminal 105 and the transformer input current Iin running through the primary section of the pi-

ezoelectric transformer 104. Since the input driver 103 is directly coupled to the input section of

the piezoelectric transformer 104 without any external series or parallel inductor, the transform-

er resonance current cannot be measured through the external series or parallel inductor. The

present embodiment of the invention utilizes a resonance current estimator instead to determine

or estimate the transformer resonance current indirectly and derive a continuous resonance cur-

rent signal ISENSE which is supplied to the feedback loop to provide a feedback signal representa-

tive of the transformer resonance current. The estimated transformer resonance current is ac-

cordingly also representative of the transformer output voltage at the first and second output

electrodes 107a and 107b. The resonance current estimator comprises a first order differentiator

comprising series coupled capacitor C1 and resistor R1 coupled to the input drive signal Vp. The

mid-point voltage Vdiff at the coupling node between the series coupled capacitor C1 and resis-

tor R1 supplies a first order derivative signal of the input drive signal Vp because a high-pass

corner frequency of the first order differentiator is much larger than the fundamental resonance

frequency of the piezoelectric transformer 104 such as at least two times larger e.g. 10 times

larger.

[0043] The transformer input current Iin is detected in the resonance current detector 118 de-

picted in a detailed schematic diagram on Fig. 3 by a small series resistor RS acting as a current

sensor coupled in series with the primary section of the piezoelectric transformer 104. The se-

ries resistor RS is coupled in a ground line or wire between the ground connection of the prima-

ry side of the piezoelectric transformer 104 and the ground connection of the first order differ-

entiator. Hence, a voltage across the series resistor RS represents, i.e. is proportional to, the

transformer input current Iin.

[0044] The first order derivative signal Vdiff and the transformer input Iin current signal are

supplied to respective inputs of a differential amplifier of the resonance current detector 118.

The differential amplifier comprises an operational amplifier 116 and gain setting resistors R2,
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R3, R4 and R5 configured such that the gain from each of the inputs can be separately adjusted.

The gain from Vdiff to the resonance current signal ISENSE is adjustable by R4 and R3 and the

gain from the transformer input Iin current signal is adjustable by R5 and R2 such that conven-

ient scaling between Vdiff and Iin is provided. Furthermore the scaling can also be done trough

the selection of RS, R1 and C1. The function of the resonance current detector 118 is explained

by reference to the measured input drive voltage waveform 161 at the lower graph 160 and the

transformer input current waveform 151 depicted on the upper graph 150 of Fig. 2 b). The trans-

former input current waveform 151 is represented by the measured voltage across the series re-

sistor RS as explained above. The transformer input current Iin and the voltage across the series

resistor RS are zero during time periods where the input driver is off, i.e. its dead-time intervals

indicated below the graph 160 as t2 and t4, because the output of the input driver at node VP is

charged by the resonance current of the piezoelectric transformer itself. However, the true trans-

former resonance current IL is unavailable outside the physical structure of the piezoelectric

transformer 104 because a large portion of the resonance current is conducted through the trans-

former input capacitance represented by parallel capacitor Cd1 of the equivalent diagram of Fig.

2a). However, by differentiating the up and down going transitions of the measured input drive

voltage waveform 161 during the dead-time intervals t2 and t4, a scaled representation of the

true transformer resonance current IL is determined. Since the first order derivative signal Vdiff

of the measured input drive voltage waveform 161 is approximately zero (no slope) during on-

periods of the input driver 103 as indicated by time periods t1 and t3 the first order derivative

does not make any significant contribution to the resonance current signal ISENSE during the lat-

ter time periods. During time periods t1 and t3 where the input driver 103 is active and conduct-

ing, the transformer resonance current flows through series resistor RS and therefore generates a

proportional sensed voltage which contributes to the resonance current signal ISENSE. This is in-

dicated by the approximate sine shape of the transformer input current waveform 151 during

time periods t1 and t3. Hence, the resonance current detector 118 generates a continuous loop

feedback signal in form of the resonance current signal ISENSE by combining the first order de-

rivative signal Vdiff 153 derived from the input voltage VP 161 and the transformer input current

Iin measured across the sense/series resistor RS 151.

[0045] Since the resonance current signal ISENSE for the feedback loop is generated from the

input section of the piezoelectric transformer 104, the feedback signal is galvanic insulated from
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the output section of the piezoelectric transformer 104. Hence, if the output section supplies

high voltage signals because of the amplification characteristics of the piezoelectric transformer

104, the primary section is isolated from the high voltages enhancing safety and helps the power

converter in complying with high voltage regulatory requirements.

[0046] Fig. 4 is a schematic block diagram of a piezoelectric power converter 400 compris-

ing a self-oscillating loop in accordance with a second embodiment of the invention. The piezo-

electric power converter 400 shares a large number of electrical characteristics and features with

the above described first embodiment of the power converter and corresponding features have

accordingly been provided with corresponding reference numerals to ease comparison. Howev-

er, the way the feedback signal for the feedback leg 414 is derived from the piezoelectric trans-

former 404 differs in the present embodiment compared to the first embodiment. In the present

embodiment, a differential transformer output voltage or signal for the feedback loop is derived

from a first output electrode 407a and second output electrode 407b of the piezoelectric trans-

former 404. The first and second output electrodes 407a, 407b are in addition electrically cou-

pled to respective secondary or output sections of the piezoelectric transformer 404 to provide

the differential transformer output voltage to a rectification circuit 408. The rectification circuit

408 may comprise a half or full wave rectifier and an output capacitor to provide smoothed DC

voltage at the output node or terminal VOUT. An output voltage detection circuit 418 receives the

differential transformer output voltage and generates a single-ended or differential sense signal,

VSENS which is transmitted to a low-pass filter 420 with similar characteristics to the low-pass

filter of the first embodiment discussed above. Since, a potentially high transformer output volt-

age is fed back to the input section or primary side of the converter 400 there is not any galvanic

isolation between the output side/voltage and the input side. However, in one preferred embod-

iment, the output voltage detection circuit 418 comprises a pair of small series capacitors that at

least breaks any DC current path between the output side/voltage and the input side as described

below in connection with Fig. 5. The skilled person will notice that the output voltage detection

circuit 418 can be made less complex in the present embodiment compared to the resonance

current detector 118 coupled to the primary transformer side of the piezoelectric transformer

104 in the first embodiment because a continuous transformer output voltage signal representing

the transformer resonance current is directly available for the self-oscillating feedback loop in

the present embodiment of the converter.
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[0047] Fig. 5 is a detailed schematic block diagram of the transformer output voltage detec-

tion circuit 418 coupled to the output section of the piezoelectric transformer 404 (PT) of the

piezoelectric power converter schematically depicted on Fig. 4. The rectifier 408 and the input

driver 403 are also schematically indicated to ease comparison. The transformer output voltage

detection circuit 418 comprises a first pF sized series capacitor C1 coupled in series with the

first output electrode 407a (S1) and a second pF sized series capacitor C1 coupled in series with

the second output electrode 407b (S2). A network of resistors R3 and R1 are configured to cou-

ple one phase of the transformer output signal from the series capacitor C1 to a matched pair of

current mirror coupled transistors Q1. A corresponding coupling arrangement is connected to

the other series capacitor C2. In effect, the single-ended feedback signal VSENS is derived from

the differential transformer output voltage. The feedback signal VSENS is essentially a square

wave signal in phase with the differential transformer output voltage. This feedback signal

VSENS is subsequently applied to the feedback leg 414 and phased shifted trough the low-pass

filter 420 with similar characteristics to the low-pass filter of the first embodiment discussed

above.

[0048] Fig. 6 is a simplified schematic block diagram of a piezoelectric power converter 600

comprising a self-oscillating loop based on a separate feedback output electrode 607c for sup-

plying a feedback output signal to the self-oscillating loop in accordance with a third embodi-

ment of the invention. The piezoelectric power converter 600 shares a large number of electrical

characteristics and features with the above described second embodiment of the power convert-

er 400 and corresponding features have accordingly been provided with corresponding reference

numerals to ease comparison. However, the way the feedback signal for the feedback leg 614 is

derived from the piezoelectric transformer 604 differs in the present embodiment compared to

the second embodiment. In the present embodiment, a separate feedback output electrode 607c

supplies a feedback output signal Fb representative of the differential transformer output voltage

across the first and second output electrodes 607a, 607b to the output voltage detection circuit

618. The first and second output electrodes 607a, 607b electrically coupled to respective sec-

ondary or output sections of the piezoelectric transformer 604 and the differential transformer

output voltage is transmitted to a rectification circuit 608 in a manner similar to the second em-

bodiment described above. The rectification circuit 608 may accordingly comprise a half or full
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wave rectifier coupled to an output capacitor(s) to provide a smoothed DC voltage at the output

node or terminal VOUT.

[0049] In the present embodiment, the piezoelectric transformer 604 is fabricated with the

separate feedback output electrode 607c arranged or embedded in a separate layer of the output

or secondary section of the piezoelectric transformer 604. The feedback signal supplied through

the feedback path at the separate output electrode 607c is thereby galvanically isolated from the

output sections or sides, output voltages such as VOUT and electronic circuitry of the secondary

side of the piezoelectric power converter 600. The skilled person will understand that the piezo-

electric transformer 604 may comprise several separate feedback electrodes for example a dedi-

cated feedback electrode in each of the output sections of the piezoelectric transformer 604 such

that the illustrated feedback output signal Fb may comprise a differential feedback signal. A

voltage gain, at the excitation frequency, from the input electrode 605 to the differential trans-

former signal across the first and second output electrodes 607a, 607b may be essentially equal

to, larger than, or smaller than a voltage gain from the input electrode 605 to the feedback out-

put electrode(s) 607c for example between 2 and 50 times larger or between 2 and 50 times

smaller. In step up voltage conversion applications of the present piezoelectric power converter

600, a smaller voltage gain to the feedback output electrode(s) 607c may be preferable such that

galvanic isolation and an appropriate voltage level for electronic components of the output volt-

age detector 618 simultaneously are achieved. Even if the voltage gain, at the excitation fre-

quency, from the input electrode 605 to the differential transformer signal across the first and

second output electrodes 607a, 607b is essentially equal to the voltage gain from the input elec-

trode 605 to the feedback output electrode(s) 607c, the piezoelectric power converter 600 bene-

fits from the galvanic isolation between the input side and output side circuitry.

[0050] According to one such embodiment, a volume of the separate layer of the output sec-

tion which encloses the feedback output electrode 607c is smaller than a volume of layers of the

output section(s) enclosing the output electrodes 607a, 607b. This can be achieved by embed-

ding the feedback output electrodes i to a small portion of the secondary PT section, as it should

only occupy a very small part of the output PT section (or input PT section if feedback is taken

from the primary side) and will therefore not distort or degrade performance of the output sec-

tion significantly. Depending on the specific piezoelectric transformer design and structure, em-

bedding the feedback output electrode can be relatively straight-forward to implement. Embed-
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ding can also be very convenient if the voltage level of the output section is appropriate for elec-

tronic components of the output voltage detector 618, as the feedback output electrode 607c will

possess a similar voltage level, if small parts of the existing electrodes in the output section are

used, so the feedback output electrodes have the same layer thickness.

[0051] The feedback output electrode 607c can also be implemented as a separate section of

the piezoelectric transformer 604 if this is more convenient, practical or the transformer design

does not allow embedding the feedback output electrode. In any case, it is preferred that the

separate feedback section of the piezoelectric transformer occupies a very small part of the en-

tire piezoelectric transformer 604 structure without distorting or degrading the transformer per-

formance as described above. Depending on the piezoelectric transformer design and structure,

a separate output section may from a practical perspective be simpler to implement than embed-

ding. The separate output section may also be more convenient for piezoelectric transformer de-

signs where none of the output or secondary transformer sections has an appropriate voltage

level for the electronic components of the output voltage detector 618.

[0052] Fig. 7 illustrates a simplified electrical equivalent diagram inside dotted box 604 of

the piezoelectric transformer 604 of the piezoelectric power converter 600 in accordance with

the third embodiment of the invention. The simplified electrical equivalent diagram comprises a

pair of separate secondary windings where the load is coupled to the upper secondary winding

which also provides the positive DC output voltage VOUT. The rectifier has been left out of the

diagram for simplicity. The lower secondary winding corresponds to the separate feedback out-

put electrode 607c and provides a feedback output signal VFB to the output voltage detection

circuit 618. As illustrated on the drawing, the lower secondary winding is galvanically isolated

from the upper secondary winding and therefore not used to supply power to the load. Hence,

the volume of the output section occupied by the separate feedback output electrode 607c can be

much smaller than the volume of the output section(s) enclosing the output electrodes 607a,

607b.

[0053] Fig. 8 is a schematic block diagram of a piezoelectric power converter 800 compris-

ing a self-oscillating loop and a bi-directional switching circuit 808 for reverse power transfer in

accordance with a fourth embodiment of the invention. The piezoelectric power converter 800

shares a large number of electrical characteristics and features with the above described third

embodiment of the power converter 600, in particular a separate feedback output electrode 807c
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arranged or embedded in a separate layer of the output or secondary section of the piezoelectric

transformer 804. The feedback signal from the feedback output electrode 807c is likewise sup-

plied to the output voltage detection circuit 818 and further through a feedback path of the pri-

mary side such that the primary side circuitry becomes galvanic isolated from the secondary

side.

