6,149 research outputs found

    Choreographic and Somatic Approaches for the Development of Expressive Robotic Systems

    Full text link
    As robotic systems are moved out of factory work cells into human-facing environments questions of choreography become central to their design, placement, and application. With a human viewer or counterpart present, a system will automatically be interpreted within context, style of movement, and form factor by human beings as animate elements of their environment. The interpretation by this human counterpart is critical to the success of the system's integration: knobs on the system need to make sense to a human counterpart; an artificial agent should have a way of notifying a human counterpart of a change in system state, possibly through motion profiles; and the motion of a human counterpart may have important contextual clues for task completion. Thus, professional choreographers, dance practitioners, and movement analysts are critical to research in robotics. They have design methods for movement that align with human audience perception, can identify simplified features of movement for human-robot interaction goals, and have detailed knowledge of the capacity of human movement. This article provides approaches employed by one research lab, specific impacts on technical and artistic projects within, and principles that may guide future such work. The background section reports on choreography, somatic perspectives, improvisation, the Laban/Bartenieff Movement System, and robotics. From this context methods including embodied exercises, writing prompts, and community building activities have been developed to facilitate interdisciplinary research. The results of this work is presented as an overview of a smattering of projects in areas like high-level motion planning, software development for rapid prototyping of movement, artistic output, and user studies that help understand how people interpret movement. Finally, guiding principles for other groups to adopt are posited.Comment: Under review at MDPI Arts Special Issue "The Machine as Artist (for the 21st Century)" http://www.mdpi.com/journal/arts/special_issues/Machine_Artis

    Towards a framework for investigating tangible environments for learning

    Get PDF
    External representations have been shown to play a key role in mediating cognition. Tangible environments offer the opportunity for novel representational formats and combinations, potentially increasing representational power for supporting learning. However, we currently know little about the specific learning benefits of tangible environments, and have no established framework within which to analyse the ways that external representations work in tangible environments to support learning. Taking external representation as the central focus, this paper proposes a framework for investigating the effect of tangible technologies on interaction and cognition. Key artefact-action-representation relationships are identified, and classified to form a structure for investigating the differential cognitive effects of these features. An example scenario from our current research is presented to illustrate how the framework can be used as a method for investigating the effectiveness of differential designs for supporting science learning

    Study of Multimodal Interfaces and the Improvements on Teleoperation

    Get PDF

    Extending Cobot's Motion Intention Visualization by Haptic Feedback

    Full text link
    Nowadays, robots are found in a growing number of areas where they collaborate closely with humans. Enabled by lightweight materials and safety sensors, these cobots are gaining increasing popularity in domestic care, supporting people with physical impairments in their everyday lives. However, when cobots perform actions autonomously, it remains challenging for human collaborators to understand and predict their behavior, which is crucial for achieving trust and user acceptance. One significant aspect of predicting cobot behavior is understanding their motion intention and comprehending how they "think" about their actions. Moreover, other information sources often occupy human visual and audio modalities, rendering them frequently unsuitable for transmitting such information. We work on a solution that communicates cobot intention via haptic feedback to tackle this challenge. In our concept, we map planned motions of the cobot to different haptic patterns to extend the visual intention feedback.Comment: Final CHI LBW 2023 submission: https://dx.doi.org/10.1145/3544549.358560

    Investigating the Usability of a Vibrotactile Torso Display for Improving Simulated Teleoperation Obstacle Avoidance

    Get PDF
    While unmanned ground vehicle (UGV) teleoperation is advantageous in terms of adaptability and safety, it introduces challenges resulting from the operator\u27s poor perception of the remote environment. Previous literature on the ability of haptic feedback to augment visual displays indicates that UGV obstacle avoidance information may be more meaningfully communicated via vibrotactile torso systems. Presenting this information so that operators can accurately detect the proximity from walls and obstructions could result in a significant reduction in errors, ultimately improving task performance and increasing the usability of teleoperation. The goal of the current study was to determine the degree to which a vibrotactile torso belt could improve UGV teleoperation performance over video feed alone in a simulated environment. Sixty operators controlled a UGV using a simulated video feed, while half also utilized a vibrotactile belt. Results indicated that the vibrotactile display did not improve navigational performance or decrease subjective workload over video feed alone. Possible reasons for this and limitations are discussed
    • …
    corecore