[0054] At the secondary side of the PT 804, the bi-directional switching circuit 808 is elec-

trically coupled between a single-ended transformer output signal generated at the output elec-

trode 807 of the PT 804 and a positive DC output voltage VOUT applied across a load capacitor

CLOAD of the power converter 800. The load may of course comprise a resistive and/or inductive

component in addition to the depicted load capacitance CLOAD. A controller or control circuit is

adapted to control forward current conduction from the output electrode 807 to VOUT through

the bi-directional switching circuit 808 during a first period of the cycle time of the transformer

output signal. The positive DC output voltage VOUT is accordingly charged during the first peri-

od of the cycle time. This transformer output signal, oscillating at the excitation frequency set

by the self-oscillating feedback loop around the feedback electrode 807c, is applied to a mid-

point node between series coupled NMOS transistors M4 and M3 of the bi-directional switching

circuit 808. The output section of the PT 804, oscillating at the excitation frequency, behaves

largely as a current source injecting AC current into the midpoint node between series coupled

M4 and M3 to generate the transformer output signal or voltage. Furthermore, the controller is

adapted to control a second period of the cycle time of the transformer output signal wherein

reverse current is conducted through the bi-directional switching circuit 808 to the output elec-

trode 807 of the PT 804 such that VOUT is discharged during the second period of the cycle time.

During the second period of the cycle time power is returned to the primary section of the pie-

zoelectric transformer through the output electrode 807 of the PT.

The skilled person will appreciate that M3 and M4 function as respective controllable semicon-

ductor switches each exhibiting low resistance between an inlet and an outlet node (i.e. drain and

source terminals) in the on-state and very large resistance in the off-state or non-conducting

state. The on-resistance of each of M3 and M4 in its on-state/conducting state may vary consider-

ably according to requirements of a particular application, in particular the voltage level at the

DC output voltage VOUT or load impedance. In the present high-voltage embodiment of the in-

vention, each of the M3 and M4 is preferably selected such that its on-resistance lies between 50
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and 1000 ohm such as between 250 and 500 ohm. The positive DC supply voltage VDD may vary

widely in accordance with the requirements of a particular application. In the present embodi-

ment of the invention, the positive DC supply voltage VDD is preferably selected to a voltage

between 20 and 40 volt such as about 24 volt.

[0055] The bi-directional switching circuit 808 comprises a high-side semiconductor diode

D4 arranged or coupled across drain and source terminals of M4 so as to conduct the forward

current to the DC output voltage VOUT in a first state of the bi-directional switching circuit 808.

A low-side semiconductor diode D3 is in a similar manner coupled across drain and source ter-

minals of M3 so as to conduct the reverse current through the output electrode 807 and output

section of the PT 804 during at least a portion of the first state. In the first state, the forward cur-

rent is conducted from the output electrode 807 of the PT 804 through the bi-directional switch-

ing circuit 808 to the DC output voltage VOUT during a first period of a cycle time of the trans-

former output signal to charge the output voltage. This is accomplished by switching the high-

side NMOS transistor M4 to its on-state or conducting state by a self-powered high-side driver

806 which forms part of the controller. The self-powered high-side driver 806 or self-powered

driver 806 is coupled between the control or gate terminal of M4 and the output electrode 807

which supplies the transformer output signal. The timing of the state switching of M4 is deter-

mined by the detection of forward current in D4 by a current sensor (not shown) contained in the

self-powered driver 806. This current sensor is preferably arranged in series with the high-side

semiconductor diode D4. In response to detection of forward current in D4 the self-powered

driver 806 switches M4 to its on-state which effectively clamps D4 such that a majority of the

forward current flowing through the parallel connection of M4 and D4 to the DC output voltage

VOUT in reality flows through M4. On the other hand, during a negative half-cycle of the trans-

former output signal in the first state of the bi-directional switching circuit 808, D4 is reverse

biased and M4 switched to its off-state at expiry of a timer period setting of an associated timer

circuit (not shown). However, current is now conducted from the negative supply rail, i.e. GND

in the present embodiment, to the output electrode 807 of the PT 804 through the parallel con-

nection of M3 and D3. Initially, D3 will start to conduct forward current once it becomes forward

biased by the negative transformer output voltage. M3 is on the other hand, switched to its on-

state or conducting state by a low-side driver 821 which forms part of the controller. The low-

side driver 821 is coupled to the gate terminal of M3 and configured to switch M3 from its off-
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state to its on-state and vice versa. However, while the timing of the state switching of M3 from

its off-state to the on-state is determined in a manner similar to M4, the opposite state switching

of M3 is effected synchronously to input drive signal as explained below. M3 is switched from

the off-state to the on-state by a detection of forward current in D3 by a current sensor (not

shown) contained in the low-side driver 821. This current sensor is arranged in series with the

low-side semiconductor diode D3. At the detection of forward current in D3 the low-side driver

821 switches M3 to its on-state which effectively clamps D3 such that a majority of the forward

current flowing through the parallel connection of M3 and D3 in reality flows through M3.

[0056] Consequently, in the first state the bi-directional switching circuit 808 functions as a

half-wave rectifier or voltage doubler of the transformer output signal such that forward current

is conducted from the output electrode 807 of the PT 804 through the high-side NMOS transis-

tor M4 and semiconductor diode D4 to the DC output voltage VOUT to charge VOUT. In the nega-

tive half-periods of the transformer output signal, current is circulated around the secondary sec-

tion of the PT 804 without charging the DC output voltage in the current embodiment which us-

es the half-wave rectification provided by the present bi-directional switching circuit 808. In

comparison to a traditional diode-based half-wave rectifier, the bi-directional switching circuit

808 additionally comprises the NMOS transistors M4 and M3 of the bi-directional switching cir-

cuit 808 arranged for clamping of the high and low-side semiconductor diodes D4 and D3. Dur-

ing a second state and during a third state of the bi-directional switching circuit 808, the NMOS

transistors M3 and M4 are controlled by the controller such that a flow of reverse power is ena-

bled. Due to the inherent bi-directional transfer property of the PT 804 power applied to the

secondary section through the output electrode 807 is transferred to the input section of the PT

804 in effect transferring power in opposite direction to the normal flow of power of the power

converter 800.

[0057] In connection with the reverse current conduction during the second period of the cy-

cle time, state switching of M3 is controlled by the low-side driver 821 coupled to the gate ter-

minal of M3. The low-side driver 821 is responsive to a synchronous state control signal derived

from the input drive signal supplied by an adjustable time delay circuit, control ΔT, of a phase 

controller 811. The phase controller comprises the adjustable time delay circuit, control ΔT, and 

a fixed time delay, ΔT circuit. The phase controller 811 receives s zero-crossing detector output 

signal 819 which switches states synchronously to the input drive signal and the transformer

D.8

188



-26-

13890125.1 059244/000014PL01

output signal because this signal is derived from the self-oscillating feedback loop. Since the

input drive signal and the transformer output signal oscillate synchronously to each other, the

time delay imposed by the phase controller 811 to the zero-crossing detector output signal 819

sets a length or duration of the second period of the cycle time of the transformer output signal.

M3 is allowed to continue conducting current for the duration of the second period of the cycle

time until the state transition of the synchronous state control signal turns off M3 of the low-side

driver 821. While the corresponding state switching of the high-side NMOS transistor M4 from

its on-state to its off-state in one embodiment is controlled by the synchronous state control sig-

nal albeit phase shifted about 180 degrees, the present embodiment of the invention uses a dif-

ferent turn-off mechanism provided the self-powered high-side driver 806. The self-powering of

the high-side driver 806 is configured to terminate a reverse current conducting period of M4

based on an internally generated state control signal supplied by an internal timer rather than the

above-described synchronous state control signal supplied by the adjustable time delay circuit,

control ΔT. The self-powered property of the high-side driver 806 is highly advantageous for 

high-voltage output PT based power converters where the DC output voltage may be above 1

kV. The self-powering property of the high-side driver 806 circumvents the need for raising the

zero-crossing detector output signal 819 to a very high voltage level, i.e. matching the level of

the DC output voltage, before being supplied to the high-side driver 806 to appropriately control

the gate terminal of M4. The skilled person will recognize that the gate terminal of M4 must be

raised to a level above the level of the DC output voltage signal to switch M4 to its on-state. The

self-powered high-side driver 806 is electrically coupled between the gate terminal of M4 and

the output electrode 807 carrying the transformer output voltage. During operation, the bi-

directional piezoelectric power converter 800 comprises two distinct mechanisms for adjusting

the level of the DC output voltage VOUT. A first mechanism uses a DC output voltage detection

or monitoring circuit 809 which supplies a signal to the output voltage control circuit 810 of the

controller indicating the instantaneous level of the DC output voltage. A charge control circuit

ΔQ compares the instantaneous level of the DC output voltage with a reference voltage which 

for example represents a desired or target DC output voltage of the power converter. The charge

control circuit determines whether the current DC output voltage is to be increased or decreased

based on this comparison and adjusts at least one of: {a modulation of a pulse width modulated

input drive signal, a carrier frequency of the pulse width modulated input drive signal, a burst
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frequency of a burst modulated input drive signal} in appropriate direction to obtain the desired

adjustment of the DC output voltage. A second mechanism for adjusting the level of the DC

output voltage VOUT also uses the level signal from the DC output voltage detection circuit 809.

In this instance the output voltage control circuit 810 adjusts the duration of the second period

of the cycle time of the transformer output signal where M3 conducts reverse current through

the adjustable time delay circuit, control ΔT, of the phase controller 811. The corresponding ad-

justment of the second period of the cycle time as regards M4 is preferably made by delaying the

triggering time or point of the timer circuit included in the self-contained high-side driver 806.

The delay of the triggering time of the timer circuit may be controlled dynamically during oper-

ation of the bi-directional power converter 800 by the controller by adjusting a delay of an ad-

justable time delay circuit, control ΔT, to reach a desired or target duration of the second period 

of the cycle time of the transformer output signal. The adjustable time delay circuit, control ΔT, 

allows the controller to adjust the duration of the second period of the cycle time of the trans-

former output signal wherein reverse current is conducted by the bi-directional switching circuit

through the output electrode 807 back to the primary side of the PT 804. By this adjustment of

the duration of the second period of the cycle time, the amount of generated reverse power can

be effectively controlled allowing for the desired adjustment of the level of the DC output volt-

age VOUT while conserving power.

[0058] The skilled person will appreciate that the degree of charge or discharge of the VOUT

may be controlled in a step-wise or substantially continuous manner by a corresponding control

of the duration of the second period of the cycle time such that the level of VOUT may be contin-

uously increased or reduced as desired. The skilled person will understand that if the duration of

the second period of the cycle time is set to zero by the controller, the bi-directional piezoelec-

tric power converter 800 may be adapted to exclusively operate in the first state where the

switching circuit charges the positive DC output voltage during the first period of cycle times of

the transformer output signal. In this state, the NMOS transistors M3 and M4 are only conduct-

ing during the first period of the cycle time so to actively clamp the low-side and high-side sem-

iconductor diodes D3 and D4, respectively.

[0059] The self-oscillating feedback loop comprising comprises a resonance current control

circuit 812 comprising a peak current detector 826 coupled to a current limiter 828. The reso-

nance current control circuit 812 is configured to adjust a time delay of the adjustable time de-
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lay circuit 824 arranged in the feedback leg 814. The resonance current level of the piezoelectric

transformer 804 is determined based on the output signal of the output voltage detector 818, or,

alternatively, from an output of a low-pass filter 820 coupled to the output voltage detector 818.

The output voltage detector 818 may advantageously comprise a simple resistive load applied to

the feedback signal from the feedback output electrode 807c. In this situation, the resonance

current level of the piezoelectric transformer can be determined in a straightforward manner by

the peak current detector 826 from the level of the feedback signal and the known resistance of

the resistive load. The low-pass filter 820 may have similar electrical characteristics to the low-

pass filter of the first embodiment discussed above. The zero-crossing detector 822 receives a

low-pass filtered signal from the low-pass filter 820 and provides an essentially square wave

shaped signal indicating zero-crossings of the filtered signal which possesses an approximate

sine shaped waveform. The square wave signal is transmitted to an adjustable time delay circuit

824 which introduces a variable phase shift in the self-oscillating feedback loop such that the

predetermined excitation frequency can be adjusted. An output signal of the adjustable time de-

lay circuit 824 is coupled to the drive control circuit 802 such as to close the self-oscillating

feedback loop around an input driver 803. A resonance current control circuit 812 detects a peak

current from the output signal of the output signal of the voltage detector 818 as described

above and adjusts a time delay of the adjustable time delay circuit 824 based thereon. This is

useful to compensate for an increase of ac resonance current under reverse power transmission

through the piezoelectric power converter, e.g. in the second state of the bi-directional switching

circuit 808. The ac resonance current in the piezoelectric transformer increases under reverse

power transmission and this condition is detected by the peak current detector 826 of the reso-

nance current control circuit 812. The effect is compensated by limiting the ac resonance current

by the current limiter 828 which makes an appropriate adjustment of the time delay in the ad-

justable time delay circuit 824 such that an optimal operation point of the self-oscillating feed-

back loop can be maintained during both forward power transmission and reverse power trans-

mission of the bi-directional piezoelectric power converter 800. In the present embodiment of

the invention where the input driver 803 is coupled directly to the input electrode 805 without

any series or parallel inductor, the piezoelectric transformer 104 preferably possess a ZVS fac-

tor larger than 100 % such as larger than 120 %. In this manner ZVS operation of the input

driver 103 is enabled both in a first state and a second state of a bi-directional switching circuit
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808. The ZVS operation of the input driver 103 improves the power conversion efficiency of the

bi-directional piezoelectric power converter 800. The predetermined excitation frequency is

preferably selected in the manner already discussed above in connection with the first embodi-

ment of the invention. The use of the self-oscillating feedback loop has considerable advantages

because, the predetermined excitation frequency automatically tracks changing characteristics

of the piezoelectric transformer 804 and electronic circuitry of the input side of the power con-

verter like the drive control circuit 802. These characteristics will typically change across opera-

tion temperature and age but the self-oscillating feedback loop ensures changes are tracked by

the excitation frequency because a slope of the phase response of the piezoelectric transformer

804 is typically much steeper than a slope of a phase response of the low-pass filter 820. In this

manner, the predetermined excitation frequency will be significantly more sensitive to changes

in frequency response characteristic of the piezoelectric transformer 804 such that the self-

oscillating feedback loop automatically maintains the predetermined excitation frequency at an

optimum frequency or within an optimum frequency band such as in the ZVS operation band of

the piezoelectric transformer 804.
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CLAIMS

1. A piezoelectric power converter comprising:

- a piezoelectric transformer comprising an input electrode electrically coupled to an input or

primary section of the piezoelectric transformer and an output electrode electrically coupled

to secondary or output section of the piezoelectric transformer to provide a transformer out-

put voltage,

- an input driver electrically coupled directly to the input electrode without any intervening

series or parallel inductor to supply an input drive signal to the input electrode,

- a feedback loop operatively coupled between the output voltage of the piezoelectric trans-

former and the input driver to provide a self-oscillation loop around the primary section of

the piezoelectric transformer, oscillating at an excitation frequency, wherein:

- electrical characteristics of the feedback loop are configured to set the excitation frequency

of the self-oscillation loop within a ZVS operation range of the piezoelectric transformer.

2. A piezoelectric power converter according to claim 1, wherein a feedback signal of the

feedback loop is derived from the transformer output signal at the output electrode of the pi-

ezoelectric transformer.

3. A piezoelectric power converter according to claim 1, wherein a feedback signal of the

feedback loop is derived from a feedback output signal at a feedback output electrode ar-

ranged in one or more separate layer(s) of the output section of the piezoelectric transformer

to galvanic isolate the feedback output electrode from the output electrode.

4. A piezoelectric power converter according to claim 4, wherein a volume of the separate lay-

er(s) of the output section enclosing the feedback output electrode is smaller than a volume

of layers of the output section enclosing the output electrode.

5. A piezoelectric power converter according to claim 3, wherein a voltage gain, at the excita-

tion frequency, from the input electrode to the output electrode is larger or smaller than a
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voltage gain from the input electrode to the feedback output electrode, preferably between 2

and 50 times larger or between 2 and 50 times smaller.

6. A piezoelectric power converter according to claim 1, wherein a feedback signal of the

feedback loop is derived by a transformer resonance current estimator from a combination of

the input drive signal and a transformer input current running in the primary section of the

piezoelectric transformer.

7. A piezoelectric power converter according to claim 6, wherein the resonance current estima-

tor comprises:

- a first order differentiator coupled to the input drive signal to derive a first order derivative

signal of the input drive signal,

- a current sensor, coupled in series with the primary section of the piezoelectric transformer,

to supply a sensor signal representative of the transformer input current; and

- a subtractor configured to generate the feedback signal based on a difference between the

first order derivative signal and the sensor signal.

8. A piezoelectric power converter according to claim 6, wherein the first order differentiator

comprises a first order high-pass filter having an input coupled to the input drive signal and

an output supplying the first order derivative signal;

wherein a high-pass corner frequency of the first order high-pass filter is larger than a fun-

damental resonance frequency of the piezoelectric transformer such as at least two times

larger or preferably more than 10 times larger.

9. A piezoelectric power converter according to claim 6 or 7, wherein the subtractor comprises

a differential amplifier having a first differential input coupled to the first order derivative

signal and the second differential input coupled to the sensor signal.

10. A piezoelectric power converter according to claim 5 or 6, wherein the input current sensor

comprises a resistance arranged in-between a ground connection of the input driver and a

ground connection of the piezoelectric transformer.
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11. A piezoelectric power converter according to any of claims 2-9, wherein the feedback loop

comprises a cascade of:

- a phase shifter coupled for receipt of the feedback signal to apply a predetermined phase

shift to the feedback signal to provide a phase shifted feedback signal,

- a comparator coupled for receipt of the phase shifted feedback signal to generate a square-

wave feedback signal at a comparator output; wherein the square-wave feedback signal is

coupled to an input of the input driver so as to close the feedback loop.

12. A piezoelectric power converter according to claim 11, wherein the phase shifter comprises

a high-pass, band-pass, low-pass filter or a time delay.

13. A piezoelectric power converter according to claim 10 or 11, wherein the comparator com-

prises an inverting zero-crossing detector to provide square-wave feedback signal indicating

zero-crossings of the phase-shifted feedback signal.

14. A piezoelectric power converter according to any of the preceding claims, comprising:

- a bi-directional switching circuit coupled between the output electrode and an output volt-

age of the power converter,

- a controller adapted to control first and second states of the bi-directional switching circuit

based on the input drive signal or the transformer output voltage such that:

- in a first state, forward current is conducted from the output electrode to the output voltage

through the bi-directional switching circuit during a first period of a cycle time of the trans-

former output signal to charge the output voltage,

- in a second state, reverse current is conducted from the output voltage to the output elec-

trode through the bi-directional switching circuit during a second period of the cycle time of

the transformer output signal to discharge the output voltage and return power to the primary

section of the piezoelectric transformer.

15. A piezoelectric power converter according to claim 14, wherein the controller in the second

state is further configured to control the switching circuit such that:
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- both forward current and reverse current is conducted during a single cycle of the trans-

former output signal.

16. A piezoelectric power converter according to claim 14 or 15, wherein the switching circuit

comprises a half-wave rectifier or a full-wave rectifier operatively coupled to the output

electrode.

17. A piezoelectric power converter according to any of claim 14-16, wherein the feedback loop

comprises an adjustable time delay coupled in cascade with the phase shifter and the com-

parator to adjust the excitation frequency of the self-oscillating loop.

18. A piezoelectric power converter according to claim 17, wherein the feedback loop compris-

es:

- a current detector configured to determine a level of a transformer resonance current reso-

nance of the piezoelectric transformer,

- a current limiter adapted to adjust a time delay of the adjustable time delay circuit to limit

the transformer resonance current.

19. A piezoelectric power converter according to any claims 12-18, wherein a slope or deriva-

tive of a phase response of a transfer function of the piezoelectric transformer is steeper than

slope or derivative of a phase response of the band-pass, high-pass or low-pass filter within

the ZVS operation range of the piezoelectric transformer.

20. A piezoelectric transformer according to any of the preceding claims, comprising a piezoe-

lectric transformer with a zero-voltage switching factor (ZVS factor) larger than 100%,

preferably larger than 120%, such as larger than 150% or 200%;

in which the ZVS factor is determined at a matched load condition as:
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0.882 ;

keff_P, being a primary side effective electromechanical coupling factor of the piezoelectric

transformer,

keff_S, being a secondary piezoelectric transformer effective electromechanical coupling fac-

tor, in which:

̴݇  = ඨ1 −
ೝೞ̴ 
మ

ೌ షೝೞ̴ 
మ ̴݇ ௌ = ට1 −

ೝೞ̴ ೞ
మ

ೌ షೝೞ̴ ೞ
మ

fres_p = resonance frequency and frequency of a minimum magnitude of an impedance func-

tion at the input electrodes of the piezoelectric transformer with shorted output electrodes,

fanti-res_p = anti-resonance frequency and frequency of a maximum magnitude of the imped-

ance function at the input electrodes of the piezoelectric transformer with shorted output

electrodes,

fres_s = resonance frequency and frequency of a minimum magnitude of the impedance func-

tion at the output electrodes of the piezoelectric transformer with shorted input electrodes,

fanti-res_s = anti-resonance frequency and frequency of a maximum magnitude of the imped-

ance function at the output electrodes of the piezoelectric transformer with shorted input

electrodes.

21. A piezoelectric power converter according to any of the preceding claims, wherein a band-

width of the ZVS operation range of the piezoelectric transformer lies between 1% and 5%

of a fundamental or primary resonance frequency of the piezoelectric transformer.

22. A piezoelectric power converter according to any of the preceding claims, wherein a wiring

inductance at the output of the input driver to the input electrode is smaller than 500 µH,

preferably smaller than 100 µH, even more preferably smaller than 10 µH.

23. A piezoelectric power converter according to any of the preceding claims, comprising a

start-up circuit configured to inject a transient signal into the feedback loop at power-up of
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the power converter to initiate oscillation at the excitation frequency in the feedback loop.

24. A piezoelectric power converter according to claim 23, wherein the start-up circuit compris-

es an oscillator coupled into the feedback loop.
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PIEZOELECTRIC POWER CONVERTER WITH BI-DIRECTIONAL
POWER TRANSFER

COPYRIGHT

[0001] A portion of the disclosure of this patent document contains material which is

subject to copyright protection. The copyright owner has no objection to the facsimile reproduc-

tion by anyone of the patent disclosure, as it appears in the Patent and Trademark Office patent

files or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF THE PRESENT DISCLOSURE

[0002] The present invention relates to a bi-directional piezoelectric power converter

comprising a piezoelectric transformer. The piezoelectric transformer comprises an input elec-

trode electrically coupled to a primary section of the piezoelectric transformer and an output

electrode electrically coupled to an output section of the piezoelectric transformer to provide a

transformer output signal. A bi-directional switching circuit is coupled between the output elec-

trode and a DC or AC output voltage of the power converter. Forward and reverse current con-

ducting periods of the bi-directional switching circuit is based on the input drive signal or the

transformer output signal such that a forward current is conducted from the output electrode

through the bi-directional switching circuit to the DC or AC output voltage in a first state to

charge the DC or AC output voltage. In a second state, a reverse current is conducted through the

bi-directional switching circuit from the DC or AC output voltage to the output electrode to dis-

charge the DC or AC output voltage and return power to the primary section of the piezoelectric

transformer.

BACKGROUND

[0003] Traditional piezoelectric transformer based power converters are only capable of

supplying power in one direction, from an input voltage/power source to a DC or AC output of

the power converter. Furthermore, the piezoelectric transformer is normally operated in a narrow

frequency band around its fundamental or primary resonance frequency with a matched load

coupled to the output of the piezoelectric transformer. This is required to optimize power conver-

sion efficiency of the power converter. The small optimum frequency band of operation and the

need for a matched load make it difficult to provide output voltage regulation without sacrificing

D.9

209



13708533.1

3

efficiency of the piezoelectric based power converter. Instead of transferring surplus power to the

load coupled to the secondary side of the power converter, the present power converter enables

reverse transmission of power back to the input source to conserve energy.

[0004] Likewise in situations where the excitation frequency is substantially fixed, tradi-

tional output voltage control techniques based frequency modulation or pulse width modulation

of the input drive signal cannot easily be adapted to control a DC or AC output voltage of the

converter without causing considerable deterioration of the power conversion efficiency of the

power converter.

[0005] Another challenge in the design of traditional piezoelectric transformer based

power converters is to obtain zero-voltage-switching (ZVS) in an input driver, typically based on

a half-bridge or full-bridge MOS transistor circuit, coupled to a primary or input section of the

piezoelectric transformer. ZVS operation of piezoelectric transformers has traditionally been

achieved by adding an external inductor in series or in parallel with the primary or input section

of the piezoelectric transformer. The external inductor ensures that the input of the piezoelectric

transformer appears inductive across a certain frequency range and such that an output node of

the input driver can be charged/discharged in accordance with the input drive signal without in-

ducing prohibitive power losses. However, the external inductor occupies space, adds costs and

conducts and radiates EMI in the power converter. It would therefore be advantageous to provide

a piezoelectric transformer based power converters capable of ZVS operation with good power

conversion efficiency without the ordinary external inductor. ZVS operation of piezoelectric

transformers is supported in accordance with one aspect of the invention by increasing an appar-

ent ZVS factor of piezoelectric transformer of a power converter by conducting reverse current

from the DC or AC output voltage to the secondary section of the piezoelectric transformer as

described in further detail below. This methodology increases the apparent ZVS factor of a pie-

zoelectric transformer which can be useful to transform a piezoelectric transformer design or

construction without inherent ZVS capability to one with ZVS capability. In addition, even pie-

zoelectric transformer designs with inherent ZVS capability, i.e. a ZVS factor above 100 %, can

benefit from a further increase of apparent ZVS factor because it enlarges or broadens the fre-

quency band supporting ZVS operation.
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SUMMARY

[0006] A first aspect of the invention relates to a bi-directional piezoelectric power con-

verter comprising:

- a piezoelectric transformer comprising an input electrode electrically coupled to an input or

primary section of the piezoelectric transformer and an output electrode electrically coupled to

secondary or output section of the piezoelectric transformer to provide a transformer output sig-

nal. An input driver of the bi-directional piezoelectric power converter is electrically coupled to

the input electrode and arranged to supply an input drive signal with a predetermined excitation

frequency to the input electrode. A bi-directional switching circuit is coupled between the output

electrode and an output voltage of the converter and a controller is adapted to control first and

second states of the bi-directional switching circuit based on the input drive signal or the trans-

former output signal such that:

- in a first state, forward current is conducted from the output electrode to the output voltage

through the bi-directional switching circuit during a first period of a cycle time of the transform-

er output signal to charge the output voltage,

- in a second state, reverse current is conducted from the output voltage to the output electrode

through the bi-directional switching circuit during a second period of the cycle time of the trans-

former output signal to discharge the output voltage and return power to the primary section of

the piezoelectric transformer.

[0007] The presence of the second state wherein reverse current is conducted from the

output voltage through the bi-directional switching circuit to the output electrode allows effective

output voltage regulation without sacrificing efficiency of the piezoelectric based power convert-

er because power is returned to the primary section of the piezoelectric transformer. The trans-

mission of reverse current during the second period of the cycle time exploits an inherent bi-

directional power transfer property of piezoelectric transformers such that power is transferred in

opposite direction to the ordinary, i.e. forward, power flow in the power converter. Surplus pow-

er at the output voltage is transmitted back to the input power source such as a DC supply volt-

age supplying power to the input driver. According to a preferred embodiment of the invention,

the controller is in the second state further configured to control the switching circuit such that

both forward current and reverse current is conducted during a single cycle of the transformer

output signal. In this embodiment the forward current is conducted during the first period of the
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cycle time and reverse current is conducted during the second period of the same cycle of the

transformer output signal. The second period may have a length corresponding to about one-half

or less than the cycle time cycle time of the transformer output signal. The skilled person will

appreciate that the degree of charge or discharge of the output voltage may be controlled in a

step-wise or substantially continuous manner by a corresponding control of the relative length

between the first and second periods of the same cycle of the transformer output signal. In this

manner, the controller may provide effective output voltage control through adjustment of the

length of the second period of the cycle time. Accordingly, by appropriately balancing the length

of the first period of the cycle time relative to the second period of the same cycle, the bi-

directional piezoelectric power converter may be adapted to transfer net power to the output

voltage or to a load coupled thereto, transfer substantially zero power to the output voltage or

transfer a negative power to the output voltage. The skilled person will understand that if the

controller sets the length of the second period of the cycle time to zero, the bi-directional piezoe-

lectric power converter conveniently transits from the second state to the first state wherein the

bi-directional switching circuit conducts solely forward current so as to charge the output voltage

during the first periods of the cycle times. This leads to an increasing level of output voltage e.g.

the output voltage becomes more positive or more negative depending on the polarity configura-

tion of the bi-directional switching circuit. In general, the controller may be adapted to terminate

the second period of the cycle time, i.e. terminating the reverse conduction of current through the

switching circuit, synchronously or asynchronously to the input drive signal or the transformer

output signal. The controller preferably comprises an adjustable time delay circuit providing an

adjustable duration of the second period of the cycle time of the transformer output signal such

that the amount of reverse power can be controlled. The controller is preferably configured to

derive a synchronous state control signal from the input drive signal and apply the synchronous

state control signal through the adjustable time delay circuit to a switch control terminal of a se-

cond controllable semiconductor switch and/or a switch control terminal of the first controllable

semiconductor switch of the switching circuit to control respective states of the first and second

controllable semiconductor switches. In this manner, the switching circuit is responsive to the

synchronous state control signal indicating the termination of the second period of the cycle

time. The skilled person will understand that the synchronous state control signal may be derived

directly or indirectly from the input drive signal. Indirectly if the synchronous state control signal
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is derived from another signal in the power converter that is synchronous to the input drive signal

such as the transformer output signal. In one such embodiment, the synchronous state control

signal is derived from a zero-crossing detector embedded in a self-oscillating feedback loop en-

closing input section of the piezoelectric transformer.

[0008] According to a preferred embodiment of the invention, the controller is adapted to

sense a current through, or a voltage across, an electrical component of the bi-directional switch-

ing circuit. The controller initiates the forward current conduction in the first period of the cycle

time in response to a sensed current or voltage so as to asynchronously initiate the forward cur-

rent conduction. This embodiment simplifies the generation of an appropriately timed control

signal or signals for the controller to the bi-directional switching circuit because the forward cur-

rent conduction is automatically started without any need for a synchronous signal to indicate the

correct phase of the transformer output signal. The electrical component may comprise a transis-

tor, a diode or a resistor. In one embodiment, the electrical component comprises a series resistor

coupled is series with a semiconductor diode coupled between the transformer output voltage

and the output voltage. In this embodiment, the controller may be adapted to detect a flow of

forward current by monitoring the polarity of a voltage drop across the series resistor since this

polarity indicates the direction of current flow from the transformer output electrode to the out-

put voltage. The flow of forward current through the switching circuit automatically starts when

the transformer output signal exceeds the output voltage with approximately one diode voltage

drop.

[0009] The predetermined excitation frequency is preferably selected or adjusted to a

frequency which proximate to, or slightly above, a fundamental resonance frequency of the pie-

zoelectric transformer depending on how the input driver is coupled to the input electrode of the

primary section of the piezoelectric transformer. If the input driver is coupled to the primary sec-

tion through a series/parallel inductor, the predetermined excitation frequency is preferably

placed in proximity of the fundamental resonance frequency. The series/parallel inductor is

adapted to provide so-called zero voltage switching (ZVS operation) of the input driver. If the

input driver on the other hand is directly coupled to the input electrode of the piezoelectric trans-

former, i.e. without any series/parallel inductor, the predetermined excitation frequency is pref-

erably placed within a selected frequency band or range placed slightly above the fundamental

resonance frequency where the piezoelectric transformer may exhibit an intrinsic inductive input
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impedance, i.e. possess a ZVS factor larger than 100 % such as larger than 120 % according to

the below defined definition of the ZVS factor. The inductive input impedance in the selected

frequency band or range enables ZVS operation of the input driver even in the first state of the

bi-directional switching circuit so as to eliminate switching losses in the input driver. The setting

of the predetermined excitation frequency depends on the fundamental resonance frequency of

the piezoelectric transformer which may vary widely depending on its mode of operation and its

physical dimensions. However, in a number of useful embodiments, the predetermined excitation

frequency lies between 40 kHz and 1 MHz such as between 50 kHz and 200 kHz.

[0010] The bi-directional switching circuit preferably comprises one or more controllable

semiconductor switches adapted to conduct the forward current from the output electrode to the

output voltage during the first period of the cycle time. The one or more controllable semicon-

ductor switches likewise conducts reverse current from the output voltage to the output electrode

in the second state. The one or more controllable semiconductor switches preferably comprise(s)

a semiconductor selected from the group of {MOSFET (metal-oxide-semiconductor field effect

transistor), IGBT (insulated-gate bipolar transistor), bipolar transistor, Gate Turn-off thyristor

(GTO)}. According to a preferred embodiment, each of the one or more controllable semicon-

ductor switches preferably comprises a MOS transistor, such as a NMOS (n-channel metal oxide

semiconductor) transistor, which is capable of bi-directional current flow between its source and

drain terminals with a small on-resistance during both forward and reverse current conduction.

The on-states and off-states of each of the MOS transistors are controllable by appropriate con-

trol of the drive voltage on a gate terminal of the MOS transistor. One embodiment based on the

one or more controllable semiconductor switches comprises a first controllable semiconductor

switch arranged between the output electrode and the output voltage and a second controllable

semiconductor switch arranged between the output electrode and a negative supply voltage. The

negatives supply voltage may be ground reference of the power converter. The controller is con-

figured to alternatingly switch the first and second controllable semiconductor switches to re-

spective on-states and off-states in a non-overlapping manner to control the forward and reverse

current conduction. In the first state, this embodiment provides half-wave rectification of the

transformer output signal by conducting the forward current to the output voltage through the

first controllable semiconductor switch when transformer current out of the output electrode is

positive. When the transformer current out of the output electrode is negative the second control-
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lable semiconductor switch conducts and circulates current through the secondary side of the

piezoelectric transformer. The skilled person will understand that the bi-directional switching

circuit may comprise a full-wave rectification circuit such that a third controllable semiconductor

switch is arranged between a second output electrode of the secondary side of the piezoelectric

transformer and the output voltage and a fourth controllable semiconductor switch arranged be-

tween the second output electrode and the negative supply voltage.

[0011] According to an embodiment of the bi-directional piezoelectric power converter,

the bi-directional switching circuit further comprises a first semiconductor diode coupled across

inlet and outlet nodes of the first controllable semiconductor switch, e.g. drain and source termi-

nals of the MOS transistor, to conduct forward current to the output voltage during at least a por-

tion of a first period of the cycle time. A second semiconductor diode may be coupled across

inlet and outlet nodes of the second controllable semiconductor switch, e.g. drain and source

terminals of another MOS transistor, to conduct current during at least a portion of the cycle time

of the transformer output signal. The first semiconductor diode or the second semiconductor di-

ode may comprise a body/substrate diode integrally formed with the first or the second semicon-

ductor switch, respectively. This reduces semiconductor substrate area consumption on a semi-

conductor die or substrate onto which the power converter may be integrated.

[0012] The on-set of flow of forward current through the first semiconductor diode is a

convenient detection mechanism for the controller to asynchronously determine when the first

controllable semiconductor switch must be switched to its on-state. In this manner, the controller

may be configured to sense the forward current through, or the forward voltage across, the first

semiconductor diode; and switch the first controllable semiconductor switch to its on-state in

response to a sensed forward current or voltage so as to actively clamp the first semiconductor

diode during the first period of the cycle time. In this manner, the first semiconductor diode con-

ducts forward current to the output voltage during the portion of the first period of the cycle time

and the first controllable semiconductor switch conducts the forward current during a major por-

tion of the first period of the cycle time due to its lower impedance/forward voltage drop once

activated.

[0013] According to another preferred embodiment of the invention, the controller com-

prises a self-powered driver coupled between the switch control terminal of the first controllable

semiconductor switch and the output electrode of the output section. Furthermore, the self-
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powered driver comprises a timer circuit configured to control the state of the first semiconduc-

tor switch in accordance with a timer period setting wherein the timer period setting is based on

the cycle time of the transformer output signal. The termination of the second period of the cycle

time is therefore controlled by the timer period setting rather than the previously discussed syn-

chronous state control signal. The coupling of the self-powered or autonomous driver allows the

driver to float and follow an instantaneous voltage of output electrode of the piezoelectric trans-

former. Since the instantaneous voltage of output electrode may rise to a level of several hundred

volt or even several kilovolt for high-voltage piezoelectric power converters the lack of any need

for supplying a switch control signal at the same voltage level to the self-powered driver for ter-

minating the second period of the cycle time is a significant advantage. The self-powered driver

preferably comprises a local energy storage component supplying power to the self-powered

driver and a rectifying element is coupled between the local energy storage component and a

power supply voltage of the power converter to energize the local energy storage component.

The local energy storage component may comprise a capacitor or a rechargeable battery that is

charged or energized during time intervals wherein the instantaneous voltage at output electrode

is relatively small such as below a DC supply voltage of the power converter. The DC supply

voltage may be a positive DC supply voltage between 10 and 50 volt such as about 24 volt. Dur-

ing time intervals wherein the instantaneous voltage at output electrode has a high magnitude

such as above a positive DC supply voltage or below a negative DC supply voltage of the power

converter, the local energy storage component is charged and delivers a local supply voltage to

the self-powered driver including the timer circuit allowing these to operate as described above.

The rectifying element preferably comprises a high-voltage diode having a break-down voltage

larger than 200 V, or more preferably larger than 500 V or larger than 1000 V. In the latter em-

bodiment, the high-voltage diode is preferably the only galvanic connection between the self-

powered driver and the power supply voltages or rail of the power converter. The high-voltage

diode is reverse biased during time intervals where the instantaneous voltage at output electrode

has a high magnitude as described above such that the local energy storage component is the

exclusive source of power for the self-powered driver during such time intervals. In one embod-

iment, the self-powered driver is configured to start the timer in response to a change of bias

state of the rectifying element. Consequently, when the instantaneous voltage at output electrode

exceeds the local supply voltage, the timer automatically initiates the second period of the cycle
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time and sets this period substantially equal to the timer period setting. The timer period setting

is preferably equal to 50 % of the cycle time of the transformer output signal but may be less in

other embodiments such as less than 20 % or 10 % of the cycle time of the transformer output

signal.

[0014] Power converters are often required to provide a specified or target AC or DC

voltage as the output voltage within certain bounds or limits which generally require voltage reg-

ulation at the load. The present piezoelectric power converter is capable of providing output

voltage regulation without sacrificing power conversion efficiency by transferring power back to

the input energy source during the second period of the cycle time where the output voltage is

discharged as previously described. The controller may be configured to control the switching

between the first and second states of the bi-directional switching circuit based on a difference

between the output voltage and a predetermined AC or DC reference voltage where the latter is

the target AC or DC voltage. If the AC or DC reference voltage is larger than the current output

voltage of the piezoelectric power converter, the controller may adapt the bi-directional switch-

ing circuit to exclusively operate in the first state to increase the output voltage. On the other

hand if the current output voltage of the piezoelectric power converter is smaller the AC or DC

reference voltage, the controller may adapt the bi-directional switching circuit to operate in the

second state to decrease or discharge the output voltage during the second time periods of the

cycle time and at the same time return power to the input power source through the primary sec-

tion of the piezoelectric transformer.

[0015] In one embodiment, the predetermined excitation frequency of the input drive

signal is set by a self-oscillating feedback loop arranged around the input driver and the piezoe-

lectric transformer. The use of the self-oscillating feedback loop to set the predetermined excita-

tion frequency or excitation frequency has considerable advantages because the excitation fre-

quency automatically tracks changing characteristics of the piezoelectric transformer itself and

electronic circuitry of the input driver. These characteristics will typically change across opera-

tion temperature and age of the piezoelectric power converter, but the feedback loop ensures

such changes are tracked by the excitation frequency so as to maintain the excitation frequency

at an optimum frequency or within an optimum frequency band. The optimum frequency band

may be a frequency range wherein the piezoelectric transformer exhibits inductive behaviour

with a ZVS factor higher than 100 % such that ZVS operation of the input driver can be achieved
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even in the first state of the bi-directional switching circuit. In one embodiment the self-

oscillating feedback loop comprises an adjustable time delay configured to adjust a phase re-

sponse of the self-oscillating feedback loop whereby the predetermined excitation frequency is

adjusted. . This is particularly useful in connection with the present bi-directional piezoelectric

power converter wherein the impedance characteristics of the piezoelectric transformer changes

at and proximate to the fundamental resonance frequency in response to the level of reverse

power transmission. When reverse power is transmitted through the power converter, e.g. during

the second state of the bi-directional switching circuit, the excitation frequency set by the self-

oscillating feedback loop decreases and the ac resonance current in the piezoelectric transformer

increases. This effect can be detected by a resonance current control circuit and compensated by

an appropriate adjustment of the delay of the adjustable time delay such that an optimal opera-

tion point of the self-oscillating feedback loop can be maintained during both forward power

transmission and reverse power transmission of the bi-directional piezoelectric power converter.

[0016] A second aspect of the invention relates to a piezoelectric power converter com-

prising:

- a piezoelectric transformer comprising an input electrode electrically coupled to an input or

primary section of the piezoelectric transformer and an output electrode electrically coupled to

secondary or output section of the piezoelectric transformer to provide a transformer output volt-

age,

- an input driver electrically coupled directly to the input electrode and arranged to supply an

input drive signal to the input electrode,

- a feedback loop operatively coupled between the output electrode of the piezoelectric trans-

former and the input driver to provide a self-oscillation loop around the input section of the pie-

zoelectric transformer oscillating at an excitation frequency. The electrical characteristics of the

feedback loop are preferably configured to set the excitation frequency of the self-oscillation

loop within a ZVS operation range of the piezoelectric transformer.

[0017] The piezoelectric power converter according to this second aspect of the invention

benefits from the above-described advantages of the self-oscillating feedback loop arranged

around the input driver and the piezoelectric transformer. The piezoelectric transformer prefera-

bly has a zero-voltage switching factor (ZVS factor) larger than 1.0 or 100 %, preferably larger

than 1.2 or 120%, such as larger than 1.5 or 150%, or larger than 2.0 or 200 %;
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[0018] in which the ZVS factor is determined at a matched load condition as:
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ିଶ − 1
0.882 (1)

[0019] keff_P, being a primary side effective electromechanical coupling factor of the

piezoelectric transformer,

[0020] keff_S,being a secondary piezoelectric transformer effective electromechanical

coupling factor, in which:
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[0021] fres_p = a minimum magnitude of an impedance function at the input electrode of

the piezoelectric transformer with shorted first and second output electrodes,

[0022] fanti_res_p = a maximum magnitude of the impedance function at the input elec-

trode of the piezoelectric transformer with shorted first and second output electrodes,

[0023] fres_s = a minimum magnitude of the impedance function at the first and second

output electrodes of the piezoelectric transformer with shorted input electrodes,

[0024] fanti_res_s = a maximum magnitude of the impedance function at the first and se-

cond output electrode of the piezoelectric transformer with shorted input electrodes.

[0025] A third aspect of the invention relates to a method of increasing an apparent ZVS

factor of a piezoelectric transformer of a power converter. The method comprising steps of:

- applying an input drive signal with a predetermined excitation frequency to an input electrode

of the piezoelectric transformer,

- providing a bi-directional switching circuit coupled between a secondary or output section of

the piezoelectric transformer and an output voltage of the power converter,

- conducting, in a first state, forward current from the output section to the output voltage

through the bi-directional switching circuit during a first period of a cycle time of the transform-

er output signal to charge the output voltage,
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- conducting, in a second state, reverse current from the output voltage to the output section

through the bi-directional switching circuit during a second period of the cycle time of the trans-

former output signal to discharge the output voltage,

- adjusting the apparent ZVS factor of the piezoelectric transformer by adjusting a length of the

second period of the cycle time.

[0026] As described above, when reverse power is transmitted through the power con-

verter during the second period of the cycle time of the transformer output signal, the ac reso-

nance current in the piezoelectric transformer increases in response thereto such that it appears

more inductive as seen from the input driver coupled to the primary side of the piezoelectric

transformer. The increase of apparent transformer input inductance is caused by the increasing

energy storage capability of the piezoelectric transformer. This increase of apparent inductance

of the piezoelectric transformer is highly useful to reduce the overall size and EMI radiation of

the piezoelectric power converter. The higher apparent inductance of the piezoelectric transform-

er itself allows the input driver to be coupled directly to input electrode of the primary section

without any of the normally used series or parallel inductors and still maintain zero-voltage

switching conditions in the input driver, i.e. ZVS operation. Thereby, the present methodology of

increasing the apparent ZVS factor of the piezoelectric transformer, and the corresponding bi-

directional piezoelectric power converter, can utilize piezoelectric transformer types without

native ZVS capability, i.e. having a ZVS factor below 100 %, and still allow ZVS operation of

the input driver. The length of the second period of the cycle time may accordingly be adjusted

to a value which provides ZVS operation of the input driver during operation of the power con-

verter in the second state of the switching circuit.

[0027] A preferred embodiment of the present methodology comprises a further step of:

- conducting both forward current and reverse current during a single cycle of the transformer

output signal. As previously explained, the net power transferred to the output voltage may be

controlled in either a step-wise or in a substantially continuous manner by a corresponding con-

trol of the relative length between the first and second periods of the same cycle of the trans-

former output signal such that energy efficient and accurate output voltage regulation is possible.

Since the amount of reversely transmitted power or energy through the piezoelectric transformer

can be varied by adjusting the length of the second period of the cycle of the transformer output
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signal the apparent ZVS factor of the piezoelectric transformer can be efficiently and accurately

controlled.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] Preferred embodiments of the invention will be described in more detail in con-

nection with the appended drawings, in which:

[0029] Fig. 1 is a schematic block diagram of a bi-directional piezoelectric power con-

verter in accordance with a first embodiment of the invention,

[0030] Fig. 2 is a schematic block diagram of a self-powered high-side driver for a bi-

directional piezoelectric power converter,

[0031] Fig. 3 is a schematic block diagram of a bi-directional piezoelectric power con-

verter in accordance with a second embodiment of the invention,

[0032] Figs. 4a) – d) depict measured forward and reverse current waveforms through a

bi-directional switching circuit at four different output power settings of the piezoelectric power

converter depicted in Fig. 1,

[0033] Fig. 4e) shows measured forward and reverse power figures through the bi-

directional piezoelectric power converter over a time period where these quantities are adjusted

during operation of the power converter,

[0034] Fig. 5 is a schematic block diagram of a generic bi-directional switching circuit,

[0035] Fig. 6 is a schematic block diagram of a bi-directional switching circuit config-

ured for half-wave rectification with either positive or negative DC output voltage; and

[0036] Fig. 7 is a schematic block diagram of a bi-directional switching circuit config-

ured for full-wave rectification with positive DC output voltage.

DETAILED DESCRIPTION

[0037] The below appended detailed description of embodiments of the present invention

relate to bi-directional piezoelectric power converters for voltage step-up or voltage multiplica-

tion aimed at generating high DC output voltages such as output voltages from several hundred

Volts to several thousand Volts. However, the skilled person will understand that the below de-
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scribed embodiments are highly useful for other types of applications such as step-down and low

voltage power converters requiring high power conversion efficiency.

[0038] Fig. 1 shows a schematic block diagram of a bi-directional piezoelectric power

converter 100 in accordance with a first embodiment of the invention. The bi-directional piezoe-

lectric power converter 100 comprises a piezoelectric transformer, PT, 104. The piezoelectric

transformer, PT, 104 has a first input electrode 105 electrically coupled to an input or primary

section of the bi-directional piezoelectric power converter 100 and a second input electrode con-

nected to ground, GND. A first output electrode 107 of the piezoelectric transformer 104 is elec-

trically coupled to secondary or output section of the piezoelectric transformer 104 to provide a

transformer output signal and a second output electrode is connected to ground, GND, like the

second input electrode. The bi-directional piezoelectric power converter 100 additionally com-

prises an input driver 103 electrically coupled directly to the input electrode 105 so as to apply

an input drive signal to the input or primary section. A driver control circuit 102 generates ap-

propriately timed gate control signals for NMOS transistors M2 and M1 of the input driver 103.

The input drive signal has a predetermined excitation frequency determined by parameters of a

self-oscillating feedback loop arranged around or enclosing the input driver 103 and the piezoe-

lectric transformer 104. The self-oscillating feedback loop comprises a feedback leg 114 cou-

pling a resonance oscillation signal, having a frequency equal to the predetermined excitation

frequency, detected in the piezoelectric transformer structure back to the driver control circuit

102. The self-oscillating feedback loop comprises a resonance current control circuit 112 com-

prising a peak current detector 126 coupled to a current limiter 128. The resonance current con-

trol circuit 112 is configured to adjust a time delay of the adjustable time delay circuit 124 ar-

ranged in the feedback leg 114. An AC resonance current in the piezoelectric transformer 104 is

detected by a resonance current detector 118 coupled to either the primary side or secondary side

of the piezoelectric transformer 104. A resonance current signal supplied by the detector 118 is

transmitted to a low-pass or band-pass filter 120 which provides additional phase shift through

the feedback loop and may attenuate or suppress certain harmonics components of the funda-

mental resonance frequency of the piezoelectric transformer 104. A zero-crossing detector 122

receives a filtered signal from the low-pass or band-pass filter 120 and provides an essentially

square wave shaped signal indicating zero-crossings of the filtered signal which has an approxi-

mate sine shaped waveform. The square wave signal is transmitted to an adjustable time delay
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circuit 124 which introduces a variable phase in the self-oscillating feedback loop such that the

predetermined excitation frequency can be adjusted. An output signal of the adjustable time de-

lay circuit 124 is coupled to the drive control circuit 102 such as to close the self-oscillating

feedback loop around the input driver 103. A resonance current control circuit 112 detects a peak

current from the output signal of the low-pass or band-pass filter 120 and adjusts a time delay of

the adjustable time delay circuit 124 based thereon. This is useful to compensate for a decrease

of the excitation frequency set by the self-oscillating feedback loop under reverse power trans-

mission through the piezoelectric power converter, e.g. in the second state of the bi-directional

switching circuit. The ac resonance current in the piezoelectric transformer increases under re-

verse power transmission and the change is detected by a peak current detector 126 of the reso-

nance current control circuit 112. The effect is compensated by limiting the ac resonance current

by the current limiter 128 which makes an appropriate adjustment of the time delay in the adjust-

able time delay circuit 124 such that an optimal operation point of the self-oscillating feedback

loop can be maintained during both forward power transmission and reverse power transmission

of the bi-directional piezoelectric power converter 100.

[0039] In the present embodiment of the invention where the input driver 103 is coupled

directly to the input electrode 105 without any series or parallel inductor, the piezoelectric trans-

former 104 preferably possess a ZVS factor larger than 100 % such as larger than 120 %. In this

manner ZVS operation of the input driver 103 is enabled both in a first state and a second state of

a bi-directional switching circuit 108. The ZVS operation of the input driver 103 improves the

power conversion efficiency of the bi-directional piezoelectric power converter 100. The prede-

termined excitation frequency is preferably selected or set to lie slightly above a fundamental

resonance frequency of the piezoelectric transformer 104 within a frequency band or range

where the piezoelectric transformer 104 exhibits the above-described ZVS factor larger than 100

% and appears possess inductive input impedance. The feedback leg 114 is coupled to the reso-

nance current control circuit 112 that detects and limits the ac current flowing inside the piezoe-

lectric transformer 104 as explained in further detail above. The use of the self-oscillating feed-

back loop has considerable advantages because, the predetermined excitation frequency automat-

ically tracks changing characteristics of the piezoelectric transformer 104 and electronic circuitry

of the input side of the power converter like the drive control circuit 102. These characteristics

will typically change across operation temperature and age but the self-oscillating feedback loop
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ensures changes are tracked by the excitation frequency because a slope of the phase response of

the piezoelectric transformer 104 is typically much steeper than a slope of a phase response of

the low-pass or band-pass filter 120. In this manner, the predetermined excitation frequency will

largely be sensitive only to changes of electrical characteristics of the piezoelectric transformer

104 such that the self-oscillating feedback loop automatically maintains the predetermined exci-

tation frequency at an optimum frequency or within an optimum frequency band such as in the

ZVS operation range or frequency band of the piezoelectric transformer 104.

[0040] At the secondary side of the PT 104, a bi-directional switching circuit 108 is elec-

trically coupled between a transformer output signal generated at the output electrode 107 of the

PT 104 and a positive DC output voltage VOUT applied across a load capacitor CLOAD of the pow-

er converter 100. The load may of course comprise a resistive and/or inductive component in

addition to the depicted load capacitance CLOAD. A controller or control circuit is adapted to con-

trol forward current conduction from the output electrode 107 to VOUT through the bi-directional

switching circuit 108 during a first period of the cycle time of the transformer output signal. The

positive DC output voltage VOUT is accordingly charged during the first period of the cycle time.

This transformer output signal, oscillating at the excitation frequency of the input signal, is ap-

plied to a midpoint node between series coupled NMOS transistors M4 and M3 of the bi-

directional switching circuit 108. The output section of the PT 104, oscillating at the excitation

frequency, behaves largely as a current source injecting AC current into the midpoint node be-

tween series coupled M4 and M3 to generate the transformer output signal or voltage. Further-

more, the controller is adapted to control a second period of the cycle time of the transformer

output signal wherein reverse current is conducted through the bi-directional switching circuit

108 to the output electrode 107 of the PT such that VOUT is discharged during the second period

of the cycle time. During the second period of the cycle time power is returned to the primary

section of the piezoelectric transformer through the output electrode 107 of the PT.

[0041] The skilled person will appreciate that M3 and M4 function as respective control-

lable semiconductor switches each exhibiting low resistance between an inlet and an outlet node

(i.e. drain and source terminals) in the on-state and very large resistance in the off-state or non-

conducting state. The on-resistance of each of M3 and M4 in its on-state/conducting state may

vary considerably according to requirements of a particular application, in particular the voltage

level at the DC output voltage VOUT or load impedance. In the present high-voltage embodiment
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of the invention, each of the M3 and M4 is preferably selected such that its on-resistance lies be-

tween 50 and 1000 ohm such as between 250 and 500 ohm. The positive DC supply voltage VDD

may vary widely in accordance with the requirements of a particular application. In the present

embodiment of the invention, the positive DC supply voltage VDD is preferably selected to a

voltage between 20 and 40 volt such as about 24 volt.

[0042] The bi-directional switching circuit 108 comprises a high-side semiconductor

diode D4 arranged or coupled across drain and source terminals of M4 so as to conduct the for-

ward current to the DC output voltage VOUT in a first state of the bi-directional switching circuit

108. A low-side semiconductor diode D3 is in a similar manner coupled across drain and source

terminals of M3 so as to conduct the reverse current through the output electrode 107 and output

section of the PT 104 during at least a portion of the first state. In the first state, the forward cur-

rent is conducted from the output electrode 107 of the PT 104 through the bi-directional switch-

ing circuit 108 to the DC output voltage VOUT during a first period of a cycle time of the trans-

former output signal to charge the output voltage. This is accomplished by switching the high-

side NMOS transistor M4 to its on-state or conducting state by a self-powered high-side driver

106 which forms part of the controller. The self-powered high-side driver 106 or self-powered

driver 106 is coupled between the control or gate terminal of M4 and the output electrode 107

which supplies the transformer output signal. The timing of the state switching of M4 is deter-

mined by the detection of forward current in D4 by a current sensor (not shown) contained in the

self-powered driver 106. This current sensor is preferably arranged in series with the high-side

semiconductor diode D4. In response to detection of forward current in D4 the self-powered driv-

er 106 switches M4 to its on-state which effectively clamps D4 such that a majority of the for-

ward current flowing through the parallel connection of M4 and D4 to the DC output voltage

VOUT in reality flows through M4. On the other hand, during a negative half-cycle of the trans-

former output signal in the first state of the bi-directional switching circuit 108, D4 is reverse

biased and M4 switched to its off-state at expiry of a timer period setting of the timer circuit 205

(refer to Fig. 2) as explained below in additional detail. However, current is now conducted from

the negative supply rail, i.e. GND in the present embodiment, to the output electrode 107 of the

PT 104 through the parallel connection of M3 and D3. Initially, D3 will start to conduct forward

current once it becomes forward biased by the negative transformer output voltage. M3 is on the

other hand, switched to its on-state or conducting state by a low-side driver 121 which forms part
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of the controller. The low-side driver 121 is coupled to the gate terminal of M3 and configured to

switch M3 from its off-state to its on-state and vice versa. However, while the timing of the state

switching of M3 from its off-state to the on-state is determined in a manner similar to M4, the

opposite state switching of M3 is effected synchronously to input drive signal as explained below.

M3 is switched from the off-state to the on-state by a detection of forward current in D3 by a cur-

rent sensor (not shown) contained in the low-side driver 121. This current sensor is arranged in

series with the low-side semiconductor diode D3. At the detection of forward current in D3 the

low-side driver 121 switches M3 to its on-state which effectively clamps D3 such that a majority

of the forward current flowing through the parallel connection of M3 and D3 in reality flows

through M3.

[0043] Consequently, in the first state the bi-directional switching circuit 108 functions

as a half-wave rectifier or voltage doubler of the transformer output signal such that forward cur-

rent is conducted from the output electrode 107 of the PT 104 through the high-side NMOS tran-

sistor M4 and semiconductor diode D4 to the DC output voltage VOUT to charge VOUT. In the

negative half-periods of the transformer output signal, current is circulated around the secondary

section of the PT 104 without charging the DC output voltage in the current embodiment which

uses the half-wave rectification provided by the present bi-directional switching circuit 108. In

comparison to a traditional diode-based half-wave rectifier, the bi-directional switching circuit

108 additionally comprises the NMOS transistors M4 and M3 of the bi-directional switching cir-

cuit 108 arranged for clamping of the high and low-side semiconductor diodes D4 and D3. During

a second state and during a third state of the bi-directional switching circuit 108, the NMOS tran-

sistors M3 and M4 are controlled by the controller such that a flow of reverse power is enabled.

The reverse current is conducted through the bi-directional switching circuit 108 from the DC

output voltage VOUT to the output electrode 107 of the PT 104 during a second period of the cy-

cle time of the transformer output signal so as to discharge VOUT. Due to the inherent bi-

directional transfer property of the PT 104 power applied to the secondary section through the

output electrode 107 is transferred to the input section of the PT 104 in effect transferring power

in opposite direction to the normal flow of power of the power converter 100.

[0044] In connection with the reverse current conduction during the second period of the

cycle time, state switching of M3 is controlled by the low-side driver 121 coupled to the gate

terminal of M3. The low-side driver 121 is responsive to a synchronous state control signal de-
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rived from the input drive signal supplied by an adjustable time delay circuit, control ΔT, of a 

phase controller 111. The phase controller comprises the adjustable time delay circuit, control

ΔT, and a fixed time delay, ΔT circuit. The phase controller 111 receives the previously men-

tioned zero-crossing detector output signal 119 which switches states synchronously to the input

drive signal and the transformer output signal because this signal is generated inside the self-

oscillating feedback loop. Since the input drive signal and the transformer output signal oscillate

synchronously to each other, the time delay imposed by the phase controller 111 to the zero-

crossing detector output signal 119 sets a length or duration of the second period of the cycle

time of the transformer output signal. M3 is allowed to continue conducting current for the dura-

tion of the second period of the cycle time until the state transition of the synchronous state con-

trol signal turns off M3 of the low-side driver 121. While the corresponding state switching of the

high-side NMOS transistor M4 from its on-state to its off-state in one embodiment is controlled

by the synchronous state control signal albeit phase shifted about 180 degrees, the present em-

bodiment of the invention uses a different turn-off mechanism provided by the self-powered

high-side driver 106. The self-powering of the high-side driver 106 is configured to terminate a

reverse current conducting period of M4 based on an internally generated state control signal

supplied by an internal timer rather than the above-described synchronous state control signal

supplied by the adjustable time delay circuit, control ΔT. The self-powered property of the high-

side driver 106 is highly advantageous for high-voltage output PT based power converters where

the DC output voltage may be above 1 kV. The self-powering property of the high-side driver

106 circumvents the need for raising the zero-crossing detector output signal 119 to a very high

voltage level, i.e. matching the level of the DC output voltage, before being supplied to the high-

side driver 106 to appropriately control the gate terminal of M4. The skilled person will recog-

nize that the gate terminal of M4 must be raised to a level above the level of the DC output volt-

age signal to switch M4 to its on-state. The self-powered high-side driver 106 is electrically cou-

pled between the gate terminal of M4 and the output electrode 107 carrying the transformer out-

put voltage as explained in further detail below in connection with Fig. 2.

[0045] During operation, the bi-directional piezoelectric power converter 100 comprises

two distinct mechanisms for adjusting the level of the DC output voltage VOUT. A first mecha-

nism uses a DC output voltage detection or monitoring circuit 109 which supplies a signal to the

output voltage control circuit 110 of the controller indicating the instantaneous level of the DC
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output voltage. A charge control circuit ΔQ compares the instantaneous level of the DC output 

voltage with a reference voltage which for example represents a desired or target DC output

voltage of the power converter. The charge control circuit determines whether the current DC

output voltage is to be increased or decreased based on this comparison and adjusts at least one

of: {a modulation of a pulse width modulated input drive signal, a carrier frequency of the pulse

width modulated input drive signal, a burst frequency of a burst modulated input drive signal} in

appropriate direction to obtain the desired adjustment of the DC output voltage. A second mech-

anism for adjusting the level of the DC output voltage VOUT also uses the level signal from the

DC output voltage detection circuit 109. In this instance the output voltage control circuit 110

adjusts the duration of the second period of the cycle time of the transformer output signal where

M3 conducts reverse current through the adjustable time delay circuit, control ΔT, of the phase 

controller 111. The corresponding adjustment of the second period of the cycle time as regards

M4 is preferably made by delaying the triggering time or point of a timer circuit included in the

self-contained high-side driver 106 as explained below in connection with Fig. 2. The delay of

the triggering time of the timer circuit may be controlled dynamically during operation of the bi-

directional power converter 100 by the controller by adjusting a delay of an adjustable time delay

circuit, control ΔT, to reach a desired or target duration of the second period of the cycle time of 

the transformer output signal. The adjustable time delay circuit, control ΔT, allows the controller 

to adjust the duration of the second period of the cycle time of the transformer output signal

wherein reverse current is conducted by the bi-directional switching circuit through the output

electrode 107 back to the primary side of the PT 104. By this adjustment of the duration of the

second period of the cycle time, the amount of reverse power can be effectively controlled allow-

ing for the desired adjustment of the level of the DC output voltage VOUT while conserving pow-

er.

[0046] The skilled person will appreciate that the degree of charge or discharge of the

VOUT may be controlled in a step-wise or substantially continuous manner by a corresponding

control of the duration of the second period of the cycle time such that the level of VOUT may be

continuously increased or reduced as desired. Furthermore, the length of the second period of the

cycle time of the high-side NMOS transistor M4 may be adapted to track the same for M3 as ex-

plained below in connection with the detailed description of the operation of the self-powered

high side driver 106. The skilled person will understand that if the duration of the second period
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of the cycle time is set to zero by the controller, the bi-directional piezoelectric power converter

100 may be adapted to exclusively operate the first state where the switching circuit charges the

positive DC output voltage during the first period of cycle times of the transformer output signal.

In this state, the NMOS transistors M3 and M4 are only conducting during the first period of the

cycle time so to actively clamp the low-side and high-side semiconductor diodes D3 and D4, re-

spectively.

[0047] Fig. 2 is a schematic circuit diagram of the design of the self-powered high-side

driver 106. The self-powered driver 106 comprising the above-mentioned timer circuit 205 or

timer 205 coupled to the gate terminal of NMOS transistor M4 through gate driver 207 so as to

control the duration of its on-state, and possibly an off-state, of M4 in accordance with a timer

period defined by a timer period setting. The timer period or timer delay is preferably adjusted to

about 50 % of the cycle of the transformer output signal as set by the excitation frequency con-

trolled by the self-oscillating feedback loop. The self-powered driver 106 comprises a rectifying

element in form of high-voltage diode 201 coupled in series with a pair of anti-parallel diodes

D1a and D1b which are coupled to a local supply capacitor 203 Clocal. The local supply capacitor

203 is acting as a rechargeable energy storage component which is charged (as indicated by

charge current Iboot) with energy from the positive DC supply voltage VDD during conduction

periods of the high-voltage diode 201. The voltage V_local on the local supply capacitor 203

Clocal is coupled to voltage supply lines of the circuit blocks of the self-powered high-side driver

106 to supply operating power to these circuits during time periods where the self-powered driv-

er 106 is decoupled from the residual portion of the power converter as described below. A Reset

input R of the timer circuit 205 is coupled to a voltage level VR at a circuit node in-between the

high-voltage diode 201 and the anti-parallel diodes D1a and D1b. When the transformer output

voltage at the output electrode 107 of the PT is raised above GND because the low-side NMOS

transistor M3 has been switched to its non-conducting state the AC current supplied by the PT

through the output electrode 107 raises the voltage at the midpoint node between series coupled

NMOS transistors M4 and M3 eventually leading to a forward biasing of the semiconductor di-
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ode D4, the voltage level at VR will fall from approximately VDD towards the local zero potential

on node 107, Gnd_local. When the voltage level at VR has dropped down to the local zero poten-

tial, the high-voltage diode 201 becomes reverse biased. The timer circuit 205 is triggered be-

cause VR is conveyed to the Reset input R of the timer circuit 205. The output of the timer cir-

cuit 205 switches to its off state after expiry of the timer period, i.e. about one-half of the cycle

time of the transformer output signal in the present embodiment. This state transition is then im-

mediately conveyed to the gate input of M4 by the gate driver 207. In response M4 is accordingly

switched to its off-state. Consequently, the state switching of M3 from on-state to the off-state

determines when the transformer output voltage at the output electrode 107 begins to increase

from the ground level triggering the timer circuit 205 and initiating the timer period according to

the timer period setting. Because, the state switching of M3 from its on-state to its off-state is

controlled by the above-described synchronous state control signal supplied by the adjustable

time delay circuit, control ΔT, the turn-off timing or instant of M3 indirectly controls or sets the

delayed turn-off timing of M4. Consequently, by adjustment of the time delay provided by the

time delay circuit, control ΔT, the controller is able to adjust the length of the second period of 

the cycle time of the high-side NMOS transistor M4 where reverse current is conducted. The

current sense circuit is adapted to sense a forward current running through the semiconductor

diode D4 by monitoring a voltage drop across a sense resistor R and turn on M4 through the gate

driver 207 in response to a detection of forward current such that M4 effectively clamps the sem-

iconductor diode D4 during the first period of the cycle time of the transformer output signal to

establish a low-impedance path for the conduction of forward current through the bi-directional

switching circuit to VOUT to charge VOUT.

[0048] Fig. 3 shows a schematic block diagram of a bi-directional piezoelectric power

converter 300 in accordance with a second embodiment of the invention. Corresponding features

have been provided with corresponding reference numerals in the first and second embodiments

of the bi-directional piezoelectric power converter to ease comparison. Generally, the bi-

directional piezoelectric power converter 300 has similar characteristics and features as those
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explained in connection with the first embodiment, but the way the predetermined excitation

frequency at the input driver 302 is set differs. In the first embodiment, the predetermined excita-

tion frequency was set by loop parameters, including parameters of the PT 104, of the self-

oscillating feedback loop formed around the piezoelectric transformer. However, in the present

embodiment, the predetermined excitation frequency is set by an independent frequency genera-

tor or oscillator 317. The predetermined excitation frequency is preferably set to a value within a

frequency range where the PT 304 exhibits inductive input impedance. Such inductive input im-

pedance enables ZVS operation of the input driver 303 to improve its power conversion efficien-

cy as explained above.

[0049] Figs. 4a) – d) depict measured forward and reverse current waveforms through the

bi-directional switching circuit 108 during delivery of a positive, zero and negative net output

power to the load capacitor CLOAD. The y-axis of all the upper graphs 402 depicts current in mA

and the x-axes time in milliseconds such that the x-axis spans over a time period of about 100

µS. The dotted curve 403 of each of the upper graphs 402 of Figs. 4a)-d) shows measured current

through the parallel connection of M4 and D4 to the DC output voltage VOUT (refer to Fig. 1) such

that VOUT is charged during positive half-periods of the transformer output signal on the electrode

107. The full line curves 405 of the same graphs 402 of Figs. 4a)–d) show measured current

through the parallel connection of M3 and D3 where current is conducted in opposite or negative

half-periods of the cycle time of the transformer output signal. In the negative half-periods of the

transformer output signal, the current is circulated around the secondary section of the PT 104

without charging the DC output voltage. The lower graphs 401 of Figs. 4a)-d) show the input

drive voltage waveform 407 at the first input electrode 105 which is coupled to the input section

of the PT. The y-axis of the lower graphs 401 depicts the input drive voltage in volt. The skilled

person will understand that the corresponding transformer output voltage at the electrode 107

may have peak values above several hundred or even several kV due to the voltage gain of the

PT 104.

[0050] In the depicted operation mode in Fig. 4a), the bi-directional switching circuit

operates essentially in its first state where the circuit essentially acts as a traditional half-wave

rectifier. The DC output voltage VOUT is charged by the forward current running through the

high-side rectifying element, comprising the parallel connection of M4 and D4, to the DC output

voltage in every positive half-period of the transformer output voltage. The current through the
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parallel connection of M4 and D4 runs forward during the first period 403f of each of the cycle

times of the transformer output signal as indicated schematically on the dotted current waveform

curve 403. A positive net output power of 2.6 W is delivered to the load capacitor CLOAD.

[0051] In Fig. 4b), the bi-directional switching circuit 108 has been switched to its se-

cond state and the positive output power to load capacitor CLOAD is reduced from the above 2.6

W to 1.4 W by reverse conduction of power to the input side of the PT. This is visible by inspec-

tion of the dotted curve 403 of the upper graph 402 of Fig. 4b) which shows measured current

through the high-side rectifying element, comprising the parallel connection of M4 and D4, to the

DC output voltage. The current through the parallel connection of M4 and D4 runs forward dur-

ing a first period 403f of the cycle time of the transformer output signal such that the DC output

voltage is charged. However, during a second period 403r of the same cycle of the transformer

output signal, the current through the parallel connection of M4 and D4 runs in an opposite direc-

tion and becomes negative such that the DC output voltage is discharged rather than charged.

The second period of the cycle of the transformer output signal, where reverse current is con-

ducted, is introduced or caused by a delayed or phase-shifted turn-off timing of the NMOS tran-

sistor M4 through the adjustable time delay circuit, control ΔT, of the phase controller 111 as 

previously explained. By comparison of the areas underneath the current waveform 403 during

the first and second periods 403f, 403r of the same cycle of the transformer output signal it is

apparent that net positive charge or power is transferred to the DC output voltage under the cho-

sen conditions which is consistent with the measured positive output power of 1.4 W.

[0052] In Fig. 4c), the bi-directional switching circuit 108 also operates in its second

state as was the case in Fig. 4b). However, the output power to the load capacitor CLOAD is re-

duced from the above 1.4 W to 0.0 W by an increased delay of the turn-off timing of the NMOS

transistor M4 as explained above in connection with Fig. 2. The increased time shift leads to a

longer duration of the second period of the transformer output signal where reverse current is

conducted through M4 such the DC output voltage is further discharged compared to the situa-

tion in Fig. 4b). This is visible by inspection of the dotted curve 403 of the upper graph 402 of

Fig. 4c) which shows measured current through the high-side rectifying element, comprising the

parallel connection of M4 and D4, to the DC output voltage during consecutive cycle times of the
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transformer output voltage. The current through the parallel connection of M4 and D4 runs for-

ward during a first period 403f of the cycle time of the transformer output signal such that the

DC output voltage is charged. However, during a second period 403r of the same cycle of the

transformer output signal, the current through the parallel connection of M4 and D4 becomes

negative as explained above such that the DC output voltage is discharged rather than charged in

the second time period. By comparison of the areas underneath the current waveform 403 during

the first and second periods 403f, 403r of the same cycle of the transformer output signal it is

readily apparent that approximately zero net charge or zero net power is transferred to the DC

output voltage during a cycle time of the transformer output voltage under the chosen conditions.

This observation is also consistent with the measured output power of 0.0 W.

[0053] Finally, in Fig. 4d), the bi-directional switching circuit 108 continues to operate in

the second state as was the case in Figs. 4b) and c). However, the net output power to the load

capacitor CLOAD is now negative at -2.4 W rather than positive or zero. This has been achieved by

a further increase of the delay of the turn-off timing of the NMOS transistor M4 as explained

above in connection with Fig. 2. The increased time shift leads to a longer duration of the second

period of the transformer output signal where reverse current is conducted through M4 such the

DC output voltage is further discharged compared to the situation in Fig. 4c). This is visible by

inspection of the dotted curve 403 of the upper graph 402 of Fig. 4d) which shows measured

current through the high-side rectifying element, comprising the parallel connection of M4 and

D4 to the DC output voltage during consecutive cycle times of the transformer output voltage.

The first period 403f of the cycle time of the transformer output signal is very small such that

only a single short spike of forward current through the parallel connection of M4 and D4 is visi-

ble making the amount of charge or forward current transferred to the DC output voltage nearly

zero during the first period 403f. However, the second period 403r has nearly a duration of an

entire half-period of the cycle time or period of the transformer output signal such that a large

amount of reverse current is conducted through the parallel connection of M4 and D4 leading to a

substantial discharge of the DC output voltage. Consequently, by comparison of the areas under-

neath the current waveform 403 during the first and second periods 403f, 403r of the same cycle
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of the transformer output signal it is readily apparent that substantial amount of negative net

charge or negative net power is transferred to the DC output voltage during a cycle time of the

transformer output voltage under the chosen conditions. This observation is also consistent with

the measured output power of -2.4 W.

[0054] Fig. 4e) shows measured forward and reverse power figures through the bi-

directional piezoelectric power converter over a time period of approximately 6 milliseconds

where these quantities are dynamically adjusted in opposite direction during operation of the

piezoelectric power converter. The upper graph 412 shows corresponding values of measured

input power, curve 415, and output power, curve 416, over time. The lower graph 411 shows the

delay of the turn-off timing of the NMOS transistor M4 which is controlled by the turn-off timing

of the low-side NMOS transistor M3 through the adjustable time delay circuit, control ΔT, of the 

phase controller 111 as previously explained. The y-axis of the lower graph 411 depicts this time

delay in µS. As illustrated, the controller of the present piezoelectric power converter enables

both full forward transmission of power from the input to the output as illustrated at a time delay

value of zero µS. In this operation state, substantially all input power of approximately 2.6 W is

transferred to the load capacitor CLOAD. When the time delay is gradually increased from about 1

µS to about 6 µS over time depicted along the x-axis from about 6 mS to about 8 mS, the input

power gradually becomes less and less positive and finally negative indicating that a continuous-

ly increasing amount of power is transmitted in reverse direction from the output voltage and

back to the primary section of the piezoelectric transformer. The measured output power curve

416 has a mating shape indicating that a gradually decreasing output power and finally a nega-

tive output power is supplied to the load capacitor Cload. Hence the load capacitor is discharged

by reverse power transmission back to the primary section of the piezoelectric transformer. The

skilled person will appreciate the efficient and flexible way the present bi-directional piezoelec-

tric power converter can be adapted for both forward and reverse transmission of power by con-

trol of the first and second states of the bi-directional switching circuit. This property enables

energy efficient and accurate output voltage regulation.

[0055] Fig. 5 is a schematic block diagram of a generic and highly versatile bi-directional

switching circuit 508 coupled to a PT 504. The bi-directional switching circuit 508 can be pro-

grammed to provide a positive or negative output voltage across the load capacitor Cload and to
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provide half-wave or full-wave rectification of the transformer output signal supplied between

the positive output electrode 507 and a negative, or opposite phase, output electrode 507b. The

different modes of operation can be obtained through appropriate programming or setting of re-

spective control voltages on the gate terminals of the NMOS transistors M4A, M4B, M3A, M3B,

M6A, M6B, M5A and M5B. The transformer output signal at the positive output electrode 507 is

applied to a midpoint node of a first branch of cascaded NMOS transistors M4A, M4B, M3A and

M3B wherein an upper leg or high-side leg comprises M4A and M4B while a lower leg compris-

es cascaded NMOS transistors M3A and M3B. The oppositely phased transformer output signal

at the negative output electrode 507b is applied to a midpoint node of a second branch of cascad-

ed NMOS transistors M6A, M6B, M5A and M5B wherein an upper leg or high-side leg com-

prises M6A and M6B while a lower leg comprises cascaded NMOS transistors M5A and M5B.

The secondary side of the PT 504 acts as a current source through the positive and negative out-

put electrodes 507, 507b, respectively.

[0056] With NMOS transistors M4A, M4B and NMOS transistors M5A, M5B in their

respective on-states/conducting states, a positive output voltage VOUT is applied to the output

electrodes 507, 507b irrespective of the polarity of the current delivered by the secondary side of

the PT 504 through the positive and negative output electrodes 507, 507b, respectively. With

NMOS transistors M4A, M4B and NMOS transistors M6A, M6B in their respective on-

states/conducting states, zero volts is applied to the output electrodes 507,507b irrespective of

the polarity of the current delivered by the secondary side of the PT 504 through the positive and

negative output electrodes 507, 507b, respectively. With NMOS transistors M3A, M3B and

NMOS transistors M6A, M6B in their respective on-states/conducting states, a negative DC out-

put voltage VOUT is applied to the output electrodes 507,507b irrespective of the polarity of the

current delivered by the secondary side of the PT 504 through the positive and negative output

electrodes 507, 507b, respectively.

[0057] In this manner, the bi-directional switching circuit 508 enables a controlled bi-

directional flow of power through the PT 504 for output voltages of any polarity. Some of the

different modes of operation are described below in further detail.

[0058] Fig. 6 is a schematic block diagram of a bi-directional switching circuit 608 con-

figured for half-wave rectification of the transformer output signal supplied between the positive

and negative output electrode 607 and 607b, respectively. The present bi-directional switching
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circuit 608 is capable of providing both positive and negative output voltages at VOUT by appro-

priate programming or adaptation. By constantly holding the NMOS transistors M4B, M3B in

their respective on-states or conducting states during operation of the switching circuit 608, M4A

and M3A will act as a half-wave rectifier generating a positive voltage at VOUT by adapting the

control signals for these NMOS transistors in the manner described above in connection with the

first embodiment of the invention. This mode of operation of the bi-directional switching circuit

608 is accordingly similar to the operation of the bi-directional switching circuit 308 described

previously under the first embodiment of the invention. The bi-directional switching circuit 608

can however also be programmed to provide a negative output voltage at VOUT by setting the

NMOS transistors M4A and M3A constantly to their on-states. In this alternative mode of opera-

tion, M4B and M3B will act as a half-wave rectifier generating a negative DC output voltage

when appropriate control signals are applied to their respective gate inputs.

[0059] The secondary side of the PT 604 acts as a current source through the positive and

negative output electrodes 607, 607b, respectively as previously explained. With NMOS transis-

tors M4A, M4B switched to their respective on-states/conducting states, a positive output voltage

VOUT is applied to the output electrodes 607 irrespective of the polarity of the current delivered

by the secondary side of the PT 604 through the positive output electrode 607. With NMOS tran-

sistors M3A, M3B switched to their respective on-states/conducting states, zero volts is applied

to the output electrodes 607 irrespective of the polarity of the current delivered by the secondary

side of the PT 604 through the positive output electrode 607. In this manner, the bi-directional

switching circuit 608 enables a controlled bi-directional flow of power through the PT 604 for

positive output voltages at VOUT in a first state and controlled bi-directional flow of power

through the PT 604 for negative output voltages at VOUT in a second state.

[0060] Fig. 7 is a schematic block diagram of a bi-directional switching circuit 708 con-

figured for full-wave rectification of the transformer output signal supplied between the positive

and negative output electrode 707 and 707b, respectively. The bi-directional switching circuit

708 is configured to generate a positive output voltage across the load capacitor e.g. a positive

DC voltage. The secondary side of the PT 704 acts as a current source through the positive and

negative output electrodes 707, 707b, respectively as previously explained. With NMOS transis-

tors M4A, M5A switched to their respective on-states/conducting states, the voltage VOUT is ap-

plied to the output electrodes 707, 707b irrespective of the polarity of the current delivered by
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the secondary side of the PT 704 through the output electrodes 707, 707b. With NMOS transis-

tors M4A, M6A switched to their respective on-states/conducting states, or NMOS transistors

M3A, M5A switched to their respective on-states/conducting states, zero volts is applied to the

output electrodes 707, 707b irrespective of the polarity of the current delivered by the secondary

side of the PT 704 through the output electrodes 707, 707b. With NMOS transistors M3A, M6A

switched to their respective on-states/conducting states, minus VOUT (-VOUT) is applied to the

output electrodes 707, 707b irrespective of the polarity of the ac current delivered by the second-

ary side of the PT 704 through the output electrodes 707, 707b.
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CLAIMS

1. A bi-directional piezoelectric power converter comprising:

- a piezoelectric transformer comprising an input electrode electrically coupled to an in-

put or primary section of the piezoelectric transformer and an output electrode

electrically coupled to secondary or output section of the piezoelectric transformer

to provide a transformer output signal,

- an input driver electrically coupled to the input electrode and arranged to supply an in-

put drive signal with a predetermined excitation frequency to the input electrode,

- a bi-directional switching circuit coupled between the output electrode and an output

voltage of the converter,

- a controller adapted to control first and second states of the bi-directional switching cir-

cuit based on the input drive signal or the transformer output signal such that:

- in a first state, forward current is conducted from the output electrode to the output volt-

age through the bi-directional switching circuit during a first period of a cycle

time of the transformer output signal to charge the output voltage,

- in a second state, reverse current is conducted from the output voltage to the output

electrode through the bi-directional switching circuit during a second period of

the cycle time of the transformer output signal to discharge the output voltage and

return power to the primary section of the piezoelectric transformer.

2. A bi-directional piezoelectric power converter according to claim 1, wherein the control-

ler in the second state is further configured to control the switching circuit such that:

- both forward current and reverse current is conducted during a single cycle of the trans-

former output signal.

3. A bi-directional piezoelectric power converter according to claim 1 or 2, wherein the con-

troller is adapted to terminate the second period of the cycle time synchronously to the input

drive signal or synchronously to the transformer output signal.
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4. A bi-directional piezoelectric power converter according to any of claims 1-3, wherein

the controller is adapted to initiate the first period of the cycle time synchronously to the input

drive signal or synchronously to the transformer output signal.

5. A bi-directional piezoelectric power converter according to any of claims 1-3, wherein

the controller is adapted to:

- sense a current in, or a voltage across, an electrical component of the bi-directional

switching circuit,

- initiate the forward current conduction in the first period of the cycle time in response to

a sensed current or voltage so as to asynchronously initiate the forward current

conduction.

6. A bi-directional piezoelectric power converter according to any of the preceding claims,

wherein the bi-directional switching circuit comprises:

- a first controllable semiconductor switch arranged between the output electrode and the

output voltage,

- a second controllable semiconductor switch arranged between the output electrode and a

negative supply voltage; wherein the controller is configured to alternatingly

switch the first and second controllable semiconductor switches to respective on-

states and off-states in a non-overlapping manner to control the forward and re-

verse current conduction.

7 A bi-directional piezoelectric power converter according to claim 6, wherein the bi-

directional switching circuit further comprises:

- a first semiconductor diode coupled across inlet and outlet nodes of the first controlla-

ble semiconductor switch to conduct forward current to the output voltage during

at least a portion of the first period of the cycle time.
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8. A bi-directional piezoelectric power converter according to claim 7, wherein the control-

ler is configured to sense the forward current through, or the forward voltage across, the first

semiconductor diode; and

- switch the first controllable semiconductor switch to the on-state in response to a sensed

forward current or voltage so as to actively clamp the first semiconductor diode

during the first period of the cycle time.

9. A bi-directional piezoelectric power converter according to any of the preceding claims,

wherein the controller comprises an adjustable time delay circuit providing an adjustable dura-

tion of the second period of the cycle time of the transformer output signal.

10. A bi-directional piezoelectric power converter according to claim 9, wherein the control-

ler is configured to derive a synchronous state control signal from the input drive signal; and

- apply the synchronous state control signal through the adjustable time delay circuit to a

switch control terminal of the second controllable semiconductor switch and/or a

switch control terminal of the first controllable semiconductor switch to control

respective states of the first and second controllable semiconductor switches.

11. A bi-directional piezoelectric power converter according to claim 10, wherein the con-

troller comprises:

- a self-powered driver coupled between the switch control terminal of the first controlla-

ble semiconductor switch and the output electrode of the output section;

- the self-powered driver comprising a timer circuit configured to control the state of the

first semiconductor switch in accordance with a timer period setting; said timer

period setting being based on the cycle time of the transformer output signal.

12. A bi-directional piezoelectric power converter according to claim 11, wherein the self-

powered driver comprises a local energy storage component supplying power to the self-powered

driver; and
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- a rectifying element coupled between the local energy storage component and a power

supply voltage of the power converter to energize the local energy storage com-

ponent.

13. A bi-directional piezoelectric power converter according to claim 12, wherein the rectify-

ing element comprises a high-voltage diode having a break-down voltage larger than 200 V, or

more preferably larger than 500 V or larger than 1000 V.

14. A bi-directional piezoelectric power converter according to claim 12 or 13, wherein the

self-powered driver is configured to start the timer in response to a change of bias state of the

rectifying element.

15. A bi-directional piezoelectric power converter according to claim 13 or 14, wherein the

timer period setting substantially equals 50 % of the cycle time the of the transformer output sig-

nal.

16. A bi-directional piezoelectric power converter according to any of claims 6-15, wherein

the first and/or the second semiconductor switch comprises a semiconductor selected from the

group of {MOSFET, IGBT, bipolar transistor, Gate Turn-off thyristor (GTO)}.

17. A bi-directional piezoelectric power converter according to any of claims 6-15, wherein

the first semiconductor diode and/or the second semiconductor diode comprises a body/substrate

diode integrally formed with the first or the second semiconductor switch, respectively.

18. A bi-directional piezoelectric power converter according to any of the preceding claims,

wherein the controller is configured to controlling the switching between the first state and the

second state based on a difference between the output voltage and a predetermined AC or DC

reference voltage.

19. A bi-directional piezoelectric power converter according to any of the preceding claims,

comprising a self-oscillating feedback loop arranged around the input driver and the piezoelectric
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transformer, wherein the self-oscillating feedback loop is adapted to set the predetermined exci-

tation frequency of the input drive signal.

20. A bi-directional piezoelectric power converter according to claim 19, wherein the self-

oscillating feedback loop comprises an adjustable time delay configured to adjust a phase re-

sponse of the self-oscillating feedback loop whereby the predetermined excitation frequency is

adjusted.

21. A bi-directional piezoelectric power converter according to claim 19 or 20, wherein the

self-oscillating feedback loop comprises a zero-crossing detector configured to supply a syn-

chronization signal to the controller, said synchronization signal being synchronous to the input

drive signal or the transformer output signal.

22. A method of increasing an apparent ZVS factor of a piezoelectric transformer of a power

converter, comprising steps of:

- applying an input drive signal with a predetermined excitation frequency to an input

electrode of the piezoelectric transformer,

- providing a bi-directional switching circuit coupled between a secondary or output sec-

tion of the piezoelectric transformer and an output voltage of the power converter,

- conducting, in a first state, forward current from the output section to the output voltage

through the bi-directional switching circuit during a first period of a cycle time of

the transformer output signal to charge the output voltage,

- conducting, in a second state, reverse current from the output voltage to the output sec-

tion through the bi-directional switching circuit during a second period of the cy-

cle time of the transformer output signal to discharge the output voltage,

- adjusting the apparent ZVS factor of the piezoelectric transformer by adjusting a length

of the second period of the cycle time.
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23. A method of increasing an apparent ZVS factor of a piezoelectric transformer of a power

converter, comprising a further step of:

- conducting both forward current and reverse current during a single cycle of the trans-

former output signal.
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ABSTRACT

A bi-directional piezoelectric power converter comprising a piezoelectric transformer.

The piezoelectric transformer comprises an input electrode electrically coupled to a primary sec-

tion of the piezoelectric transformer and an output electrode electrically coupled to an output

section of the piezoelectric transformer to provide a transformer output signal. A bi-directional

switching circuit is coupled between the output electrode and a DC or AC output voltage of the

power converter. Forward and reverse current conducting periods of the bi-directional switching

circuit is based on the input drive signal or the transformer output signal such that a forward cur-

rent is conducted from the output electrode through the bi-directional switching circuit to the DC

or AC output voltage in a first state to charge the DC or AC output voltage. In a second state, a

reverse current is conducted through the bi-directional switching circuit from the DC or AC out-

put voltage to the output electrode to discharge the DC or AC output voltage and return power to

the primary section of the piezoelectric transformer.
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 5
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Fig. 6
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